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The last two decades have seen a great deal of theorising and speculation about
the modular nature of human intelligence, as well as a rise in use of modular
architectures in artificial intelligence. Nevertheless, whether such models of natural
intelligence are well supported is still an issue of debate. In this paper, I propose
that the most important criteria for modularity is specialised representations. I
present a modular model of primate learning of the transitive inference task, and
propose an extension to this model which would explain task-learning results in
other domains. I also briefly relate this work to both neuroscience and established
AI learning architectures.

1. Introduction — Modularity and its Criteria

The 1980s saw the publication of two books which drew attention to mod-
ular theories for the organisation of intelligence. The first, The Modularity
of Mind (Fodor, 1983) came from psychology and dwelt primarily on spe-
cialised modules for perception. Fodor’s full theory proposed that a central
processor analyses the output of these modules and chooses some action,
then further modules generate expressed behavior from these decisions. The
second book, The Society of Mind (Minsky, 1985) came from artificial intel-
ligence (AI). It described a system where control is divided and negotiated
between agents with different goals and skill bases. Like Fodor, Minsky also
proposed some cross-module shared resources, such as long-term memory
and a module maintenance system.

Now, many leading psychologists and philosophers of mind take as given
that natural intelligence has some sort of modular structure (Carruthers,
2003). Similarly, modular architectures have come to dominate the areas
of artificial intelligence that deal with problems most similar to humans’:
autonomous robotics and virtual reality characters (Bryson, 2000). The
relevance of the preferences of AI engineers to theories of natural intelli-
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gence is this: These engineers face the same problems as nature, such as
dealing with uncertainty in perception and action, and searching enormous,
combinatorially-explosive spaces of possible actions. Design features which
have proved useful for engineering may therefore be treated as reasonable
hypotheses for aspects of natural intelligence. It may be that evolution has
had the same result of its search for successful control strategies as we have.

Yet the modularity hypothesis in natural intelligence is still controver-
sial (Karmiloff-Smith, 1992; Carruthers, 2003). This is not least because
the definition of modularity is still not agreed on. Fodor proposed many
possible characteristics for identifying a modular system, such as innate-
ness, localisation and domain specificity. Innateness is extremely difficult
to determine, however, because of the nature of development (Elman et al.,
1996). Development always begins with a uniform (though modular) em-
bryo of a few cells. The shift into a highly specialised adult moves along a
continuum. Selecting a single point when all ‘innate’ modules might be ex-
pressed might be impossible. Certainly no modules will express themselves
without an environment containing oxygen. It’s quite likely that other
modules might not be expressed without the sorts of intellectual stimula-
tion that our species typically receives, such as social interaction. Further,
there’s no reason to use birth as the defining moment for what attributes
have to be present to be considered innate. Given the developmental con-
tinuum, other organismic milestones such as puberty might be far more
appropriate.

Localisation, on the other hand, is in some sense a given. We know that
the brain is divided into organs with different roles and representations. Yet
most proposed cognitive modules, e.g. face recognition or language, utilise
disjoint sections of brain simultaneously. Similarly, domain specificity has
proved difficult. Even V1, the part of the brain identified with ‘early visual
processing’ has lately been indicated for performing other spatial tasks,
such as reading braille (Kauffman et al., 2002). This is hardly surprising
given the nature of the evolutionary process and neural computing — any
cell system found producing orderly and useful computations in a particular
context is likely to be exploited and encouraged regardless of whether that
is the context in which it first proved useful.

Software engineering has also struggled with the correct way to define
modularity, where here ‘correct’ means ‘most useful’ — the way most likely
to be clear, consistent, maintainable and scalable. Although there is no
single universally-accepted strategy for modular decomposition in software
engineering, one standard approach is to define a module in terms of its
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variable state — that is, what it learns or stores, what it brings from past
experience in order to generate behavior in the present. Although many AI
systems attempt to store all knowledge in a single representation in order
to maintain generality, this ignores the intractability of learning in the most
general case Bryson (2001). Modularity provides an opportunity for spe-
cialised representations which can greatly increase the probability for any
agent (animal or artificial) to successfully acquire the skills and knowledge
it needs. This theory is derived from a transition the field of psychology
made in understanding learning, from the general-purpose learning of the
behaviourists to emphasis on specialised learning and modularity (Gallistel
et al., 1991; Roper, 1983).

