Agent-Based Composite Services in DAML-S:
The Behavior-Oriented Design of an
Intelligent Semantic Web

Joanna J. Brysdn David Martir?, Sheila A. Mcllraiti¥, and Lynn Andrea Stein

! Harvard Primate Cognitive Neuroscience Laboratory
Cambridge, MA 02138
jbryson@wijh.harvard.edu
2 SRI International
Menlo Park, CA 94025, USA
martin@ai.sri.com
3 Stanford University Knowledge Systems Lab
Stanford, CA 94305, USA
sam@ksl.stanford.edu
4 Computers and Cognition Group
Franklin W. Olin College of Engineering
Needham, MA 02492, USA
las@olin.edu

Abstract. Many researchers are working towards the goal &émantic Web—

a Web that provides information in a way that is useful to artificial intelligences.
A semantic Web would allow artificial agents to do the work of searching for
and organizing services required by humans or organizations. DAML-S is a Web
service ontology intended to facilitate the semantic Web by describing the prop-
erties and capabilities of Web-available services in an unambiguous, computer-
interpretable form. In this paper, we propose that an important new perspective
on the semantic Web can be obtained by regarding its content as behavioral intel-
ligence. The services encoded in DAML-S can then be viewed as specifications
either for extensions of the user agents attempting to exploit the services, or as
independent, collaborative agents that can be ‘awakened’ to assist the user agents.
We draw on our experience in agent development to elaborate the specification,
particularly of the process ontology of DAML-S, in order to support this vision.

1 Introduction: Intelligence and the Semantic Web

The World-Wide Web has revolutionized the communication of information between
humans. However, realizing the Web's full potential will require more than rapid ac-
cess to information and services. It will require support for and development of intel-
ligent schedulers, planners and searchers that, with minimal direction, can serve as an
omnipresent staff of advisers, secretaries, agents, brokers and research assistants. We
want agents without issues or personal lives to plan everything from vacations to col-
loquiums, product development cycles to birthday parties. In short, we want competent
artificial agents to do the mundane organizational tasks in our lives.



The explosion of electronic commerce has brought this vision tantalizingly near.
The community of Web-accessible businesses and organizations, as well as the general
public, have done the hard work: they have connected an enormous variety of products
and services to the Internet, making them accessible to computer programs via sim-
ple communication protocols. Unfortunately, this puts our community squarely on the
spot. In order for intelligent agents to use the Web as it now stands, they must under-
stand ordinary language Web pages and presumably a host of other cultural protocols
which reduce the ambiguity rampant in such language. There is some hope that parsing
ordinary Web pages might succeed in sufficiently stereotypical transactions: see for ex-
ample Koller [31] for a discussion of the information beyond natural language available
in Web pages.

In this paper, we focus on an alternative approach: changing the Web in order to
make it accessible to sophisticated modeling and reasoning techniques developed in Al
and related disciplines. This new “semantic” version of the Web would consist of pages
marked up in accordance with standardized conventions in order to reduce ambiguity
and facilitate automated reasoning [4, 43]. This approach has been the focus of a large
number of research initiatives [17], which has lead to the prediction that “Soon it will be
possible to access Web resources by content rather than just by keywords” [1, p. 411].

Ankolekar et al. [1] describe a formalism, DAML-S, designed by the DARPA Agent
Markup Language (DAML) Services Coalition to facilitate accessing services via the
Web. DAML is an extension of the Extensible Markup Language (XML) and the Re-
source Description Framework (RDF). Itis designed to provide for better specifications
of relationships and ontologies within Web pages to facilitate their automated parsing
and thus the intelligent use of data present on the Web. DAML-S is the part of this
language and ontology effort dedicated to supporting Web services [18].

This paper is intended to extend and refine this work. We propose that in designing
the semantic Web, we should be thinking not only about ways to type, flag and advertise
the information on the Web, but about how to make the Web actively usable. We should
expect the semantic Web not just to extendkhewledgeof artificial assistants, but to
extend theiintelligence This is because a service is not just information, litéhavior.

And behavior can be viewed as the fundamental attribute of intelligence

In this paper, we review the fundamentals of constructing an intelligent agent. We
focus on modular, reactive approaches to agent design, because they are conducive to
the highly distributed, complex nature of Web intelligence. We then examine how to
implement our proposals in DAML-S. Using the DAML-S process ontology formalism
means that reasoning and proof-checking can be applied by concerned agents over the
outcome of extending their design via Web services [see e.g. 41]. The main contribu-
tion of this paper is a set of recommendations for the future design of the DAML-S
process ontology, in which we will encode the planning and action selection for our
proposed semantic Web intelligence. We begin with some definitions, followed by an
overview of current work on DAML-S and agent-based software engineering, in partic-
ular Behavior-Oriented Design [11].

! That expressed behavior is both the purpose and the criteria for intelligence is a functionalist
claim, in keeping with “New Al” [38] and with Turing [58], though not with Newell and Simon
[47].



2 Definitions: Agents and Services

Before we discuss whether Web services should be considered a part of an agent’s
intelligence, we should define what these terms mean. For the purpose of this paper,
we will define aWeb serviceas a Web-accessible program or device. Such programs
and devices may well be capable of affecting the real world, although they needn’t do
so to be regarded as Web services. Services may either be free or for sale. Examples
of services are an airline selling a ticket for a flight, a search engine performing a Web
search for a set of keywords, a software company providing a patch to fix a program, a
police force sending an officer to check a house, or a post office printing an email and
delivering it as surface mail. Any of these services might be solicited via the Web.

