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Abstract. This chapter addresses the problem of producing and maintaining
progress in agent design. New architectures often hold important insights into
the problems of designing intelligence. Unfortunately, these ideas can be difficult
to harness, because on established projects switching between architectures and
languages carries high cost. We propose a solution whereby the research com-
munity takes responsibility for re-expressing innovations as idioms or extensions
of one or more standard architectures. We describe the process and provide an
example — the concept of a Basic Reactive Plan. This idiom occurs in several
influential agent architectures, yet in others is difficult to express. We also dis-
cuss our proposal’s relation to the the roles of architectures, methodologies and
toolkits in the design of agents.

1 Introduction

Design is the central problem of developing artificial intelligence. Even systems that
learn or reason, learn or reason better when enabled by good design. Both experience
and formal arguments have shown that structure and bias are necessary to these pro-
cesses, in order to reduce the search space of their learning or reasoning algorithms to a
tractable size [8, 29, 34—-36]. Agent technology is itself a major design innovation which
harnesses the innate ability of human designers to reason about societies of actors [19].

The importance of design explains the focus of our community on agent architec-
tures. Agent architectures are essentially design methodologies: they are technological
frameworks and scaffolding for developing agents. Of course, viewed as methodology,
no architecture can be called complete. A complete architecture could automatically
generate an intelligent agent from a specification.

Because the development of production-quality agents to date has always required
the employment of human designers, there is a high cost associated with switching
architectures. In fact, there is a high cost even for making changes to an architecture.
The engineers responsible for building systems in an upgraded architecture require time
to learn new structures and paradigms, and their libraries of existing solutions must be
ported to or rewritten under the new version. These problems alone deter the adoption
of new architectures. They are further exacerbated by the cost, for the architect, of
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creating documentation and maintaining a production-level architecture, and for the
project manager, of evaluating new architectures. Nevertheless, new architectures often
hold important insights into the problems of designing intelligence.

In this chapter we propose a meta-methodological strategy for the problem of in-
corporating the advances of new architectures into established development efforts. Our
proposal is simple: a researcher, after having developed a new architecture, should ex-
press its major contributions in terms of one or more of the current “standard” architec-
tures. The result of this process is a set of differences that can be rapidly understood by
and absorbed into established user communities.

The next section presents this meta-methodological contribution in more detail. The
bulk of the chapter then consists of an extended example of one such contribution, the
Basic Reactive Plan (BRP), drawn not only from our own work [5, 6] but also from other
architectures [10, 12, 26], We describe implementing it in three different architectures
— Ymir [30], PRS-CL [23] and JAM [18], a Java-based extension of UM-PRS; we also
discuss such an implementation in Soar. We conclude with a discussion of the roles of
architecture, methodology, and toolkit in the problem of intelligent agent design.

2 Architecture Analysis by Reduction to Idiom

Consider the problem of expressing a feature of one architecture in another. There are
two possible outcomes. A featuffg, of architectureA; may be completely express-

ible in Ay. Assuming that this expression is not trivial (e.g. one line of code) fhen
constrainsAy in some way. On the other hand,fif cannot be expressed A without
altering the latter architecture, théa extendsA;. These conditions are not mutually
exclusive — two architectures generally both constrain and extend each other, often
in multiple ways. Identifying these points of difference allows one architecture to be
described in terms of another.

When we speak of the relative expressive power of two architectures, we are not
really comparing their linguistic expressibility in the classical sense. Almost all agent
architectures are Turing-complete; that is, a universal computing machine can be con-
structed within almost any agent architecture. This universal computing machine can
then be used as an implementation substrate for another agent architecture. So, in the
formal sense, all agent architectures are inter-reducible. We are concerned instead with
the kinds of computational idioms that ae#ficaciously expressitlén a particular ar-
chitecture. In this sense, an architectAgemay be considered to exted when there
is no way to express reasonably succinctly the attributeg @f A;.

