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Abstract

Artificial cognitive systems sometimes neglect the
impact on action selection of natural durative-
state mechanisms like emotions and drives. These
chemically-regulated motivation systems assist
natural action selection through temporarily focus-
ing an agent’s behavioural attention on particular
problems. This can improve efficiency by avoid-
ing dithering, but taken to extremes can be ineffi-
cient in ways that seem cognitively improbable for
mammal-level intelligence. This article demon-
strates a flexible latching method that provides
appraisal-based sensitivity to interruption, allow-
ing reassessment of the current focus of attention.
This drastically improves efficiency in handling
multiple competing goals at the cost of a surpris-
ingly small amount of extra cognitive complexity.

Introduction
The term “action selection” might imply cogni-
tion, but this is merely due to anthropomorphic la-
belling. If we takecognitionto be a process requir-
ing time (probably a form of search), andaction
selectionto be any mechanism for determining the
present course of action, then much of action se-
lection is really non-cognitive. Our action choices
are limited both by evolution and individual expe-
rience; many of them may be essentially reflex-
ive. Such limiting is necessary if action selection
is to be achieved in a timely manner (Simon 1972;
Chapman 1987; Gigerenzer & Todd 1999). How-
ever, there is no question that humans and other
species do engage in cognition in some contexts.
This paper proposes and examines one such con-
text: the arbitration between different goals.

In the simulation of animal behaviour, artificial
agents are usually designed to interact with their
surroundings, including other agents, and to carry
out some set of tasks. In particular, it is often the
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case that agents are required to ensure their sur-
vival. Besides more dramatic aspects, e.g. fending
off predators, this requires agents to locate, ap-
proach and consume sources of energy. Further-
more, there are often additional tasks that need to
be carried out, such as maintaining a social net-
work through grooming group-mates. All these
behaviours require both time and energy, and it
follows that agents possessing more efficient be-
haviour management should, in general, fare bet-
ter than other agents with less efficient behaviour
selection.

In the work presented here, our agents must not
only ensure that consummatory behaviours (i.e.
feeding) have a positive energy intake (that is, the
energy spent carrying out a particular action must
be less than the energy acquired) but they must
also have the ability to store excess energy in order
to pursue auxiliary behaviours. These auxiliary
behaviours include social behaviours, which are
also motivated by survival-oriented drives similar
to those for feeding, as socialising promotes long-
term survival by facilitating group living (Dunbar
1993; Korstjens, Verhoeckx, & Dunbar 2006).

The context of our cognitive task is a compar-
ative study of three different mechanisms for al-
lowing agents to satisfy their needs. We focus in
particular on a potential inefficiency that may oc-
cur when an agent attempts to acquire excess satis-
faction. We propose that if an agent is interrupted
at any stage during this period, a choice needs to
be made whether or not to continue with the cur-
rent activity or whether to attend to other, possibly
more relevant behaviours. Persistence avoids the
inefficiency ofditheringbetween two goals, while
some degree of flexibility avoids the inefficiency
of pursuing a goal excessively. We assume biolog-
ical motivation systems have evolved to manage
this trade-off. Here we do not attempt a perfect
model of such a system. Instead we present and
evaluate a simple control mechanism that achieves
this at a minimal cognitive cost. We use a basic
latching system augmented with the ability to de-
tect potentially relevant interruptions. This trig-
gers a reevaluation of priorities already present
in the agents’ action-selection system. Although
quite simple, this system is related to at least one
theory of conscious attention (Norman & Shallice



1986). We return to this last point in the discus-
sion.

Method
In this section we first describe the agent archi-
tecture we use to test our system. The results are
general, but the architecture is described for clar-
ity. We then describe the latching mechanisms we
have implemented and the testing scenarios. Fol-
lowing sections present our results and discussion.

Basic Action Selection
The agents are specified using the behaviour-
oriented design (BOD) methodology (Bryson &
Stein 2001), a system that produces layered or hy-
brid agents consisting of (a) modules that specify
details of their behaviour and (b) dynamic plans
that specify agent-wide, cross-modular prioritisa-
tion. Action selection is carried out using parallel-
rooted, ordered slip-stack hierarchical (POSH) dy-
namic plans (Bryson 2003).