Differences in representation in animals are not only a good indication
of modularity, but should in fact be taken as the primary criteria for mod-
ularity. While specialised representations are correlated with many of the
traditional criteria for modules (such as innateness, domain specificity and
localisation) they can also allow for a more flexible definition of ‘module’
that addresses the difficulties described above. A specialised representa-
tion can emerge (be learned) over development as neural systems tune to
regularities useful in the agent’s context. This representation may apply to
more than one domain, but still not to most. It might be encoded across
multiple brain sub-systems that are routinely activated in a particular con-
text through reciprocal connections. It may only exist in certain contexts
when activation of its component parts is synchronised (or bound (von der
Malsburg, 1995)), while in other contexts its component parts perform other
functions independently. The concept of module defined in these terms still
explains why some capacities of an individual are present in some contexts
and and not others. It also still makes the complexity of the overall system
more manageable by encapsulating some behavior into a single system.

The remainder of this paper assumes this definition of modularity, which
implies that to demonstrate modularity one must only demonstrate multiple
distinct representations. We now move to examine whether task learning
in primates is modular, beginning with the task of transitive inference.

2. Evidence of Modularity in Transitive Inference Learning

Transitive inference (TI) is the process of reasoning whereby one deduces
that if, for some quality, A > B and B > C then A > C. This ‘reason-
ing’ capacity has been highly researched in psychology. Piaget described
transitive inference as an example of concrete operational thought (Piaget,
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1954). That is, children become capable of doing transitive inference when
they become capable of performing mentally the physical manipulations
that would determine the correct answer — in this case, visualising and
comparing where two items appeared in a sequence. However, Bryant and
Trabasso (1971) showed that pre-operational children could perform TI,
given enough training. McGonigle and Chalmers (1977) also showed that
monkeys (in this case squirrel monkeys Saimiri sciureus), although able to
perform well on any two items (e.g. B, D) drawn from a trained series of
pairs {A > B, B > C, C > D, D > E}, if presented with three trained
items from that set (e.g. B, C,E) performed significantly worse. This last
result, which also proved true of children (Chalmers and McGonigle, 1984),
indicates that the subjects are not drawing their answers from a simple
linear representation.

2.1. Modelling TI with a Production-Rule Stack

Harris and McGonigle (1994) presented a model that fit the McGonigle
and Chalmers (1977) trigram data extremely well, based on production
rule stacks. This model matches the performance of the monkeys very well
whether they are modelled as a group and as individuals.

The production-rule stack model requires the following assumptions:

(1) The subject learns a set of rules of the nature “if A is present, select
A” or “if D is present, avoid D”.

(2) The subject learns a prioritising of these rules.

This process results in a rule stack, where the first rule is applied if its
trigger finds the context appropriate. If not, the second, and so on.

For an example, consider a subject that has learned this stack:

1. (A present) ⇒ select A

2. (E present) ⇒ avoid E

3. (D present) ⇒ avoid D

4. (B present) ⇒ select B

Here the top item (1) is assumed to have the highest priority. If the subject
is presented with a pair CD it begins working down its rule stack. Rules
1 and 2 do not apply, since neither A nor E is present. However, rule 3
indicates the subject should avoid D, so consequently it selects C. Priority
is critical. For example, for the pair DE, rules 2 and 3 give different results.
However, since rule 2 has higher priority, D will be selected.



December 30, 2004 17:27 Proceedings Trim Size: 9in x 6in ncpw9

Adding the assumption that in the trigram test cases, an ‘avoid’ rule
results in random selection between the two remaining items, Harris and
McGonigle (1994) model the conglomerate monkey data so well that there
is no significant difference between the model and the data. For example,
over all possible trigrams, the stack hypothesis predicts a distribution of 0,
25% and 75% for the lowest, middle and highest items. Binary sampling
predicts 3%, 35% and 63%, and logic of course 0%, 0% and 100%. The
monkeys showed 1%, 22% and 78%. Further, individual performance of
most monkeys were matched to a particular stack.

