
Hypothesis Testing for Complex Agents

Joanna Bryson, Will Lowe† and Lynn Andrea Stein
MIT AI Lab

Cambridge, MA 02139
joanna@ai.mit.edu, las@ai.mit.edu

†Tufts University Center for Cognitive Studies
Medford, MA 02155
wlowe02@tufts.edu

Abstract

As agents approach animal-like complexity, evaluat-
ing them becomes as difficult as evaluating animals.
This paper describes the application of techniques for
characterizing animal behavior to the evaluation of com-
plex agents. We describe the conditions that lead to the
behavioral variability that requires experimental meth-
ods. We then review the state of the art in psychologi-
cal experimental design and analysis, and show its ap-
plication to complex agents. We also discuss a specif-
ic methodological concern of agent research: how the
robots versus simulations debate interacts with statisti-
cal evaluation. Finally, we make a specific proposal for
facilitating the use of scientific method. We propose the
creation of a web site that functions as a repository for
platforms suitable for statistical testing, for results deter-
mined on those platforms, and for the agents that have
generated those results.

Keywords: agent performance, complex systems, behav-
ioral indeterminacy, replicability, experimental design, subjec-
tive metrics, benchmarks, simulations, reliability.

1. Introduction

Humanoid intelligence is a complex skill, with many interact-
ing components and concerns. Unless they are in an exception-
al, highly constrained situation, intelligent agents can never be
certain they are expressing the best possible behavior for the
current circumstance. This is because the problem of choosing
an ordering of actions is combinatorially explosive [9]. Conse-
quently, for scientists or engineers evaluating the behavior of an
agent, it is generally impossible to ascertain whether a behav-
ior is optimal for that agent. Albus [2] defines intelligence as
“the ability of a system to act appropriately in an uncertain en-
vironment, where appropriate action is that which increases the
probability of success.” Systems of such complexity are rarely

amenable to proof-theoretic techniques [26]. In general, the on-
ly means to judge an increase in probability is to run statistical
tests over an appropriately sized sample of the agent’s behavior.

Computational systems, in contrast, are traditionally eval-
uated based on theirfinal results and/or on their resource uti-
lization [29]. The historical definition of computational process
(c.f. Babbage, Turing, von Neumann) is modeled on mathe-
matical calculation, and its validity is measured in terms of its
ultimate product. If the output is correct — if the correct value
is calculated — then the computation is deemed correct as well.
More recent descriptions [e.g. 11] have added an assessmen-
t of the time, space, processor, and other resource utilization,
so that a computation is only deemed correct if it calculates the
appropriate value within some resource constraints.

This characterization of computation is less applicable
when it comes to particular operating systems and other real-
time computational systems. These systems have no final result,
no end point summarizing their work. Instead, they must be e-
valuated in terms of ongoing behavior. Guarantees, where they
exist, take the form of performance constraints and temporal in-
variants. Although formal analysis of correctness plays a role
even in these systems, performance testing, including bench-
marking, is an essential part of the evaluation criteria for this
kind of computational system.

Computational agent design owes much to computer sci-
ence. But the computationalist’s tendency to evaluate in terms
of ultimate product is as inappropriate for computational agents
as it is for operating systems. Instead, metrics must be devised
in terms of ongoing behavior, performance rather than finitary
result. But what is the analog to benchmarking when the tasks
are under-specified, ill-defined, and subject to interpretation and
observer judgment?

In this paper, we will examine issues of running such e-
valuations for complex agents. Bycomplex agentswe mean
autonomous agents such as robots or VR characters capable of
emulating humanoid or at least vertebrate intelligence. We will
discuss hypothesis testing, including the statistical controver-
sies that have lead to the recent revisions in the standard experi-



mental analysis endorsed by the American Psychological Asso-
ciation. We will also discuss recent advances in methodologies
for establishing quantitative metrics for matters of human judg-
ment, such as whether one sentence is more or less grammatical
than another, or an anecdote is more or less appropriate. We
propose a means to facilitate hypothesis testing between group-
s: a simulation server running a number of benchmark tests.