We chose BOD as a fairly simple example of
an architectural consensus achieved in the late
1990s for real-time situated systems: that AI is
best constructed using a combination of mod-
ularity, for providing intelligent primitives, and
structured hierarchical plans, for encoding prior-
ities (Hexmoor, Horswill, & Kortenkamp 1997;
Kortenkamp, Bonasso, & Murphy 1998; Bryson
2000). Even mainstream cognitive architectures
such as Soar and ACT-R can be described in
this way (Laird & Rosenbloom 1996). Although
somewhat neglected in academia in the last decade
due to an emphasis on learned action selection,
similar architectural threads can be seen in con-
temporary games AI programming with the adop-
tion of behaviour trees to extend the expressivity
of finite state machines. The details of the struc-
tured action selection system are unimportant to
the mechanism presented in this paper. All that is
assumed is:

1. some mechanism for storing temporary values
of long-term state (e.g. learning),

2. some mechanism of expressing a variety of
goals and their associated actions, and

3. the notion of a trigger or precondition as part of
the mechanism for choosing between goals and
actions.

A single POSH plan was used to specify the pri-
orities of all agents tested here. The plan, shown in
Figure , assumes four basic behaviours:B1 toB4.
The top level of the plan hierarchy (thedrive col-
lection) is checked at every time step, and the first
element whose trigger is true is executed. All but
behaviourB4 further contain a sub-plan (called a
competence) also containing elements each with
their own trigger. Competences maintain decision
memory and control behaviour until they either

terminate, pass control to another child compe-
tence, or the main drive collection takes control
back for a higher-priority problem.

The first two behaviours, which are of the high-
est priority, fulfill consummatory needs, such as
eating or drinking, the neglect of which would
cause the agent to die. BehavioursB3 andB4

are of lower priority and are only considered for
potential execution ifB1 and B2 are not trig-
gered. BehaviourB3 represents grooming (but
could equally well be mating) which requires two
agents to interact with one another. A final be-
haviour (B4) serves as a default behaviour and
should always be triggerable (exploring in this
case).

The primary focus of this investigation is on be-
havioursB3 andB4. Lower priority behaviours
may only be executed if all higher priority be-
haviours are managed efficiently and although
these behaviours are non-essential to the survival
of the agent as an individual, they may signif-
icantly impact the survival of the species as a
whole: consummatory behaviours are of highest
priority as they ensure the survival of the agent.
Behaviours such as breeding, on the other hand,
are necessarily of lower priority, despite their sig-
nificance to the group of agents as a whole. It
is therefore paramount that these higher-level be-
haviours are managed efficiently enough to allow
agents to pursue other behaviours as well.

Each behaviour is composed of numerous ele-
ments, some of which may be classified assec-
ondary actions. In the case of feeding, the sec-
ondary actions would be ‘locating food source’
and ‘move towards food source’. Theprimary ac-
tion would correspond to ‘eat’ and it is that action
that should be executed most frequently to ensure
an efficient execution of the behaviour.Dithering,
the rapid switching between goals, for example,
results in helper actions being performed exces-
sively. Each behaviourBi has one such primary
action which will be denoted asBα

i . In summary,
it is not only desirable to be able to follow all be-
haviours, but, at the same time, the execution of
primary actions should be maximised, and that of
helper actions minimised. The frequency at which
primary actions are executed is thus at the centre
of our investigation.

Agents and State
Each behaviourBi is associated with a module,
which includes a single-valued internal stateEi.
Here, for the sake of clarity and without loss of
generality, we use the concept of energy to de-
note the internal state of the agent: each behaviour
Bi has a current level of energyEi. The agents
live in a toroidal, discrete-time world with dimen-
sions of600 × 600 pixels. At every time-step, all
energy statesEi are decreased bye−i and, given
a behaviour is vital to the agent’s survival, death
is imminent onceEi ≤ 0. For each behaviour,



(
(SDC life (goal (s_one_step (s_succeed 0)))
(drives
((dead (trigger((s_is_dead 0))) a_stay_dead))
((drink (trigger((s_wants_drink))) c-drink) (eat (trigger((s_wants_food))) c-eat))
((groom (trigger((s_wants_to_groom))) c-groom))
((explore (trigger((s_succeed))) a_explore))))

(C c-groom (goal ((s_succeed 0)))
(elements
((has-no-target (trigger((s_has_groom_target 0))) a_pick_groom_target))
((not-near-target (trigger((s_is_near_groom_target 0))) a_move_to_groom_target))
((default-groom (trigger((s_succeed))) a_groom_with_target))))