Without trigram data, there would be no way to discriminate which
rule set the monkeys use. However, with trigram data, the stacks are dis-
tinguishable because of their errors. For example, a stack like

1′. (A present) ⇒ select A

2′. (B present) ⇒ select B

3′. (C present) ⇒ select C

4′. (D present) ⇒ select D

would always select B from the trigram BCD by using rule 2′, while the
previous stack would select B 50% of the time and C 50% because it would
base its decision on rule 3.

2.2. A Two-Tiered Modular System for Learning TI

Production-rule models are actually common in cognitive modelling (e.g.
Newell, 1990; Anderson, 1993), but are not satisfying, perhaps partially
because they don’t make a clear connection to brain mechanisms (though
see Fincham et al., 2002). In an attempt to better understand how the
Harris and McGonigle (1994) model could so accurately represent animal
behavior, I built a modular neural learning version of their system. I broke
the learning into two problems: the association of a stimulus (an item, e.g.
B) to an action (select or avoid, as above), and the prioritisation of those
perception/action pairs (see Figure 1).

This two-tiered model consists of a list of items seen, each associated
with a weight and with a unique 2-item list of possible rules (select or avoid)
also associated with weights. When the agent sees a new item, it adds it
to its list of stimuli. The biological plausibility of these assumptions is
addressed in the discussion.

All of the weights in a single list are normalised (they sum to 1) — new
items receive the weight 1/N (where N is the current number of items).
New items in the stimulus list are also associated with a rule-list where both
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Figure 1. The two-tier model. When the agent
observes a set of stimuli (a), a weight vector (b,
the first tier) determines which item present is
most salient. This attracts visual attention (c)
and determines which rule vector (d, the sec-
ond tier) selects the appropriate action (select
or avoid) which controls the monkeys grasp (e).
The two vectors that were most recently active
(a and one of d) are then updated as determined
by the result and the learning rule (Equation 1).
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Figure 2. Typical results for
single-vector learning (only one
rule — select). X-axis: trial num-
ber; Y-axis: weights of stimuli vec-
tor (sum to one). Free variables
are set to Parameters: Ξ = .08,
δ = .02. Key: A•, B−, C∗,D©,
E5.

select and avoid have weight 0.5. provided. When the agent is given a trial,
it examines its list for the rules associated with the stimuli present. For
that set of rules, the highest-priority stimulus determines the focus of the
agent’s attention. Then the highest priority rule in the rule-list associated
with that stimuli determines whether the agent selects or avoids the object
it has fixated on. In the case of a tie, outcome is arbitrary.

Weights are updated after every trial, where a trial is a presentation of
a pair or trigram, a selection by the agent, and a reward. The training rule
is a simple step function. The subject learns a weight vector v. For the
pair XY, where X is selected by the subject and vX and vY are the weights
associated with X and Y respectively:

If X is correct and (vX − vY < Ξ), add δ to vX ;

else, if X is incorrect, subtract δ from vX . (1)

where Ξ and δ are free parameters. Ξ is a threshold over which reward is
so expected that it no longer prompts learning. δ is the amount a weight
is changed by a single bout of learning. If a weight-change occurs, v is
subsequently renormalised.
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The results of this model are an even better match to nature than the
original Harris and McGonigle (1994) model. First, when the model learns
it exactly replicates the production-rule model, so in that sense it is equiv-
alent. But second, like primates (both children and squirrel monkeys) it
doesn’t always learn successfully. Chalmers and McGonigle (1984) docu-
ment a training regime that is necessary for getting a majority of children
to successfully learn the initial pairs (A > B, B > C. . . ). This task is
difficult because most items are sometimes rewarded and sometimes not.

Figures 2 shows a typical learning of weights in a more conventional,
single-representation model of TI. These results are based on the same
learning rule given above, but applied only to a single vector. Here learning
occurs very reliably — the only way to disturb it is to constrain the learning
resources such that the individual cannot find a stable set of weights, in
which case the subject occasionally errs.
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Figure 3. Rule learning with no
training regime. Rules learned in
descending order of priority: select
D©, avoid C∗, avoid B−. The sys-
tem cannot stabilise because it is
far from a complete solution, but
it behaves correctly for every train-
ing pair except CD. Parameters:
Ξ = .08, δ = .02.
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Figure 4. Rule Learning with Phased Train-
ing. Labelled lines indicate the end of training
and testing phases (taken from Chalmers and
McGonigle (1984)). This agent arrives at dif-
ferent stable solutions at different points, but
they are all correct. The final rules set is: select
A•, avoid E5, avoid D©. The agent succeeds
even with very ‘stupid’ parameters: Ξ = .12,
δ = .06.