Composite servicesombine predefined constituent services in a way that is some-
how more useful to the ultimate end user than the individual servicespaitieular
services to be combined are never specified at the composite level, but rather a char-
acterization of desired outcome is provided to the composite which then selects from
a number of vendors [22]. An example of this from conventional business is a travel
agency, where a customer specifies a sort of trip required, and the travel agent selects
or assists in selecting specific providers such as an airline or hotel. Mcllraith and Son
[41] propose that for the semantic Web, composite services might be viewed “as cus-
tomizations of reusable, high-level generic procedures. Our vision is to construct such
reusable, high-level generic procedures, and to archive them in sharable generic pro-
cedures ontologies.” This vision has lead directly to the DAML-S process ontology,
described below.

An agentwe will take to be a (relatively) autonomous actor with sets of:

— goals conditions the agent works to achieve or fulfill,

— intentions goals and subgoals the agent is currently engaged in pursuing,

— beliefs knowledge about the world (which is necessarily limited and possibly inac-
curate), and

— behaviors actions the agent is able to take.

Agents are generally perceived as consumers of services. However, the critical insight
to our argument is realizing that the results of employing a service can also be seen
asactionsthe agent might take to achieve its goals. This sort of reasoning is unusual
because humans are the archetypal agents, and our sense of identity does not typically
extend to include behaviors not performed directly by our organism (though see [14].)

3 Bringing Services onto the Semantic Web

The semantic Web vision begins with information, and particularly with information
discoveryf4]. The inherent limitations of keyword-based search, over unstructured ma-
terial expressed in natural languages, are already well recognized. The potential bene-
fits of a Web on which many or most pages present their content, or meta-descriptions
of their content, in a structured, semantically grounded language, drawing on shared,
publicly accessible ontologies, are enormous. Not only does such a language permit
precise handling of information retrieval searches and more elaborate types of queries



over Web content, but it also opens the door to powerful formgeasoningabout

that content [21]. The primary goal of the DAML program is to provide the most use-
ful markup language for that purpose [28]; the latest result as of this project to date
is DAML+OIL [19], an XML-based language grounded in description logic and hav-
ing a formal underlying semantics. Additional fundamental goals include the design of
tools to facilitate the creation and maintenance of DAML+OIL ontologies and markup,
and the development of critical supporting technologies, such as automatic translation
between ontologies.

The potential of the semantic Web, however, goes well beyond information discov-
ery and querying. In particular, it encompasses the automation of Web-baséckes
as well. As mentioned above, many different kinds of interactions with Web sites can
be conceptualized as services. While DAML-S is meant to accommodate this full range
of interactions, its primary focus has been on Web sites that do not merely provide
static information but allow one to effect some action or change in the world, such as
the sale of a product or the control of a physical device. At the highest level, the goal
of DAML-S is to unlock this activity-based potential of the Web, by maximizing op-
portunities for effective automation of (all aspects of) Web-based service provision and
use.

Work on DAML-S takes on increased importance in light of the recent focus on ser-
vice provision in the commercial world, as exemplified by the development of Web
Services Description Language (WSDL) [12] and Universal Description, Discovery
and Integration (UDDI) [59]. The high visibility of this commercial work indicates
that within the next few years, large numbers of services may well be accessible not
just by human browsers, but also by software agents acting on behalf of individual or
organizational users. We note here the complementarity of DAML-S technology with
this commercial work on Web services. While commercial efforts are currently focused
on standardization of registration and look-up mechanisms, platform-independent in-
teroperability, and interchange of syntactically well-defined document types, DAML-S
is concerned with providing greater expressiveness in describing the characteristics of
services in a way that can be reasoned about, in support of more fully automated service
discovery, selection, invocation, composition, and monitoring.

DAML-S organizes a service description into three conceptual areagrocess
mode] the profile, and thegrounding After introducing these 3 areas, we give further
attention to the process model.

— The DAML-S profile describesvhat the service doe#t characterizes the service
for purposes of advertising, discovery, and matchmaking; that is, it gives the kinds
of information needed by a service-seeking agent to determine whether the service
meets its needs. Service profiles will normally be organized into ontology-based
taxonomies, which provide the first level of discrimination in searching for a de-
sired service. The characteristics of description logic embodied in DAML+OIL
lend themselves to this sort of classification scheme. See [26] for a (pre-DAML)
matchmaking system based on description logic, and [57] for a system directly
based on DAML.
For all classes of services, profiles can include information about the service’s in-
puts, outputs, preconditions, and effects. This information is derived from the pro-



cess model, as described below. In addition, various classes of services can have a
wide variety of class-specific attributes specified for them, which provide additional
information and requirements. For example, a book selling service might indicate
specific categories of books in which it specializes, and a catering service might
indicate the kinds of cuisine available and the types of events for which it caters.
Other more general qualifiers may also be included, such as professional creden-
tials belonging to the service provider, and quality guarantees, expected response
time and geographic constraints (in appropriate domains).