2. Motivation: Sources of Uncertainty

Although there is certainly a role for using formal methods in
comparing agent architectures [e.g. 8, 6], what we as agent de-
signers are ultimately interested in is comparing the resulting
behaviorof our agents. Given the numerous complex sources
of indeterminacy in this behavior, such comparison requires the
application of the same kind of experimental methodology that
has been developed by psychology to address similar problem-
s. In this section we review some of the sources of this inde-
terminacy; in the next we will review analytic approaches for
addressing them.

The first source of indeterminacy is described above: The
combinatorial complexity of most decision problems makes ab-
solute optimality an impractical target. Thus even if there is a
single unique optimal sequence of actions, in most situations
we cannot expect an agent to find it. Consequently, we will ex-
pect a range of agents to have a range of suboptimal behaviors,
and must find a way of comparing these.

The next source of indeterminacy is the environment. Many
agents must attempt to maintain or achieve multiple, possibly
even contradictory goals. These goals are often themselves un-
certain. For example, the difficulty of eating is dependent on the
supply of food, which may in turn be dependent on situations
unknowable to the agent, whether these be weather patterns,
the presence or absence of other competing agents, or in human
societies, local holidays disrupting normal shopping. Thus in e-
valuating the general efficacy of an agent’s behavior, we would
need a large number of samples across a range of environmental
circumstances.

Another possible source of indeterminacy is the develop-
ment of agents. As engineers, we are not really interested in
evaluating a single agent, but rather in improving the state-of-
the-art in agent design. In this case, we are really interested in
what approaches are most likely to produce successful agents.
This involves uncertainty across development efforts, compli-
cated by individual differences between developers. Many re-
sults contending the superiority or optimality of a particular the-
ory of intelligence may simply reflect effective design by the
practitioners of that theory [e.g. 7].

Finally, the emphasis of this workshop is on natural, human-
like behavior. Humans are highly social animals, and social ac-
ceptability is an important criteria for intelligent agents. How-
ever, sociability is not a binary attribute: it varies in degrees.
Further, a single form of behavior may be considered more or
less social by the criteria of various societies. Evaluations of

systems by such criteria requires measurement over a popula-
tion of judges.

3. Current Approaches to Hypothesis Testing

The previous section presented a number of challenges to the
evaluation of complex, humanoid agent building techniques. In
this section we review methodologies used by psychology —
the evaluation of human agents — that are available to address
these challenges.

Although it is obvious that comparing two systems requires
testing, the less obvious issues are how many tests need to be
run and what statistical analysis needs to be used in order to an-
swer these questions. In this section we describe three increas-
ingly common problems in Artificial Intelligence and discuss a
set of experimental techniques from the behavioral sciences that
can be used to address them.

The first problem is variability in results: We need to know
whether performance differences that arise over test replications
can be ascribed to varying levels of a system’s ability or to vari-
ation in lighting conditions, choice of training data, starting po-
sition, or some other or some other external (and therefore un-
interesting) source. Psychology uses statistical techniques such
as the Analysis of Variance (ANOVA) to address these issues.
The second problem is of disentangling complex and unexpect-
ed interactions between subparts of a complex system. This
can also be addressed using ANOVA coupled with factorial ex-
perimental design. The third problem is that of rigorously and
meaningfully evaluating inherently subjective data. Since many
psychology experiments investigate inherently subjective mat-
ters, the field has developed a set of techniques that will be of
use to artificial agent designers as well. The next three sections
describe these solutions in more detail.

3.1 Variability in Results

The problem of comparing performance variability due to dif-
ferences in ability and variability due to extraneous factors is
ubiquitous in psychology. It is dealt with by procedures known
collectively as Analysis of Variance or ANOVA.