If, on the other hand, a featufe of A; can be translated into a codiifg of A, with
reasonable efficiency, then we call that codifigan idiom. As we explained above,
the existence of such an idiom meaksconstrainsA,. This notion of constraint may

2 In computational complexity theory, the notion of reducibility is augmented with the asymp-
totic worst case complexity of the reduction. So, for example, in the theory of NP-
completeness, polynomial-time reducibility plays a crucial role. Our notion of efficacious ex-
pressibility does not rely on any criterion so sharply defined as the computational complexity
of the reduction computation, but is intended to evoke a similar spectrum of reduction com-
plexity.



seem counterintuitive, because new features of an architecture are usually thought of as
extensions. However, as we argued in the introduction, extending the capabilities of the

developer often means reducing the expressibility of the architecture in order to biases

the search for the correct solution to the problem of designing an agent.

Although in our examplé\; is constrained relative t8, due to featuref; of Ay,
adding the idioni is unlikely to constrair,. A; retains its full expressive power so
long as the use dff? is not mandatory. For an example, consider object oriented pro-
gramming. In a strictly object-based language such as smalltalk, OOP is a considerable
constraint, which can consequently lead to effective and elegant program design. In
contrast, C++ has added the features of objects, but still allows the full expression of C.
Thus, for the C++ programmer, the elegance of OOP is an option, not a requirement.

An idiom is a compact, regularized way of expressing a frequently useful set of
ideas or functionality. We borrow the notion of idiom both from natural language and
computer science, though in computer science, the term ‘idiom’ (or ‘design pattern’)
is sometimes used for a less rigorous mapping than we mean to imply. An architecture
can be expressed as a set of idioms, either on programming languages or sometimes on
other architectures. Researchers seeking to demonstrate that their architecture makes
a contribution to agent design might do well to express their architecture in terms of
idioms in familiar architectures. In this way, the architecture can be both readily under-
stood and examined. We demonstrate this approach in the following two sections.

It is important to observe that this meta-methodology is different from though re-
lated to the practice of publishing extensions of architectures. First, we do not discour-
age the practice of building entirely new architectures. If an architecture has been built
as an entity, it is more likely to have significant variation from standard architectures,
potentially including vastly different emphases and specializations for particular tasks.
These specializations may turn out to be generally useful contributions, or to be critical
to a particular set of problems. Second, the idiomatic approach emphasizes the search
for generally applicable strategies. Generality here does not necessarily mean across all
possible problems, but it should mean an idiomatic solution relevant across a number of
different underlying architectures. Thus even if an idiom is developed in the context of
a well known architecture, it would be useful if, on publication, the researcher describes
it in terms of general applicability.

3 Discovering an Idiom: the Basic Reactive Plan

We now illustrate our suggestions with an idiom that we will cdlasic Reactive Plan
(BRP). In this section we will introduce the idiom, its functionality and the reasons
we consider it to be a useful idiom. In the next we demonstrate its idiomaticity by ex-
pressing it in several agent architectures. We begin by situating the BRP within reactive
planning and reactive Al.

3.1 Reactive Al, Reactive Planning, and Reactive Plans

The terms ‘reactive intelligence’, ‘reactive planning’ and ‘reactive plan’ appear to be
closely related, but actually signify the development of several very different ideas.



Reactive intelligencés what controls a reactive agent — one that can respond very
quickly to changes in its situation. Reactive intelligence has sometimes been equated
with statelessness, but that association is exaggerated. Intelligence of any kind requires
state: for learning, perception, and complex control [4]. Reactive intelligence is however
associated with minimal representations and the lack of deliberation.

Reactive plannings something of an oxymoron. It describes the way reactive sys-
tems handle the problem traditionally addressed by conventional planning — that is,
action selection. Action selection is the ongoing problem for an autonomous agent of
deciding what to do next. Conventional planning assumes the segmentation of intelli-
gent behavior into the achievement of discrete goals. A conventional planner constructs
a sequence of steps guaranteed to move an agent from its present state to a goal state.
Reactive planning, in contrast, chooses only the immediate next action, and bases this
choice on the current context. In most architectures utilizing this technique, reactive
planning is facilitated by the presencereéctive plansReactive plans are stored struc-
tures which, given the current context, determine the next act.