— The DAML-S process modetells how the service workst includes information
about the service’s inputs (with some indication of whether they are required or op-
tional), outputs (possibly with specification of the conditions under which various
outputs will occur), preconditions (circumstances that must hold before the service
can be used) and effects (what is accomplished by the service, or more generally,
changes brought about by the service). For a complex service (one composed of
several steps over time), the process model shows how it breaks down into simpler
component processes, and the flow of control between them. This description may
be used by a service-seeking agent in (at least) four different ways: (1) to perform
a more in-depth analysis of whether the service meets its needs; (2) to compose
service descriptions from multiple services to perform a specific task; (3) during
the course of the service enactment, to coordinate its activities with those of the
service provider; and (4) to monitor the execution of the service.

— The DAML-S groundingtells how the service is usethat is, it specifies the details
of how an agent can access a sertidgpically a grounding may specify some well
known communications protocol (e.g., RPC, HTTP-FORM, CORBA IDL, SOAP,
Java remote calls, KQML), and service-specific details such as port numbers used
in contacting the service. In addition, the grounding must specify, for each abstract
type specified in the ServiceModel, an unambiguous way of exchanging data el-
ements of that type with the service (that is, marshaling / serialization techniques
employed).

In summary, the servicprofile is the primary construct by which a service is ad-
vertised, discovered, and selected — but in some cases an agent involved in discovery or
selection may also find it useful to inspect the servipetscess modeb answer more
detailed questions about the service. Having selected a service, an agent pses its
cess modelin conjunction with itsgrounding to construct an appropriate sequence of
messages for interacting with the service. The process model is equally important for
purposes of composing and monitoring processes.

The profile and process model aabstractspecifications, in the sense that they
make no commitments regarding message formats, protocols, and Internet addresses
needed to interact with an actual instance of a service. The grounding provides the
concretespecification of these details.

2 This use of the term ‘grounding’, particularly within the context afemanticWeb is some-
what unfortunate. DAML-S grounding has little to do wbmantic groundin§R7, 35, 54].



3.1 DAML-S Processes

The DAML-S process model is intended to provide a basis for specifying the behavior
of a wide range of services, and draws on work in several fields. This includes work
in Al on standardization of planning languages [25], work in programming languages
and distributed systems [44, 45], emerging standards in process modeling and work-
flow technology such as the NIST'’s Process Specification Language (PSL) [52] and the
Workflow Management Coalition effort (http://www.aiim.org/wfmc), work on model-
ing verb semantics and event structure [46], previous work on action-inspired Web Ser-
vice markup [42], work in Al on modeling complex actions [34], and work in agent
communication languages [24, 39] and Multi-Agent infrastructure[55].

As mentioned above, inputs, outputs, preconditions, and effects are central to the
characterization of processes. DAML-S process inputs are named and typed using either
DAML+OIL classes or primitive data types provided by XML Schema [60]. Inputs
are specified as DAML+OIL properties with appropriate range restrictions. In addition
to specifying what information is required by the process, the inputs also (implicitly)
specify the contents of the invocation message(s) for the process. Outputs, similarly
named and typed, indicate the information that the process provides when its execution
completes. Preconditions, of which there may be any number, must all hold in order
for the process to be invoked. Similarly, the process can have any number of effects,
which are guaranteed to hold true at its completion. Conditions can be associated with
outputs and effects. DAML+OIL subclassing can be used to establish a hierarchy of
process classes for increasingly specific domains, adding more specific inputs, outputs,
preconditions, and effects as appropriate.

As shown in Figure 1, DAML-S includes three types of procesatsnic simple
andcomposite

— Atomicprocesses are the units of invocation; that is, an atomic process, somewhat
similarly to a programming language procedure, can be called by transmitting an
invocation message (which carries its inputs) to the process. (The precise require-
ments for the message format are given by the atomic process’ grounding.) An
atomic process executes and returns in a single step, from the perspective of the
service requester.

— Simpleprocesses are like atomic processes in that they are conceived of as having
single-step executions. Unlike atomic processes, however, they are not invocable
and are not associated with a grounding. Simple processes provide a means of ab-
straction; that is, they can provide abstract views of atomic or composite processes.
Such a view of an atomic process typically indicates a specialized way of using
the atomic process. When abstracting from a composite process, a simple process
typically provides a simplified representation, for use by planning and reasoning
engines that don't need the full details of decomposition. In terms of DAML+OIL
properties, a simple process said toréalizedByan atomic process; or &xpand
to a composite process.

— Compositgrocesses are constructed from subprocesses, which in turn can be either
atomic, simple, or composite. Control constructs sucbeagiencandIf-Then-Else
are used to specify the structure of a composite process. In addition to describing
control flow, this structural specification also shows which of the various inputs of



Fig. 1. The upper level of the DAML-S process ontology.

the composite process are accepted by which of its subprocesses (and similarly for
outputs).

Control constructs are themselves composite, usually being composeuaidifiors
andprocess componesitwhich in turn can be either processes or control constructs. For
instance, the control construtt; Then-Else contains a condition — that is, is related
to a condition by a particular property — and two subprocesses, one of which executes
when the condition is true and the other when the condition is false. The table in Figure 2
outlines the set of control constructs available in the process upper ontology, and their
intended semantics.