3.1.1 Standard ANOVA

In a typical experimental design for comparing performance, K
systems are tested N times each. If the variation in performance
between the K systems outweighs the variability among each
system’s N runs, then the system performances are said to be
significantly different. We then examine the systems pairwise
to get information about ordering. The ANOVA allows us to in-
fer that e.g. although there are differences overall between the
K=4 systems (i.e. some are better than others), the performance
difference between 3 and 4 is reliable, whereas the difference
between 1 and 2 is not reliable because it is outweighed by the
amount of extraneous variation across the N tests. In this case,
although 1 may perform on average better than 2, this does not



imply that it is actually better on the task. If the experiment
were repeated then 2 would have reasonable chance of perform-
ing on average the same as 1, or even better.

The notion ofreasonable chanceused above is the essence
of the concept of significant difference. System 3 is on average
better than 4 in this experiment and the ANOVA tells us that per-
formances are significantly different at the .05 level (expressed
as p<.05). This means that in an infinite series of experimen-
tal replications, if 3 is in fact exactlyas goodas 4, i.e. there
is no genuine performance difference, then the probability of
getting a performance difference as large or larger than the one
observed in this experiment is 0.05. The smaller this probabili-
ty becomes, the more reliable the difference is. In contrast, the
fact that the average performances of 1 and 2 are not signifi-
cantly different means their ordering in this experiment is not
reliable because there is a more than 0.05 probability that the
ordering would not be preserved in a replication.

Notice that hypothesis testing using ANOVA does notguar-
anteean ordering, it presents probabilities that each part of the
ordering is reliable. This is a fundamental difference between
experimental evidence and proof. Scientific method increas-
es the probability that hypotheses are correct but it does not
demonstrate them with complete certainty.

The binary output of hypothesis tests (significant difference
versus no significant difference) and its probability is an unnec-
essarily large loss of information. The American Psychological
Association have consequently recently moved to emphasize
confidence intervals over simple hypothesis testing. Aconfi-
dence intervalis a range, centered on the observed difference,
that in the hypothetical replications will contain the true perfor-
mance value some large percentage, say 95%, of the time. In
the example above, each system has a 95% confidence interval,
or error bar, centered on its average performance with width
determined by the amount of variability between runs. When
two intervals overlap, there is a significant probability that a
replication will not preserve the current ordering among the av-
erages and we can conclude that the corresponding performance
difference is unreliable. This method gives the same result as
simple hypothesis testing above — the performances are not
significantly different — but is much more informative: confi-
dence intervals give an idea about how much variability there is
in the data itself and yield a useful graphical representation of
analytical results.

3.1.2 Alternative Approaches to Analysis

Stating confidence intervals is more informative than simple
significance judgments. However, it also relies on an hypo-
thetical infinity of replications of an experiment. This aspect
of classical statistical inference is a result of assuming that the
true difference in performance is fixed and the observed data is
a random quantity. Alternatively, in Bayesian analysis the d-
ifference is considered uncertain and is modeled as a random
variable whereas the results are fixed because they have already

been observed [5]. The result is a probability distribution over
values of the true difference. To summarize the distribution an
interval containing 95% of the probability mass can be quoted.
This takes the same form as a confidence interval, except that
its interpretation is much simpler: Given the observed results,
the probability that the true difference is in the interval is 0.95,
so if the interval contains 0, there is a high probability that there
is no real performance difference between systems.

The Bayesian approach makes no use of hypothetical ex-
perimental replications and is more naturally extended to deal
with complicated experimental designs. On the other hand, it
does require an initial estimate (or prior distribution) for the
probabilities of various values of the performance difference
before seeing test data. There is much controversy about which
of these approaches is more appropriate. In the context of AI
however, we need not take a stand on this issue. The two ap-
proaches answer different questions, and for our purposes the
questions answered by classical statistics are of considerable
interest. Unlike many of the natural sciences, the performance
of AI systems over multiple replications is not only accessible,
but of particular interest. To the extent we are engineers, AI
researchers must be interested in reliability and replicability of
results.