3.2 Basic Reactive Plans

The BRP is an idiom relating to the form of the structure for a reactive plan. The sim-
plest reactive plan possible is a simple sequence of primitive aations...1,. Ex-
ecuting a sequential plan involves priming or activating the sequence, then releasing
for execution the first primitive aat. The completion of any; releases the following

li+1 until no active elements remain. Notice that thisdg equivalent to the process of
chaining where each element is essentially an independent production, with a precon-
dition set to the firing of the prior element. A sequence is an additional piece of control
state; its elements may also occur in different orders in other sequences. Depending on
implementation, the fact that sequence elements are releasedtbyrtieationof prior
elements can be significant in real time environments, and the fact that they are actively
repressed by the existence of their prior element can increase plan robustness (see [39]
for further discussion on time). This definition of sequence is derived from biological
models of serial ordering (e.g. [14]).

A BRP is a more complicated plan structure for circumstances when the exact or-
dering of steps cannot be predetermined. For example, a BRP is useful in cases where
some requirements of a goal might have already been met, might become unset during
the procedure, or might require arbitrary repetitions of steps or sets of steps.

A BRP steps a triple (1t p,a), wherertis a priority, p is a releaser, and is an
action. ABRPis a small set (typically 3-7) of plan stedgrm,pi,qi)«} associated
with achieving a particular goal condition. The releaseis a conjunction of boolean
perceptual primitives which determine whether the step can execute. Each pridgsity
drawn from a total order. Each action may be either another BRP or a sequence as
described above. Hierarchies are controversial in reactive control because they generally
involve maintaining a stack and can consequently become a control bottleneck. In this
chapter we discuss hierarchical BRPs only briefly (see Section 4.1).

The order of expression of plan steps is determined by two means: the releaser and
the priority. If more than one step is currently operable, then the priority determines
which step’sa is executed. If more than one step is released with the same priority,



then the winner is determined arbitrarily. Normally the releagemsn steps with the
same priority are mutually exclusive. If no step can fire, then the BRP terminates. The
top priority step of a BRP is often, though not necessarily a goal condition. In that case,
its releaserp, recognizes that the BRP has succeeded, and its aatidarminates the
BRP.

3.3 An Example BRP

The details of the operation of a BRP are best explained through an example. BRPs
occur in a number of architectures, and have been used to control such complex systems
as flight simulators and mobile robots [1, 6, 25]. However, for clarity we draw this
example from blocks world. Assume that the world consists of stacks of colored blocks,
and that we want to enable an agent to meet the goal of holding a blué blopkssible

plan would be:

[PriorityReleaser |Action \
4 (holding block) (block bluggoal

3 (holding block) drop-held-object, lose-fixation
2 (fixated-on blue) grasp-top-of-stack

1 (blue-in-scene) fixate-blue

For this plan, we will assume that priority is strictly ordered and represented by
position, with the highest priority step at the top. We refer to the steps by their priority.

Consider the case where the world consists of a stack with a red block sitting on
the blue block. If the agent has not already fixated on the blue block before this plan is
activated (and it is not holding anything), then the first operation to be performed would
be elementl because it is the only one whose releaser is satisfied. If, as a part of some
previous plan, the agent has already fixated on Hu&ould be skipped because the
higher priority ste has its releaser satisfied. Once a fixation is established, element
2 will trigger. If the grasp is successful, this will be followed by elem8nbtherwise
2 will be repeated. Assuming that the red block is eventually grasped and discarded,
the next successful operation of elem@nill result in the blue block being held, at
which point elemend should recognize that the goal has been achieved, and terminate
the plan.

This single reactive plan can generate a large number of expressed sequential plans.
In the context of a red block on a blue block, we might expect the plan 1-2—-3-1-2-4
to execute. But if the agent is already fixated on blue and fails to grasp the red block
successfully on first attempt, the expressed plan would look like 2-1-2—-3-1-2-4. If
the unsuccessful grasp knocked the red block off the blue, the expressed plan might be
2-1-2-4. A basic reactive plan is both robust and opportunistic.