It is often useful to view a process at different levels of granularity. A“black box”
view allows one to deal with the process as primitive and undecomposable, whereas a
“glass box” view allows one to inspect and reason about its control structure and internal
data flow. In DAML-S, a simple process can be used to present a black-box view of a
composite process, which in turn represents the corresponding glass-box view. This
relationship between the simple and composite views of a process can be captured in
DAML-S using the inversexpandandcollapseproperties.

4 Semantic Web Development and Software Agent Architecture

One critical problem for the semantic Web approach to automating the Web is this:
who will build it? To be truly a part of the Web, the semantic Web must be open to



Construct Description
Sequence Execute a list of processes in a sequential order
Concurrent | Execute elements of a bag of processes concurrently

Split Invoke elements of a bag of processes

Split+Join Invoke elements of a bag of processes and synchronize
Unordered | Execute all processes in a bag in any order

Choice Choose between alternatives and execute

If-Then-Else | If specified condition holds, execute “Then”, else execute “E|se”.
Repeat-Until| Iterate execution of a bag of processes until a condition holds.
Repeat-Whilg Iterate execution of a bag of processes while a condition holds

Fig. 2. Control constructs in the DAML-S process upper ontology and their intended semantics.

development by an enormous number of people with truly disparate amounts of skill
and talent as programmers. This is true even if we assume that not all Web pages will
be on the semantic as well as the ordinary Web, but only those representing fairly-well-
established companies and organizations.

Part of the success of the agent-oriented approach to software engineering has been
the fact that people (including programmers) seem better at reasoning about activities
when they represent them in terms of humanoid actors ascribed with beliefs, intentions,
and abilities [13]. However, building complex agents able to arbitrate between conflict-
ing goals and between multiple, mutually-exclusive means to a single end is still not a
trivial task.

In this section we describe the requirements for building such agents. The con-
cepts introduced here have been described elsewhere more fully as a software design
methodology for constructing complex agents called Behavior-Oriented Design (BOD)
[8,11]. BOD is an instance of one of the currently dominant approaches to agent design:
the hybrid between modular, behavior-based systems and reactive planning [7, 29, 32].
BOD agents consist primarily of a number of modules which directly control all of a
BOD agent’s behavior (action, perception and learning). BOD differs from other hy-
brid architectures in maximizing the power and autonomy of the behavior modules, and
reducing the role of the plans to arbitrating between modules in the case of conflicts
for resources. The primitives of the reactive plans are a method-based interface to the
behavior modules.

We will now consider the issues of modularity and action selection through behavior
arbitration in more detail. In Section 5 we will relate this model of agent intelligence to
Web services. In Section 6 we will use consider the ramifications for DAML-S of the
requirements of this agent-oriented outlook on Web services.

4.1 Modularity

Modularity is a key technique for simplifying software. A complex program is de-
composed into a number of relatively simple modules, which can be developed and
debugged independently. This strategy underlies the current dominant software engi-
neering paradigm, object-oriented design (OOD) [15, 49]. Moving more specifically to



the problem of engineering intelligence, modularity also underlies the behavior-based
approach to Al (BBAI) [2, 6, 40], which has become at least part of many dominant
agent architecture paradigms [see for reviews 7, 29].

Although modularity in some sense simplifies design, it also creates at least two
design problems. The first, module decomposition, will be addressed here, the second,
coordination between modules, is addressed in 4.2.

The questions of modular decomposition include:

— how many modules should be used, and
— what resources belong in each?

These questions are exacerbated by the common design issue that the total capacities
of the final system cannot generally be fully anticipated, because the real requirements
for a system are seldom fully understood before the system is built and used [5]. Fortu-
nately, we can borrow solutions developed in OOD, which has been subject to a great
deal of research and experimentation in the last two decades. OOD suggests that a pro-
gram should be decomposed along the lines of the variable state it will need to maintain.
State is the heart of an object, while its methods are the actions of the program that in-
corporates it. These methods either depend on or maintain the state in the object.

One of the chief insights of BOD is that the same reasoning applies to artificial
agents. Although the main criteria for judging a behavior module in an intelligent
agent is its expressed actions, those actions must be supported by both perception and
memory. Perception combines input from outside the agent (sensing) with expecta-
tions composed of knowledge and beliefs to determine how and when actions should
be expressed. Things a semantic Web agent might store in memory include knowledge
of private resources (e.g. money, CPU, human clients), public resources (e.g. prices
elicited from other Web services), and knowledge critical to the current transaction
(e.g. the length of time until the current transaction times out, the URL of the current
vendor.) Behavior decomposition can be determined by this underlying state and its rate
of change. Once a necessary piece of state has been identified (e.g. a bank balance), ex-
pressed actions dependent on that state and sensing actions which maintain the accuracy
of that state can be clustered into a single behavior module.

4.2 Action Selection

As mentioned in the previous section, the main advantage of modular intelligence is the
relative simplicity of the units, which in turn facilitates the engineering of the overall
system. The drawback of distributing intelligence is that the different modules may
attempt to execute mutually exclusive actions — in particular, they may conflict over
the use of a fixed resource. For example, a distributed artificial travel agent may price a
large number of plane tickets at the same time, but only one process should be allowed
to actually complete the transaction and purchase the tickets if only one person is going
to be doing the flying.