Figures 3 and 4 show outcomes with the two-tier model. These diagrams
only show the weights of the first tier, the priorities between rules. The rules
themselves converge very quickly and then remain stable over the trial;
the captions indicate whether ‘select’ or ‘avoid’ dominates for each stimuli.
Unless the agents are put through a training regime, only roughly a quarter
of the agents successfully learn the task. Most of the rest display the pattern
shown in Figure 3, where they have learned what to do in the case of the
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endpoints successfully. Interestingly, the dominant tendency is to neglect
the endpoints themselves, and focus attention on their neighbours, which
are after all the more difficult learning task. Unfortunately for the agents,
no correct rule set exists without an endpoint as the highest priority rule.
Learning fixates on finding a correct ordering for two adjacent non-endpoint
items, but no such ordering exists. In Figure 3, the agent’s behavior is
identical whether it selects D or avoids C: either is right in all training
cases except when presented with CD, in which case either is wrong.

On the other hand, under the sort of training a child receives when being
tested on the TI task, the agents learn successfully almost 9 times in 10, and
across a broad range of parameter values Bryson and Leong (2004). Thus
the two-tier model can not only successfully learn a model which conforms
to Harris and McGonigle (1994), but it also fails to learn in an appropriate
way: occasionally with training, and very frequently without it.

3. Modularity and the Two-Tier Model

Despite the quality of its results, the two-tier model is unattractive for
several reasons. First, why when a single-vector model of TI learning would
be not only simpler but more effective would nature choose something so
complex? The answer of course is that TI is almost certainly not being
learned on a special-purpose mechanism — if it had, perhaps it would also
have applied itself to trigrams. This of course begs the question, what is
this learning system, and what is it for?

One possible hint to this answer lies in another set of questions about
the model. Why are the two rules ‘select’ and ‘avoid’? Why isn’t avoid
better informed? Why are there the same number of rules as there are
stimuli? My guess is that TI is actually revealing the deeper structure
of its learning mechanism, a more general purpose one for task learning.
I suspect that for any given problem, the agent attempts to determine a
minimum set of important discriminative stimuli and also a minimum set
of appropriate actions. When subjects are first taught this task, they are
taught to ‘select’ for a reward. Then they are presented with two stimuli,
and penalised for selecting incorrectly. This forces them to learn another
behavior, ‘avoid’, a partially-inhibited form of select. ‘Select, but not the
thing you are attending to.’

Within this ontology, the animal then has two additional things to learn:
in which contexts to apply which behavior, and what the prioritisation is
between contexts when more than one applies.
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The clearest aspect of the two-tier model is that it splits the problem
of task-learning into at least two parts:

(1) learning to associate actions with environmental cues
(2) learning to prioritise these cues when more than one association

holds.

Neuroscience indicates that long-term rule learning, including categori-
sation for action selection, seems to be dependent on both the prefrontal
cortex (Freedman et al., 2001; Wallis et al., 2001) and the hippocampus.
In particular, the entorhinal cortex seems necessary for forming episodic or
event memory necessary for such tasks as paired association, while the hip-
pocampal formation proper is necessary for learning more complex relations
(Alvarado and Bachevalier, 2000; Baxter and Murray, 2001).

The hippocampus has long been implicated in memory consolidation.
Its very sparse, redundant coding system seems ideally suited to recording
memories in real time which can then be consolidated — saved to long term
storage in an integrated representation — using a slower learning mecha-
nism (McClelland et al., 1995; Louie and Wilson, 2001). Thus the following
might be a reasonable neurobiological explanation of the model presented in
this paper. The basic association between stimuli and behaviors would be
performed by the prefrontal cortex generalising from associations learned
by the entorhinal cortex. The hippocampal formation would learn prioriti-
sations between these associations.

4. Conclusion

The two-tier model demonstrates a clearly modular decomposition of
human-like intelligence. Associations and priorities are learned separately
as different representations and in different parts of the brain. Further re-
finements on the model, such as explanations of TI-related timing effects,
will show further modularity in complex process of learning new tasks.
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