If a grasp fails repeatedly, the above construction might lead to an infinite number
of retries. This can be prevented through several means: either through habituation at
the step level, timeouts at the level of the BRP, or through a separate attentional mecha-
nism which is triggered by repeated attempts or absence of change. This last mechanism

3 This problem is from [33]. The perceptual operations in this plan are based on the visual
routine theory of [32], as implemented by [17].



requires another part of the architecture to provide for controlling attention; as is dis-
cussed immediately below, this is a common feature of reactive architectures.

3.4 Identifying a Valuable Idiom

How does one find a useful architectural feature, and how does one distinguish whether
it is worth expressing as an idiom? Features are distinguished by the methodology de-
scribed in Section 2, by comparison and reduction of an architecture to one or more
others. Features can be idioms if they can be expressed in other architectures. Idioms
are valuable within an architecture if they perform useful functions; they are valuable to
the community if they are not yet regular features of existing architectures or method-
ologies. In this section, we illustrate the process of identification by going through the
history of the identification of the BRP in our own research. We also give two counter-
examples from the same source.

We first developed a BRP as one of three elements of the reactive planning system
for the architecture Edmund [5, 6]. Edmund was initially conceived in the early nineties
in response to the Subsumption Architecture [3]. Subsumption is a strictly behavior-
based architecture with minimal internal state. Because the individual behaviors are
intended to act primarily in response to their environment, only very limited communi-
cation is allowed between them. Developing action selection within this framework is
very complicated. In Edmund, we attempt to maintain the advantages of the behavior-
based system while simplifying the design of behavior arbitration. This is done with
reactive plans.

The three structural elements of Edmund’s reactive plans are action patterns, com-
petences and drive collections. Action patterns are the simple sequences described in
Section 3.2. Competences are BRPs. Drive collections are special forms of the BRP
with extra state. In Edmund, a drive collection serves as the root of a BRP hierarchy,
providing both motive force and an “alarm” system [28] for switching attention to ur-
gent needs or salient events. To illustrate the search for valuable idioms, we consider a
reduction of each of these three features of Edmund’s reactive plans in the context of
Subsumption Architecture (SA) [3], the Agent Network Architecture (ANA) [21], the
Procedural Reasoning System (PRS) [13] and Soar [24].

Although deceptively simple, action patterns actually required extensions to the
original versions of each of the above architectures except PRS. Within SA, a sequence
can only be expressed within a single behavior, as part of its FSM. When the need for
behavior sequencing was discovered, a mechanism for suppressing all but the currently
active behavior was developed [9]. ANA explicitly represents the links of plans through
chains of pre- and post-conditions, but with no privileged activation of a particular
plan’s elements. This sequencing strategy is inadequate [31], and has been improved in
more recent derivative architectures [2, 27]. Soar initially represented sequences only
as production chains. As mentioned in Section 3.2, this mechanism is insufficient in
real-time applications. This problem has now been addressed with a dedicated sequenc-
ing mechanism that monitors durations [20]. PRS has a reactive plan structure, the Act,
which allows for the coding not only of sequences, but of partial plans. Although an ac-
tion pattern could therefore be seen as an idiom on an Act, we have no strong reason to
argue that this particular reduction in power is useful. In conclusion, we have evidence



from the history of multiple architectures that an action pattern is an important feature.
However, it is not one that can easily be implemented as an idiom, because it generally
extends rather than constrains architectures that lack a trivial way to express it.

As for a parallel mechanism for allowing attention shifts, some implementation of
this feature is ubiquitous in reactive architectures. SA assumes that all behaviors operate
in continuous parallel, and can always grasp attention. The difficulty in controlling this
mechanism was the main motivation for Edmund. ANA has similar features and control
problems: each behavior is always evaluated as a possible next act. PRS addresses both
control and reactivity on each cycle: it first persists on the currently active plan, then
engages meta-reasoning to check whether a different plan deserves top priority. Soar
also seems to have struck a balance between persistence and reactivity. Being produc-
tion based, it is naturally distributed and reactive, similarly to SA and ANA. Persistence
is encouraged not only by the new seriating mechanism mentioned above, but primarily
by clustering productions intproblem spacesA problem space is actually somewhat
like a BRP in that it focuses attention on a subset of possible productions. Because all of
these architectures have means for monitoring the environment and switching attention,
introducing drive collections on top of these mechanisms does not have demonstrable
utility.