Early modular Al systems resisted the use of centralized arbitration because this
solution was seen as homuncular — as recreating the problem that modularity was in-
tended to address [36]. Instead, behaving modules were expected to recognize their own



context for expression [6, 53]. However, this approach leads to combinatorial problems
in a complex agent where multiple behaviors could in theory fire in a similar contexts,
and thus each behavior might need to model others’ behaviors as well as their own
[50]. Further, analysis has shown that arbitration between modules is not as compli-
cated a problem as the monolithic direction of intelligence by a non-modular approach.
This is because the behavior modules themselves provide information on their context
and applicability, making arbitration between them a relatively simple computation [c.f.
37, 51].

The currently dominant way to arbitrate behavior-based, modular systems is to in-
corporate hierarchical reactive plans into the system execution [7, 29, 32]. Reactive
planning addresses the problem of action selection by looking up the next action based
on the current context, in contrast to deliberate or constructive planning, which involves
search and means-ends reasoning. Reactive plans are pre-established structures which
support the look-up process. Hierarchical reactive plans are simple, robust plans, each
step of which may itself be another reactive plan.

BOD includes a specification for Parallel-rooted, Ordered Slip-stack Hierarchical
(POSH) reactive plans. The details of POSH action selection are available elsewhere
[8, 11]. Inthis paper, we focus not on the specifics of BOD's action selection, but on two
relatively generic reactive-plan idioms, which are found in a number of architectures
[c.f. 10]. These are the simple sequence and the basic reactive plan (BRP).

The BRP is an elaboration of the sequence which allows for reactive response to
dynamic environments. This allowance is made by enabling elements of the sequence to
be either skipped or repeated as necessary. The elements of the sequence are prioritized,
with the ultimate / consummatory element having the highest priority. Each element is
also guarded by a precondition that determines whether the element can execute. On
each program cycle of the behavior-arbitration module, the highest-priority element of
the currently-attended BRP that can execute is executed. A more complete description
of the BRP is available in Appendix A, below.

5 Web Services as Agent Behavior

Is there really an advantage to thinking about Web services from the perspective of
agent-oriented software engineering? We believe so, for several reasons:

1. Web services are analogous to modular behaviors, thus

2. a great deal of research in coordinating modular intelligence could therefore be
applicable to developing composite services, and

3. the programming techniques of agent-oriented software engineering could be gen-
erally useful for the development of the semantic Web.

In this section, we discuss each of these points in more detail.

5.1 Services as Behavior Modules

An important characteristic of a service is that it is a black box as far as any client
agent (human or artificial) that uses it is concerned. The black box may have knobs and



switches (e.g. to choose a date, location or title), but the service’s underlying decisions
and workings cannot be changed by the agent.

If we switch to the agent-oriented perspective introduced in Section 2, then what
this means is that services are essentially behavior modules. They contain encapsulated
state, such as information about pricing or definitions. They provide the overall agent
with perception primitives, such as ‘available?’, ‘expensive?’ or ‘transaction success-
ful?’, and action primitives such as, ‘request phone call’, ‘purchase’, or ‘calculate’. And
finally, they control the details of how those perceptions and actions are computed. As
with all modular systems, the more powerful these primitives are, the more simple the
agent’s action-selection can be [37]. But at the same time, there may be costs associated
with giving up fine-grain control of action or timing [56].

5.2 Composite Services as Action Selection

If Web services are modular behaviors, then composite services such as are described
by Mcllraith and Son [41] and provided for by DAML-S may be seen as a form of
behavior arbitration, which is in turn a form of action selection. The purpose of a com-
posite service is effectively to create reliable, uniform, higher-level subgoals, thus again
simplifying the reasoning of the core agent as it arbitrates between its overall goals. For
example, a composite service might allow a user to say “Buy me the cheapest ticket
from here to France” instead of “Purchase AcmeAir Flight 309 Date 20th November”.

5.3 Program, Agent, or MAS?

A composite service might be viewed as a conventional program, or, more essentially,
as another, more powerful service. However, we propose that there is an advantage to
thinking of a Web service as either an agenitself, or as apart of an agent — an
extension that could be added to an existing agent that finds and adopts it.

As an agent, a composite service will work autonomously to complete its goals (in
the example above, finding a cheap ticket). As a part of an agent, a composite service
might be accessed via the Web by another agent with higher level goals (e.g. “Get me
somewhere nice as soon as possible without spending more than | have in my checking
account.”) In the former case, an agent serving a user (a userAgent), might discover and
enlist a number of compositeServiceAgents to provide a particular service. Before mak-
ing a final purchase, the userAgent may expect the compositeServiceAgents to engage
in a negotiation to select the best offer, either between each other or with the userAgent,
perhaps serving as an auctioneer. In the latter case, the userAgent might absorb the
functionality of the composite service plan into its own ontology — its own goal and
plan structure. This would allow the userAgent to enhance its own abilities while main-
taining a fairly strict control over what processes get activated in its name, and what the
current priority structure should be.