3.2 Testing for Interacting Components

Many unpleasant software surprises arise from unexpected in-
teractions between components. Unfortunately, in a complex
system it is typically infeasible to discover the nature of inter-
actions analytically in advance. Consequentlyfactorial experi-
mental designis an important empirical tool.

As an example, assume that we can make two changes A
and B to a system. We could compare the performance of the
system with A to the same system without it, using the ANOVA
methods above, and then do the same for B. But when building a
complex system it is essential to also know how A and B affec-
t performance together. Separate testing will never reveal, for
example, that adding A generates a performance improvement
only when B is present and not otherwise. This is referred to as
aninteractionbetween A and B, and can be dealt with by testing
all combinations of system additions, leading to a factorial ex-
periment. Factorial experiments are analyzed using simple ex-
tensions to ANOVA that test for significant interactions as well
as simple performance differences. Factorial ANOVA methods
are described in any introductory statistics textbook [e.g 23].

In the discussion above we have implicitly assumed that d-
ifferences in performance can be modeled as continuous quanti-
ties, such as distance traveled, length of conversation or number
of correct answers. When the final performance measure is dis-
crete, e.g. success or failure, thenlogistic regression[1,ch.4]
is a useful way to examine the effects of additions or manipula-
tions on the system’s success rate. Information about the effects
of arbitrary numbers of additions, both individually and in in-
teraction, is available using this method, just as in the factorial



ANOVA. Logistic regression also gives a quantitative estimate
of how muchthe probability of success changes with various
additions to the system, which gives an idea of the importance
of each change.

3.3 Quantifying Inherently Subjective Data

Often performance evaluation involves judgments or ratings
from human subjects. Clearly it is not enough that one sub-
ject judges an AI conversation to be lifelike because we do not
know how typical that subject is, and how robust their opinion
is. It would be better to choose a larger sample of raters, and to
check that their judgments are reliable. When ratings are dis-
crete (good, bad) or ordinal (terrible, bad, ok, good, excellent)
then Kappa [22] is a measure of between-rater agreement that
varies from 1 (perfect agreement) to -1 (chance levels of agree-
ment). For judgments of continuous quantities the intraclass
correlation coefficient [13] performs the same task.

However, such discrete classifications are often clumsy. Be-
cause a rating system is itself subjective, the extra variance
added by difference in interpretation of a category can lose cor-
relations between subjects that actually agree on the relative va-
lidity or likeability of two systems. Further, we would really
prefer in many circumstances to have a continuous range of dif-
ference values. Such results can be provided bymagnitude esti-
mation, a technique from psychophysics. For example, Bardet
al. [4] have recently introduced the use of magnitude estimation
to allow subjects to judge the acceptability of sentences which
have varying degrees of syntactic propriety. In a magnitude esti-
mation task, each subject is asked to assign an arbitrary number
as a value for the first example they see. For each subsequent
example, the subject need only say how much more or less ac-
ceptable it is, with reference to the previous value, e.g. twice as
acceptable, half as acceptable and so on. This allows subject-
s to pick a scale they feel comfortable with manipulating, yet
gives the experimenter a generally useful metric. For example,
in Bardet al.’s work, a subject might give the first sentence an
8, the next a 4, the following a 32 — the experimenter records
1s, .5s and 4s respectively. This method has been shown to re-
duce the number of judgments necessary to get very reliable and
accurate estimates of acceptability, relative to other methods.

Bard et al. manipulate the sentences themselves, but it is
clear that magnitude estimation can equally well be used to get
fine-grained judgments about how natural the output of a nat-
ural language processing (NLP) system is, and the degree to
which this is improved by adding new components. Nor is the
method limited to linguistic judgments, for it should be equal-
ly effective for evaluating ease of use for teaching software, the
psychological realism of virtual agents or the comprehensibility
of output for theorem proving machinery.