The BRP is a different matter. First, there are several examples of structures like it
in the planning literature, yet it is not present as a single feature in any of these four
architectures. BRPs are similar in effect, though not in construction, to the “triangle
tables” built to make STRIPS plans more robust [12]. They are also similar to teleo-
reactive plans [26] and what Correia and Steiger-@af¢0] call “fixed action patterns”

(a term that seems inappropriate given their flexibility in ordering expressed behavior).

We therefore have evidence not only from our own experience, but also from several

other architecture research communities of the utility of the BRP. Nevertheless, the

BRP, unlike the simple sequence, is not in general use. In fact, to implement them in

SA or ANA would require extensions, for much the same reason as the implementation
of sequences requires extensions. There is no intrinsic way to favor or order a set of
expressed actions in either architecture except by manipulating the environment. PRS
and Soar, on the other hand, contain sufficient ordering mechanisms that implementing
a BRP idiom should be tractable.

In summary, the value of an idiom is dependent on two things. It must be expressible
but not trivially present in some interesting set of architectures, and it must be useful.
Utility may be indicated by one’s own experience, but also by the existence of similar
features in other architectures. With respect to the BRP, it is present in several archi-
tectures in the literature, and we have independently found its programming advantages
sufficient to lead us to implement it in several architectures besides our own. The next
section documents these efforts.

4 Expressing BRPs in Other Architectures

In the previous section, we introduced an architectural feature we called the Basic Re-
active Plan. In this section, we document the implementation of this feature as an idiom



on a number of architectures. In Section 5 we will discuss how to best exploit this sort
of advance in agent design.

4.1 Ymir

Our first effort to generalize the benefits of Edmund’s action selection was not in a
widely-used standard architecture, but was rather in another relatively recent one, Ymir
([30] see also [7]). Ymir is designed to build complex agents capable of engaging in
multi-modal dialog. A typical Ymir agent can both hear a human conversant and ob-
serve their gestures. The agent both speaks and provides non-verbal feedback via an
animated character interface with a large number of degrees of freedom. Ymir is a
reactive and behavior-based architecture. Its technical emphasis is on supporting inter-
pretation of and responses to the human conversant on a number of different levels of
time and abstraction. These levels are the following:

— a “reactive layer”, for process-related back-channel feedback and low-level func-
tional analysis. To be effective, this layer must be able operate within 100 millisec-
ond constraints,

— a“process control layer”, which deals with the reconstruction of dialogue structure
and monitoring of process-related behaviors by the user, and

— a‘“content layer”, for choosing, recognizing, and determining the success of content
level dialogue goals.

Ymir also contains a key feature, thaetion schedulerthat autonomously determines

the exact expression of behaviors chosen by the various layers. This serves to reduce
the cognitive load, accelerate the response rate, and ensure that expressed behavior is
smooth and coherent.

Although Ymir excels at handling the complexity of multimodality and human con-
versations, it does not have a built in capacity for motivation or long-term planning.
Ymir is purely reactive, forming sentences for turn taking when prompted by a human
user.

Because of Ymir’s action scheduler, the implementation of drives, action patterns
and BRPs was significantly different from that in Edmund. The scheduler could be
relied on to “clean up” behaviors that had been triggered but were not expressed after a
timeout, but it could also be signaled to allow their lifetimes to be renewed. In the case
of action patterns, all of the elements were posted to the schedule, each with a unique
tag, and all but the first with a precondition requiring that its predecessor complete
before it began operating.