(C c-eat (goal ((s_succeed 0)))
(elements
((has-no-food (trigger((s_has_food 0))) a_pick_food))
((not-near-target (trigger((s_is_near_food_target 0))) a_move_to_food))
((default-feeding (trigger((s_succeed))) a_eat))))

(C c-drink (goal ((s_succeed 0)))
(elements
((has-no-drink (trigger((s_has_drink 0))) a_pick_drink))
((not-near-target (trigger((s_is_near_drink_target 0))) a_move_to_drink))
((default-feeding (trigger((s_is_near_drink_target))) a_drink))))
)
Figure 1: The POSH plan that determines priorities for the agents: thedrive collection(SDC) is called at
every time step and its elements checked in order:{B1=eat,B2=drink}, {B3=groom}, {B4=explore}. The
first element whose trigger is true is executed. Equal priority elements (i.e.B1 andB4) are checked in
random order. Primitive actions start with ‘a’, primitive senses with ‘s’, subplans start with ‘c-’.

we define a thresholdδi such thatBi is triggered
onceEi < δi. OnceBi is triggered, the agent
executes the actions associated with that partic-
ular behaviour. The behavioursB1 andB2, for
example, correspond to consummatory activities
(eating or drinking): the agent first locates an en-
ergy source, moves towards the energy source (at
a speed of 2 pixels/time step) and consumes the
source once in close proximity. This consumption
raises the agent’s internal state bye+i . Clearly we
must ensure thate+i À e−i , ∀i as otherwise an
agent would never be able to satisfy a need (and in
the case of essential behaviours, the agent would
eventually die). We have chosen the same values
for all behaviours:e+ = 1.1 ande− = 0.1 and
hence drop the subscript from here on. This gives
a net energy gain ofe± = 1.

All lower-priority behaviours (i.e.B3 andB4)
may only be executed ifB1 andB2 are satisfied.
What it means for a behaviour to be “satisfied” de-
pends upon the implementation of the agents’ ac-
tion selection — the basis of this paper, described
next.

Conditions
We use three different action selection mecha-
nisms and evaluate their impact on the energy
management of the agent: unlatched, strict latch
and flexible latch.

Unlatched As mentioned in the previous sec-
tion, a behaviourBi is triggered ifEi < δi. In

this basic, unlatched, model, the drive terminates
as soon asEi ≥ δi and the time spent at the energy
source is expected to be relatively short (although
this is not necessarily true in the case of multiple
equal-priority behaviours). Furthermore, no ex-
cess energy is stored and the behaviour is triggered
again very shortly after it is satisfied1. When there
are multiple such behaviours, the agent will con-
tinue to oscillate between them (dithering). Even
if there is only a single top-priority behaviour, the
agent will spend its entire time in close proxim-
ity to the energy source as the acquired energy is
always insufficient to pursue anything else.

Strict latch In the latched models, the agent
only terminates the drive onceEi ≥ φi where
φi ≥ δi. Now, the agent has an energy reserve
of (φi − δi)/e− time steps before the behaviour
is triggered again. If all high-priority drives are
latched in this way and the latch is sufficiently
large (see next section), the agent is able to even-
tually follow lower-priority drives. This form of
latching is very inefficient, however, if the agent
inhabits a world where unexpected interruptions
may occur: if an agent is almost finished with one
activity but gets interrupted, the agent will con-
tinue to pursue this activity independent of other,
lower priority needs. For example, an agent that is

1The theoretical maximum possible excess energy in
this case given the values ofe+ ande− is 0.9 which will
last for 9 time steps.



grooming and whose partner has left, might pursue
another partner for five minutes when only another
five seconds of grooming would satiate it. This is
true even ifEi = φi − ε whereε ¿ φi − δi and
hence this form of latching is referred to as strict.

Flexible latch If the agent is able to detect in-
terruptions, the interruption could trigger a deci-
sion that determines it subsequent activities. This
decision could be conscious, but here we simply
relax the latching by using yet another threshold,
ψi, that is situated in-between the previously two
established ones,δi ≤ ψi ≤ φi. This gives rise to
three different scenarios: the interruption occurs
when
• Ei < δi, the drive remains ‘unsatisfied’
• δi < Ei < ψi, the drive still remains ‘unsatis-

fied’
• ψi < Ei < φi, the drive is, at least temporarily,

‘satisfied’
Here we consider two types of interrupts. The first
type occurs when the source of satisfaction is de-
pleted or otherwise removed (e.g., an agent looses
his current grooming partner). The second type
of interrupt is caused by higher priority drives that
are triggered.