4. Environments for Hypothesis Testing: Robots
and Simulations

As the previous sections indicate, one of the main attributes
of statistically valid comparisons is a large number of experi-
mental trials. Further, these experimental conditions should be
easily replicable and extendible by other laboratories. In Sec-
tion 5. we propose that a good way to facilitate such research
is to create a web location dedicated to providing source code
and statistics for comparative evaluations over a number of dif-
ferent benchmark tasks. This has approach has proven useful in
neural network research, and should also be useful for complex
agents. However, it flies in the face of one of the best-known
hypotheses of complex agent research: that good experimental
method requires the use of robots. Consequently, we will first
provide an updated examination of this claim.

4.1 Arguments Against Simulation

Simulation is an attractive research environment because it is
easy to maintain valid controls, and to execute large numbers
of replications across a number of machines. However, there
have been a number of important criticisms leveled against this
approach.

A Simulations never replicate the full complexity of the re-
al world. In choosing how to build a simulation, the re-
searcher first determines the ‘real’ nature of the problem to
be solved. Of course, the precise nature of a problem large-
ly determines its solution. Consequently, simulations are
not valid for truly complex agents, because they do not test
the complete range of problems a natural or embodied agent
would face.

B If a simulation truly were to be as complicated as the real
world, then building it would cost more time and effort than
can be managed. It is cheaper and more efficient to build
a robot, and allow it to interact with the real world. This
argument assumes one of basic hypotheses of the behavior-
based approach to AI [3], that intelligence is by its nature
simple and its apparent complexity only reflects the com-
plexity of the world it reacts to. Consequently, spending
resources constructing the more complicated side of the sys-
tem is both irrational and unlikely to be successful.

C When researchers build their own simulations, they may de-
ceive either themselves or others as to the validity or com-
plexity of the agents that operate in it. Since both the prob-
lem and the solution are under control of the researcher, it is
difficult to be certain that neither unconscious nor deliberate
bias has entered into the experiments. In contrast, a robot is
considered to be clear demonstrations of autonomous arti-
fact; its achievements cannot be doubted, because it inhabits
the same problem space we do.



4.2 Are Robots Better than Simulations?

These arguments have led to the wide-spread adoption of the
autonomous robot as a research platform, despite the known
problems with the platform [16]. These problems reduce essen-
tially to the fact that robots are extremely costly. Although their
popularity has funded enough research and mass production to
reduce the initial cost of purchase or construction, they are stil-
l relatively expensive in terms of researcher or technician time
for programming, maintenance, and experimental procedures.
This has not prevented some researchers from conducting rig-
orous experimental work on robot platforms [see e.g. 10, 25].
However, the difficulty of such procedures adds urgency to the
question of the validity of experiments in simulation.

This difficulty has been reduced somewhat by the advent
of smaller, more robust, and cheaper mass-produced robot plat-
forms. However, these platforms still fall prey to a second prob-
lem: mobile robots do not necessarily address the criticisms
leveled above against simulations better than simulations do.
There are two reasons for this: the need for simplicity and reli-
ability in robots, and the growing sophistication of simulations.

The constraints of finance, technological expertise and re-
searchers’ time combine to make it extremely unlikely that a
robot will operate either with perception anything near as rich
as that of a real animal, nor with actuation having anything like
the flexibility or precision of even the simplest animals. Mean-
while, the problem of designing simulations with predictive val-
ue for robot performance has been recognized and addressed as
a research issue [e.g. 18]. All major research robot manufactur-
ers now distribute simulators with their hardware. In the case
of Khepera, the robot most used by researchers running experi-
ments requiring large numbers of trials, the pressure to provide
an acceptable simulator seems to have not only resulted in an
improved simulator, but also a simplified robot, thus making re-
sults on the two platforms nearly identical. Clearly this similar-
ity of results either validates the use of the Khepera simulator,
or invalidates the use of the robot.