The BRP is implemented as an Ymir behavior object which is posted to the action-
scheduler. When executed, the BRP selects a step (as per Section 3.2) and adds the step
to the scheduler. The BRP then adds itself to the scheduler with the termination of its
child as a precondition. The original copy of the BRP then terminates and is cleaned up
by the scheduler. If the child or its descendents maintain control for any length of time,
the ‘new’ parent BRP will also be cleaned up (see further [5] on reactive hierarchies).
Otherwise, the BRP persists in selecting plan elements until it either terminates or is
terminated by another decision process.



4.2 PRS-CL

Our next implementation of BRPs came during a project exploring the use of reactive
planning in dialogue management. Because this was a relatively large-scale project, a
well-established architecture, PRS, was chosen for the reactive planning. Because of
other legacy code, the language of the project was Lisp. Consequently, we used the SRI
implementation of PRS, PRS-CL [23]. PRS-CL provides not only an implementation
of PRS, but also documentation and a set of GUI tools for developing and debugging
PRS-CL agent systems. These tools are useful both for creating and debugging the main
plan elements, the Act graphs.

Acts are roughly equivalent to action patterns described above, but significantly
more powerful, allowing for parallel or alternative routes through the plan space and
for cycles. We initially thought that a BRP would be best expressed within a single Act.
However, there is no elegant way to express the inhibition of lower priority elements
on an Act choice node. Instead, we implemented the BRP as a collection of Acts which
are activated in response to the BRP’s name being asserted as a goal. This results in the
activation of all the Acts (steps) whose preconditions have been met.

PRS-CL has no built-in priority attribute for selecting between Acts. Selection is
handled by meta-rules, which operate during the second half of the PRS control cycle
(as mentioned in Section 3.4). We created a special function for the meta-rule that se-
lects which of the Acts that have been triggered on a cycle is allowed to persist. This
function is shown in Figure 1.

(defun BRP (list-of-ACTs)
(let* ((comp-list (consult-db ’(prs::speaker-competence prs::x.1)))
(current-BRP (BRP-name (first comp-list)))
(current-priorities (priorities-from-name current-BRP)))

; loop over priorities in order, terminate on first one available
; to fire (as indicated by presence in list-of-ACTs)
(do ((priorities current-priorities (rest priorities))
(result))
; this is the ‘until’ condition in a lisp ‘do’ loop ---—
; if it is true, the ‘do’ returns a list containing ‘‘result’’
((setf result (BRP-find-ACT (first priorities) list-of-ACTs))
(list result))
; if we have no priorities, we return something random
(unless (and priorities list-of-ACTs)
(return (set-randomly list-of-ACTs))))
))
)) ; defun BRP

Fig. 1. BRP prioritization implemented as a function for PRS-CL meta-reasoning. Since relative
priority is situation dependent, the BRP function must query the database to determine the current
competence context. Priorities are maintained as a list of Act names, each associated with a BRP
name.



The BRP function we have built for PRS-CL depends on a list of priority lists, where
each priority list is associated with the name of the BRP. This is somewhat unfortunate,
because it creates redundant information. The Act graphs contain similar information
implicitly. Any such replication often leads to bugs caused by inconsistencies in long-
term maintenance. Ideally, the priority lists would be edited and maintained within the
same framework as the Acts are edited and maintained, so that consistency could be
checked automatically.

The fact that PRS-CL and its associated tool set emphasize the construction of very
complex plan elements in the form of Acts, but provide relatively little support for the
construction of metarules or the manipulation of plans as hierarchies, would seem to
reflect an expectation that switching attention during plans is an unusual exception.
Normal behavior is based on the execution of the elaborate Act plans. This puts PRS-
CL near the opposite end of the reactive planning spectrum from architectures such
as Subsumption (SA). As described in Section 3.4, SA assumes that unpredictability in
action scheduling is the norm, and predictably sequenced actions are the exception. The
BRP reflects a moderation between these two extremes. The BRP expects and handles
the unexpected, but provides for the specification of solutions that require multiple,
ordered steps.

4.3 JAM/UM-PRS

We have not been entirely happy with PRS-CL, so have been exploring other architec-
tures for our dialogue project. JAM is a Java based extension of UM-PRS, which is in
turn a C++ version of PRS that is more recently developed than PRS-CL. The control
cycle in all three languages is similar. JAM and UM-PRS have somewhat simplified
their analog of the Act so that it no longer allows cycles, but it is still more power-
ful than Edmund’s action patterns. The JAM Act analog is called simply a “plan”; for
clarity, we will refer to these as JAM-plans.