The advantage of incorporating the composite servicpaasof the userAgent’s
action selection is that it gives the userAgent a finer granularity of control. For exam-
ple, a userAgent might discover prices available at multiple sites and hold transactions
open in each of them before making a decision about which to terminate and which to
accept. Consider the case of a userAgent seeking the cheapest possible vacation. The



userAgent might exploit two different composite services, one to “Buy me the cheapest
ticket”, and the other to “Rent me the cheapest accommodation”. The now augmented
userAgent might be able to intervene in the workings of each composite service, altering
and pruning the search space in the light of information gleaned from the other.

There are particularly strong advantages to this model if the userAgent itself can
be encoded in the same formalism as the composite services. In this case, and if the
userAgent has the capability to test or reason about its own plan structures, then it
will be able to evaluate composite services in these same terms on their discovery.
This would facilitate relatively informed and possibly even secure choices between Web
service structures, although of course the security would be limited by the behavior of
the encapsulated Web services that serve as the ultimate behavior primitives.

6 Implications for DAML-S

In the previous sections, we have discussed motivations for thinking of the contents
of the semantic Web as either agents which can be negotiated with, or preferably as
agent components which can be incorporated into agents representing individual hu-
man users (userAgents). We also briefly described key elements of agent-oriented soft-
ware engineering, which might make populating the semantic Web more intuitive for
programmers.

In this section, we examine the DAML-S process ontology, which, among other
things, is designed to support composite services. We discuss its ability to support the
design elements key to agent organization.

6.1 Data

Although data is not a part of the DAML-S specification, it is a key issue to modularity
and agent design. As should be apparent from both our previous discussion of modular
decomposition, and the example of integrating two composite services, one for travel
tickets and one for accommodation, some data is an integral part of the agent itself and
must therefore be stored by it. Examples include the agent’s current decision history,
or data on its progress in a search. In the case where the semantic Web is viewed as a
populated MAS, then each agent must maintain its own data about its current transaction
state. This is true also of the single agent employing Web services — some data can (and
even must) be stored within the underlying Web services. The agent must store more
locally information representing not only its decisions, but other information such as
characteristics or requirements provided by or about the underlying user. These might
include their preferred airlines, their personal schedule, or their security clearance.

One suggestion is that state local to the agent should be encapsulated in a Web-
service-like module accessible only to the userAgent, but preserving the structure and
interfaces of DAML. This would provide for uniform coding. Thus our first recommen-
dation with respect to data is not so much for a change in DAML-S, but for a strategy
of building DAML-S agent behaviors when they aretactually Web services.

Another consideration with respect to data is the responsibility for data retention,
particularly in the case of failures or crashes. It may be in the interest of the userAgent to



maintain persistent storage and records of information transmitted even if negotiations
were not fully committed, in order to save time when the Web-based agent or intelli-
gence becomes available again. Since data belongs to the agent, we do not consider this
an important consideration for composite services, unless they are operating as inde-
pendent agents (the MAS option described above.) As for the Web services themselves,
presumably the transaction standards for such situations have already been established
for Web-based services. We only recommend that these be made one of the functional
attributes of the DAML-S service profile.

6.2 Primitives

Primitives are the lowest-grained individual actions that are performed by the Web ser-
vice — they are the interface to the black box. This includes sense-acts such as reading
a value. We have already discussed primitives in terms of their relationship to Web
services. In this section we will describe them as members of the DAML-S process
ontology, that is, their behavior in composite services / action-selection plans.

There are fundamentally two ways primitives in a real-time system can behave. The
first is that a primitive may compute and return an answer, and take an arbitrarily long
time to complete. The second is that a primitive may trigger a process to run, itself
returning only success or failure in starting the process. Checking whether the process
completes, and, if it is performing a computation, what its result is, are separate actions
again performed by the calling program.

BOD actually recommends a hybrid between these approaches: it in practice uses
the first (blocked) sort of primitive, but it expects the “answer” to already exist. Nor-
mally under BOD, the behavior modules to be designed to proviggimeresponses
[20] to the invocation of a primitive. This is critical in order for a BOD agent to be re-
active: it can only switch attention to another information source (such as a successful
search return or a user interrupt) if its control is not pending on a function call.

Consequently, we recommend that primitives / basic services in DAML-S spec-
ify their expected return time and values, possibly guaranteeing timeouts if requested.
Again, this approach is not mandatory: the DAML-S process ontology allows for paral-
lel operation, but it is necessary for any temporal reasoning or guarantees by the overall
agent. This is again a recommendation for the Service Profile, that for each possible
communication to the service it should specify whether the call will be blocked or un-
blocked, and whether they have fixed, variable or no timeout.

6.3 Sequences

The sequence is the most fundamental composite element. Some agent architectures try
to do away with it in favor of chains of production rules, but these are not equivalent
[10, 30]. A sequence provides an extra piece of control state. It specifies a problem
space — a particular subset of possible actions or productions — which simplifies the
triggering information each element needs. It also allows sequential firing to happen

8 One of the best established and well researched production-based architectures, Soar, had to
be supplemented with sequences when it was applied to real-time systems [33].



independently of perceiving the results of an action, which may be important if the
sequencing needs to be faster or more reliable than perception can be.

The nature of a sequence depends on the nature of its primitives. BOD’s POSH
action selection actually has two sorts of sequences: a trigger sequence, which expects
extremely rapid responses from all elements and executes entirely within a single cycle,
and an action pattern, which allows for context-checking and reallocation of control
priority between every element. Both sorts of sequences abort if one of their elements
returns a failure. This will usually be the result of a sensory predicate check, but actions
may fail sufficiently radically to abort a sequence as well.