When a simulator is produced independent of any particular
theory of AI as a general test platform, it defeats much of the
objection raised in chargesA andC above, that a simulator is bi-
ased towards a particular problem, or providing a particular set
of results. In fact, complaintC is particularly invalid as a reason
to prefer robotics. Experimental results provided on simulations
can be replicated precisely in other laboratories. Consequently,
they are generallymore easilytested and confirmed than those
collected on robots. To the extent that a simulation is created for
and possibly by a community — as a single effort resulting in a
platform for unlimited numbers of experiments by laboratories
world-wide, that simulation also has some hope of overcoming
argumentB.

This gross increase in the complexity of simulations has par-
ticularly true of two platforms. First, the simulator developed
for the simulation league in the RoboCup soccer competition
has proven enormously successful. Although competition also

takes place on robots, to date the simulator league provides far
more “realistic” soccer games in terms of allowing the demon-
stration of teamwork between the players and flexible offensive
and defensive strategies [21, 19]. This success has encouraged
the RoboCup organization to tackle an even more complex sim-
ulator designed to replicate catastrophic disasters in urban set-
tings [20]. This simulator is intended to be sufficiently realistic
as to eventually allow for swapping in real-time sensory data
from disaster situations, in order to allow disaster relief to mon-
itor and coordinate both human and robotic rescue efforts.

The second platform is also independently motivated to pro-
vide the full complexity of the real world. This is the com-
mercial arena of virtual reality (VR), which provides a sim-
ulated environment with very practical and demanding con-
straints which cannot easily be overlooked. Users of virtual
reality bring expectations from ordinary life to the system, and
any agent in the system is harshly criticized when it fails to
provide adequately realistic behavior. Thórisson [30] demon-
strates that users evaluate a humanoid avatar with which they
have held a conversation as much more intelligent if it provides
back-channel feedback, such as eyebrow flashes and hand ges-
tures, than when it simply generates and interprets language.
Similarly Sengers [27] reviews evidence that users cannot be-
come engaged by VR creatures operating with overly reactive
architectures, because the agents do not spend sufficient time
telegraphing their intentions or deliberations. Such constraints
have often been overlooked in robotics.

In contrast, robots which must be supported in a single lab
with limited technical resources are likely to deal with far sim-
pler tasks. Robots may face far fewer conflicting goals, lower
time-related conflicts or expectations, and even fewer options
for actuation. Although robots still tend to have more natural
perceptual problems than simulated or VR agents, even these
are now increasingly being addressed with reliable but unnatu-
ral sensors such as laser range finders.

4.3 Roles for Robots and Simulations

Robots are still a highly desirable research platform. They pro-
vide complete systems, requiring the integration of many forms
of intelligence. Many of the problems they need to solve are
closely related to animal’s problems, such as perception and
navigation. In virtual reality, perfect perception is normally pro-
vided, but motion often has added complication over that in the
real world. Depending on the quality of the individual virtu-
al reality platform, an agent may have to deliberately not pass
through other objects or to intentionally behave as if it were
affected by gravity or air resistance. Even in the constantly im-
proving RoboCup soccer simulator, there are outstanding diffi-
culties in simulating important parts of the game, such as the
goalkeeper’s ability to kick over opposing team members (cur-
rently compensated for by allowing the keeper to “warp” to any
point in the goal box instantaneously when already holding the
ball.)



Robots being embodied in the real world are still probably
the best way to enforce certain forms of honesty on a researcher.
A mistake cannot be recovered from if it damages the robot, an
action once executed cannot be revoked. Though this is also
true of some simulations [e.g. 31], particularly in the case of
younger students, these constraints are better brought home on
a robot, as it becomes more apparent why one can’t ‘cheat.’
Finally, building intelligent robots is a valid end in itself. Com-
mercial intelligent robots are beginning to prove very useful in
care-taking and entertainment, and may soon prove useful in ar-
eas such as construction and agriculture. In the meantime robots
are highly useful in the laboratory for stirring interest and en-
thusiasm in students, the press and funding agencies. However,
given the arguments above, we conclude that the use of robots
as experimental platforms is neither necessary nor sufficient in
providing evidence about complex agent intelligence. Robots,
like simulations, must be used in combination with rigorous ex-
perimental technique, and even so can only provide evidence,
not conclusive proof, of agent hypotheses.