JAM-plans do have a notion of priority built in, which is then used by the default
meta-reasoner to select between the JAM-plans that have been activated on any partic-
ular cycle. Our current implementation of BRPs in JAM is consequently a simplified
version of the BRP in PRS-CL. A JAM BRP also consists primarily of a set of JAM-
plans which respond to an “achieve” goal with the name of the BRP. However, in JAM,
the priority of a step within the BRP is specified by hand-coding priority values into the
JAM-plans. This is simpler and neater than the PRS-CL solution described above (and
works more reliably). On the other hand, losing the list structure results in the loss of
a single edit point for all of the priorities of a particular competence. This again cre-
ates exposure to potential software bugs if a competence needs to be rescaled and some
element’s priority is accidently omitted.

Both PRS implementations lack the elegance of the Ymir and Edmund solutions
in that Acts or JAM-plans contain both local intelligence in their plan contents, and
information about their parent’s intelligence, in the priority and goal activation. In Ed-
mund, all local information can be reused in a number of different BRPs, potentially
with different relative priorities. The Ymir BRP implementation also allows for this,
because the BRP (and sequence) information is present in wrapper objects, rather than



in the plans themselves. We have not yet added this extra level of complexity in either
PRS-CL or JAM, but such an improvement should be possible in principle.

4.4 Soar

We have not actually implemented a BRP in Soar yet, but for completeness with rela-
tion to the previous section, we will make a short description of the expected mecha-
nism. Much as in PRS, we would expect each currently operable member element of
the BRP to trigger in response to their mutual goal. This could be achieved either by
preconditions, or exploiting the problem space mechanism. In Soar, if more than one
procedure triggers, this results in an impasse which can be solved via meta-level rea-
soning. We assume it would be relatively simple to add a meta-level reasoning system
that could recognize the highest priority element operable, since Soar is intended to be
easily extendible to adapt various reasoning systems. This should operate correctly with
or without chunking.

The Soar impasse mechanism is also already set for monitoring lack of progress in
plans, a useful feature in BRPs mentioned in Section 3.3. In Edmund, retries are limited
by setting “habituation” limits on the number of times a particular plan step will fire
during a single episode. Ymir also supplies its own monitoring system; we have not yet
addressed this problem in our PRS-CL or JAM implementations.

5 Discussion: Architecture, Methodology, or Tool?

An agent architecture has been defined as a methodology by which an agent can be
constructed [37]. However, for the purpose of this discussion, we will narrow this def-
inition to be closer to what seems to be the more common usage of the term. For this
discussion, ararchitectureis a piece of software that allows the specification of an
agent in an executable format. This actually moves the definition of architecture closer
to the original definition of agent language, as a collection of “the right primitives for
programming an intelligent agent” [38]. Aethodologys a set of practices which is
appropriate for constructing an agenttd@ol is a GUI or other software device which
creates code suitable for an architecture (as defined above), but code which may still
be edited. In other words, the output of an architecture is an agent, while the output
of a tool is code for an agent. A methodology has no output, but governs the use of
architectures and tools.

In this chapter, we are emphasizing the use of idioms to communicate new concepts
throughout the community regardless of architecture. In natural language, an idiom can
be recognized as a phrase whose meaning cannot be deduced from the meanings of the
individual words. If an idiom is built directly into an architecture, as a feature, there
may be an analogous loss. Some features may be impossible to express in the same
architecture, such as the BRP and fully autonomous behavior modules. Features imple-
mented directly as part of an architecture reduce its flexibility. However, if a feature
is implemented as an idiom, that can be overridden by direct access to the underlying
code, then the problem of conflicting idioms can be dealt with at a project management
level, rather than through architectural revision.