The DAML-S process ontology includes a sequence subtype, but it does not cur-
rently determine whether sequences can be interrupted. Also, it allows sequence ele-
ments to themselves be subprocesses (simple and/or composite), so this indicates the
sequence type is only analogous to the latter, slow type of sequence available under
BOD. It may be advantageous for DAML-S to incorporate also atomic sequencing. Fur-
ther, it should specify conditions and mechanisms for premature termination, possibly
including a global (to the sequence) timeout factor.

6.4 Basic Reactive Plans

Often in a dynamic environment, action selection is too non-deterministic to be directed
by sequences. Nevertheless, focusing on a particular subset of an action repertoire pro-
duces more efficient and effective task completion. We have elsewhere identified an
idiom, the basic reactive plan (BRP), which handles this sort of situation [10]. It is
sufficiently similar to a sequence that it can also be easily designed by conventional
programmers. The BRP is applied iteratively. Its elements are prioritized with the high-
est priority assigned to the steps closest to achieving the goal of the plan. The elements
are also guarded by preconditions. On each iteration, the highest priority step that can
be executed, is. See BOX A for a more thorough explanation including an example.

In POSH action selection, an element of a BRP may itself be a BRP, thus leading to
hierarchical control. This is critical in order to maintain simplicity and clarity. We have
found that the optimal number of steps in a BRP tends to be no more than seven. POSH
action selection does not maintain a stack in a BRP hierarchy, thus allowing for cycles
—thatis, an element can be its own descendant. This is explained briefly in Section 6.5,
and in more detail by [11].

DAML-S does not currently support the expression of a BRP directly, though one
can be constructed out of a while statement and cascading if-thens. However, the idiom
is sufficiently powerful and provides sufficient clarity that we feel it would be wise to
support it directly as a construct in the DAML-S process ontology.

6.5 Agent-Level Control

In order for an agent to be truly reactive, it needs more than a BRP to reorder steps
in a small local plan. It must also be able to respond to events which indicate that a
complete change in plan may be necessary. There must be a mechanism for monitoring
the environment (including the agent itself) to determine if one of its permanent goals
has become urgent, and should co-opt influence on the agent’s current intentions. An



example for a semantic-Web-crawling userAgent might include scheduling constraints,
such as noting that a recommendation (or even a train ticket) is due in the next few
minutes. Another is an event-triggered change, such as a contact from an associate’s
userAgent with a new set of constraints (e.g. lunch in 5 minutes with the press) or
noticing that a previously-established value has become invalid (e.g. a game has been
canceled.)

POSH action section uses an extended version of the BRP for this purpose. On
every program cycle for the action-selection module, it first checks the agent’s global
priorities, then attends to the BRP or sequence currently being pursued by the highest-
priority goal. This high-level, extended BRP is calledrave collection and serves as
a root of the action-selection hierarchy. Each of its elements keeps track of two things:

1. its root of the action-selection hierarchy, and
2. the composite element / intention it is currently pursuing.

If a composite element (a BRP or a sequence) selects a plan which is itself a composite,
that becomes the new intention of the drive collection goal element. On the other hand,
if an intention terminates, then the drive collection returns attention to the root of its
plan hierarchy. This process, referred to aslip stack keeps the agent reactive by
revisiting its decision history periodically, as well as eliminating the problem of a stack
slowing action selection.

As an example, suppose that a userAgent has two goals: reminding the user of meet-
ings, and making arrangements for dinner. Assume the meeting priority is higher, but
often its action simply consists of checking whether the time to the next meeting is less
than five minutes. Dinner arrangements might be more complex, because they involve
determining appropriate companions, locations, food and expense. Suppose the user-
Agent has gotten sufficiently far in tonight's dinner arrangements that it is currently
trying to book a reservation at a particular restaurant, but it is now five minutes before
a meeting and the agent must now divert all its resources (or at least its sound card) to
ensuring the user is aware of it. When this task is over, the second goal will remember
where in its plan hierarchy it was (phone the restaurant.) On the other hand, if the plan
has now been invalidated (the restaurant is fully booked), the goal can return to the top
of the plan hierarchy, revisit and recheck its decisions, and ultimately select a new plan.

If a compound Web service is to be viewed as an extension of a userAgent, then
specifying this highest level of the agent in DAML-S is not strictly necessary. Neverthe-
less, it might be useful for reasoning about the entire agents plan framework given that
we expect the plans to include extensions in DAML-S from composite services found
on the semantic Web. If, on the other hand, a new complete agent is to be spawned
to represent the composite service, and the composite service is entirely specified in
DAML-S, some mechanism must exist in DAML-S for specifying the agent’s core, and
this one may be desirable. The drive-collection is specifically designed to be continu-
ous with the BRP and therefore also easy to learn to design by ordinary programmers.
From the DAML-S implementation side, its similarity to the BRP also makes it a rela-
tively simple addition if the BRP is already present in the ontology. It should however
be noted that, unlike the BRP, the drive collection is not currently a widely accepted
mechanism for encoding the goals and intentions of an agent.