In summary, neither robots nor simulation can provide a s-
ingle, ultimate research platform. But then, neither can any oth-
er single research platform or strategy [15]. While not deny-
ing that intelligence is often highly situated and specialized
[14, 17], to make a general claim about agent methodology re-
quires a wide diversity of tasks. Preference in platforms should
be given to those on which multiple competing hypotheses can
be tested and evaluated, whether by qualitative judgments such
as the preference of a large number of users, or by discrete quan-
tifiable goals to be met, such as a genetic fitness function, or the
score of a soccer game.

5. Coordinating Hypothesis Testing

Whether there can be general solutions to problems of intel-
ligence is an empirical matter that has already been tested in
some domains. For neural networks and other machine learn-
ing methods, the UCI Machine Learning Repository holds a
large collection of benchmark learning tasks. Besting these
benchmarks is not a necessary requirement for the publication
of a new algorithm, but showing a respectable performance on
them improves the reception of new contributions. Essentially,
benchmarks are one indication for both researchers and review-
ers of when an innovation is likely to be of interest.

Further, Neal and colleagues at the University of Toronto
have constructed DELVE [24], a unified software framework
for benchmarking machine learning methods. DELVE contains
a large number of benchmark data sets, details of various ma-
chine learning techniques, currently mostly neural networks and
Gaussian Processes, and statistical summaries of their perfor-
mance on each task. One of the most important requirements is
that each method is described in enough detail that it could be
implemented by another researcher and would obtain a similar
performance on the tasks. This ensures that the mundane but
essential decisions that are an essential part of many learning

algorithms (e.g. setting weight decay parameters, choosing k in
k-nearest-neighbor rules) are not lost.

We propose a complex agent comparison server or web site,
to be at least partially modeled on DELVE. This site should al-
low for the rating of both agent approaches and comparison en-
vironments, thus encouraging and facilitating research in both
fields. It could also be annotated for educational purposes, in-
dicating challenges and environments well suited to school, un-
dergraduate, and graduate course projects. Such a site might
provide multiple indices, such as:

• Environments, ranked by number and/or diversity of partic-
ipants.

• Agent architectures (e.g. Soar, Behavior-Based AI). This
should also allow for the petition for new categories.

• Contestants and/or contesting labs or research groups . This
allows researchers interested in a particular approach to see
any related work. Ranked by the number and/or diversity of
environments.

Here are some examples of already existent platforms which
might be included on the server:

• RoboCup [21, 19].

• Khepera robot competitions. Both of these two suggestions
provide simulations as well as organized robotic competi-
tions. They test learning and perception as well as planning
or action selection.

• Tile World and Truck World, designed as complex planning
domains. [15]

• Tyrrell’s Simulated Environment [31] designed to test
action-selection and goal management.

• Chess.

• An analog Turing Test, using magnitude estimation to com-
pare dialog systems.

In addition, there are at least two software environments de-
signed specifically to allow testing and comparison of a number
of different architectures, though they contain no specific exper-
imental situations as currently developed. These environments
are Cogent [12] and the Simagent Toolkit [28].

6. Conclusion

To summarize, we believe that as agents approach the goal of
being psychologically realistic and relevant, their evaluation
will require the techniques that have been developed in the psy-
chological sciences. This evaluation is critical in providing a
gradient as we search for the right sorts of techniques to build
complex agents. The techniques of hypothesis testing have been
refined to describe truly complex agents. However, these are
scientific techniques, not proofs. They do not give us certain



answers, only more information. We believe many of the crit-
icisms of benchmark testing made in the past failed to prop-
erly acknowledge this feature of experimentation. We should
trust increased probability, rather than proof-theoretic guaran-
tees. The more people perform tests across competing hypothe-
ses, the more likely we will be to achieve our research goals,
whether they are engineering complex, social agents, or under-
standing the nature of intelligence.
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