Accessibility to different idioms may explain why some architectures, such as SA or
ANA, despite wide interest, have not established communities of industrial users, while
others, such as Soar and PRS, have. Soar and PRS are sufficiently general to allow for
the expression of a number of methodologies. However, as we said earlier, generality is
not necessarily the most desirable characteristic of an agent development approach. If
it were, the dominant agent “architectures” would be lisp and C. Bias towards develop-
ment practices that have proven useful accelerates the development process.

We believe GUI toolkits are therefore one of the more useful ways to communicate
information. They are essentially encoded methodologies: their output can be gener-
alized to a variety of architectures (see further [11]). A toolkit might actually be an
assemblage of tools chosen by a project manager. Each tool might be seen as support-
ing a particular idiom or related set of idioms. A GUI tool that would support the BRP
would need to be able to parse files listing primitive functions, and existing sequential
plans and BRPs. A new BRP could then be created by assembling these items into a
prioritized list with preconditions. This assemblage can then be named, encoded and
stored as a new BRP. Such a tool might also facilitate the editing of new primitive
elements and preconditions in the native architecture.

Of course, not all idioms will necessarily support or require GUI interfaces. Ymir's
action scheduler, discussed in Section 4.1, is a structure that might easily be a useful
idiom in any number of reactive architectures if they are employed in handling a large
numbers of degrees of freedom. In this case, the “tool” is likely to be a stand-alone
module that serves as an API to the agent’s body. Its function would be to simplify con-
trol by smoothing the output of the system, much as the cerebellum intercedes between
the mammalian forebrain and the signals sent to the muscular system.

What then belongs in an architecture? We believe architectures should only con-
tain structures of extremely general utility. Program structures which might be best
expressed as architectural attributes are those where professional coding of an attribute
assists in the efficiency of the produced agents. This follows the discussion of agent
languages given in [22]. Examples of such general structures are the interpreter cycle
in PRS or the production system and RETE algorithm in Soar. Other structures, such as
the BRP, should be implemented via idioms, and tools developed to facilitate the correct
generation of those idioms.

Again, we do not discourage the development of novel architectures. An architec-
ture may be a useful level of abstraction for developing specialized ideas and applica-
tions. However, when distributing these inventions and discoveries to the wider com-
munity, tools and idioms may be a more useful device. Note that a specialist in the use
of a particular tool could be employed on a number of projects in different languages
or architectures with no learning overhead, provided the tool's underlying idioms have
already been expressed in those languages or architectures.

6 Conclusion

In this chapter we have argued that methodology is the main currency of agent design.
Novel architectures are useful platforms for developing methodology, but they are not
very useful for communicating those advances to the community at large. Instead, the



features of the architecture should be distilled through a process of reduction to more
standard architectures. This allows for the discovery of both extensions and idioms.
Idioms are particularly useful, because they allow for methodological advances to be
absorbed into established communities of developers. Given that this is the aim, we
consider the development of tools for efficiently composing these idioms to often be a
better use of time than attempting to bring an architecture to production quality.

As an ancillary point, our discussion of reactivity in Section 4.2 above demonstrates
that this process of reduction is a good way to analyze and describe differences in
architectures. This process is analogous to the process of “embedding” described in [15]
(see also [16]). We have elsewhere used this approach to do a rough cross-paradigm
analysis of useful features for agent architectures [4]. The reductions in that article
were not particularly rigorous. Doing such work with the precision of [15] might be
very illuminating, particularly if the reductions were fully implemented and tested. A
particularly valuable unification might be one between a BDI architecture such as UM-
PRS or JAM and Soar, since these are two large communities of agent researchers with
little overlapping work.

Our community’s search for agent methodology is analogous to evolution’s search
for the genome. When we find a strategy set which is sufficiently powerful, we can ex-
pect an explosion in the complexity and utility of our agents. While we are searching,
we need both a large variety of novel innovations, and powerful methods of recombi-
nation of the solutions we have already found. In this chapter, we have demonstrated a
mechanism for recombining the attributes of various architectures. We have also con-
tributed some material in the form of the Basic Reactive Plan (BRP). It is our hope that
contributions such as these can help the community as a whole develop, and discover
through automated development, the agents we wish to build.
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