7 Summary

In this paper, we have argued that the semantic Web should be seen not merely as
a repository oknowledge but also ofbehavioral intelligenceWe argue this for two
reasons:

1. because the semantic Web is based on the conceggraites and servicesare
intelligent behaviors, and

2. because the semantic Web must be built by programmers, and agent-oriented soft-
ware engineering (the goal of which is behavioral intelligence) is an intuitive way
to build software services.

We have given an overview of the current content of DAML-S, a developing means for
describing services on the semantic Web. We have also described a standard program
decomposition or architecture for software agents, consisting of modular behaviors ar-
bitrated by reactive plans. Although we have emphasized a single approach to develop-
ing such agents, Behavior-Oriented Design, we have made an effort to motivate all our
recommendations in terms of generally- or at least widely-accepted practice.

We have then turned our knowledge of agent-oriented software engineering into
a set of specific recommendations about the nature of standardized ontologies for the
Web. Perhaps the most critical recommendation is the highest-level one — that DAML-
S should be able to support the description of an entire software agent, so that agent in-
telligence can be continuous with the semantic Web and accessible to the same forms of
Al reasoning. We have focused our recommendations on DAML-S, although they could
be adapted to other standards if necessary or desirable. By combining an agent-based
outlook with DAML-S, we have the potential to provide a truly grounded ontology for
the semantic Web — one based on action in the real world.
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A Basic Reactive Plans

This section describing the BRP is based on the description in [11]. We first developed
this idiom independently, and called ittampetenceHowever, it occurs in a number
of other architectures [e.g. 16, 23, 48] and is so characteristic of reactive planning, that
we refer to the generic idiom asBasic Reactive Planr BRP.

A BRP stepis a tuple(r, p, o), wherer is a priority, p is a releaser, and is an
action. ABRPis a small set (typically 3-7) of plan stepér;, p;, «;)*} associated
with achieving a particular goal condition. The releasgis a conjunction of boolean
perceptual primitives which determine whether the step can execute. Each prjasity
drawn from a total order. Each actiar) may be either another BRP or a sequence as
described above.

The order in which plan steps are expressed is determined by two means: the re-
leaser and the priority. If more than one step is operable, then the priority determines
which step’sw is executed. If more than one step is released with the same priority, then



the winner is determined arbitrarily. Normally the releasgren steps with the same
priority are mutually exclusive. If no step can fire, then the BRP terminates. The top
priority step of a BRP is often, though not necessarily a goal condition. In that case, its
releaserp;, recognizes that the BRP has succeeded, and its actjorgrminates the
BRP.

The details of the operation of a BRP are best explained through an example. BRPs
have been used to control such complex systems as mobile robots and flight simulators
[3, 9, 16]. However, for clarity we draw this example from blocks world. Assume that
the world consists of stacks of colored blocks, and that an agent wants to hold a blue
block.

Priority Releaser- Action
4  (holding) (held 'blue)= goal
< 3 (holding)=- drop-held, Iose-fi% (2)
2 (fixed-on 'blue)= grasp-top-of-stac
1 (blue-in-sceney- fixate-blue

In this case priority is strictly ordered and represented by position, with the highest
priority step at the top. We refer to steps by priority. We now describe the operation of
this plan.

In the case where the world consists of a stack with a red block sitting on the blue
block. If the agent has not already fixated on the blue block before this plan is acti-
vated (and it is not holding anything), then the first operation to be performed would
be elementl because it is the only one whose releaser is satisfied. If, as a part of some
previous plan, the agent has already fixated on Hugould be skipped because the
higher priority ste has its releaser satisfied. Once a fixation is established, element
2 will trigger. If the grasp is successful, this will be followed by elem8nbtherwise
2 will be repeated. Assuming that the red block is eventually grasped and discarded,
the next successful operation of elem@mill result in the blue block being held, at
which point elemen# should recognize that the goal has been achieved, and terminate
the plan.

This single reactive plan can generate a large number of expressed sequential plans.
In the initial context of a red block stacked on a blue block, we might expect the plan
1-2-3-1-2-4 to execute. But if the agent is already fixated on blue and fails to grasp the
red block successfully on first attempt, the expressed plan would look like 2—1-2—-3-1—
2—4. If the unsuccessful grasp knocked the red block off the blue, the expressed plan
might be 2—1-2-4. This BRP is identically robust and opportunistic to changes caused
by another agent.

If an action fails repeatedly, then the above construction might lead to an indefinite
behavior cycle. This can be prevented through several means. Our competences allow
a retry limit to be set at the step level. Thus, in POSKoanpetence stejg really
a quadruple(r, p, a, ), wheren is an optional maximum number of retries. Other
systems often have generic rules which are applied in the absence of progress or change.

The most significant feature of a BRP is that it is relatively easy to engineer. To
build a BRP, the developer imagines a worst-case scenario for solving a particular goal,
ignoring any redundant steps. The priorities for each step are then set in the inverse order
that the steps might have to be executed. Next, preconditions are set, starting from the



highest priority step, to determine whether it can fire. For each step, the preconditions
are simplified by the assurance that the agent is already in the context of the current
BRP, and that no higher priority step can fire. For example, 3tdpes not need the
precondition (not (block blue)), and no step needs to say “If trying to find a blue block
and nothing more important has happened then...”