Threshold Selection
The previous section has discussed numerous dif-
ferent thresholds that require initialisation and the
choice of parameters is crucial to the outcome of
the simulation. First, it should be noted that the
flexible latch is simply a generalisation of the strict
latch, which in turn is a generalisation of the un-
latched technique:

Flexible latch δ ≤ ψ ≤ φ

Strict latch δ ≤ ψ = φ

Unlatched δ = ψ = φ

In this investigation,, we have two primary points
of interest, which are closely related: survival and
efficiency. The survival of the agent crucially de-
pends on the choice ofδ. Efficiency, on the other
hand, refers to the agent’s ability to pursue all its
behaviours, not just high-priority ones, and de-
pends on the choice ofφ. In order for an agent
to survive, any vital behaviour must be triggered
such that the agent has enough energy to approach
the energy source (locating an energy source can
be done in a single time-step and is subsequently
excluded from the following discussion):

δi ≥ Er
i (1)

where Er
i is the energy required to reach the

source:(dmax/dmov)×e−, wheredmov is the dis-
tance an agent can move in a single time step and
dmax is the maximum possible distance an agent
can travel2. If there aren equally vital behaviours,

2The theoretical maximum in this case is simplyp
width2 × height2 ≈ 424 and it would take the

δi has to be adjusted accordingly:

δi ≥
n−1∑

j=1

(
Er

j + Ec
j

)
+ Er

j (2)

whereEc
i is the energy required to raise the energy

level to the appropriate level:

Ec
i =

ψi − Ei

e±
(3)

The value ofφ, on the other hand, has to be set
such that enough energy is stored to pursue all vi-
tal needs:

φi ≥ δi +
n∑

j=1

(
Er

j + Er
j

)
(4)

Any excess energy is subsequently devoted to the
other, lower-priority behaviours. This choice ofφi

necessarily affectsEc as now more time is spent
at the energy source (a difference ofφi − δi). In-
terruptions drastically alterEc and the energy re-
quired to satisfy a latched behaviour givenm in-
terruptions is simply:

Ec
i =

m∑

j=1

(
Er

ij + Ec
ij

)
(5)

At each interruption, the agent should, in theory,
decide whether it is worth pursuing the currently
executed behaviour (i.e. if there is a positive or
negative energy ratio). Usually there is insufficient
knowledge available to make an informed decision
due of the complexity or indeterminacy of the en-
vironment. Nature selects for agents with appro-
priate or at least adequate thresholds; here, in our
particular simulations, we test a range of values for
ψ.

Experiment and Simulation Details
Our experiments are organised into two sets. The
first set usessim1, a very well defined setup that
allows a great degree of control over all aspects
investigated, particularly frequency of interruption
(see Figure 2(a)). The second set usesim2 (Fig-
ure 2(b)), a more realistic simulator where inter-
ruptions are caused by the dynamics of the envi-
ronment itself.

In both simulations, there are 5 identical agents.
Furthermore,sim1 positions the energy sources
such that they are maximum distance from one
another3. In this simulation, we exactly control
the number of interruptions an agent is exposed
to throughout the execution of a single behaviour.
Once an agent is interrupted, it is forced to con-
sider an alternative energy source (it is not allowed
to remain at the current one).

agent a maximum of 424/2=212 time steps to reach the
target, consuming212× 0.1 = 21.2 units of energy.

3The simulation is toroidal and agents are able to
move, for example, from the far left to the far right in
one move.
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Figure 2: The two simulation environments used to test the overall efficiency of the agents: a completely
controlled scenario (a) where energy sources are maximum distance apart, all agents are initially grouped
at the centre and interruptions are externally induced, and a more realistic scenario (b) where agents and
energy sources are placed randomly.

The second simulation is more realistic and is
used to verify the results obtained from the first
set of experiments. Insim2, energy sources are
scattered randomly across the world. Each energy
source has a certain load that depletes as an agent
consumes it. Once depleted, the energy source
vanishes, but, at the same time, a new energy
source appears elsewhere in the world. The load
of any energy source has a maximum of50 units
and depletes by2 units if consumed. All energy
sources gain1 units per time step.

The experiments are executed over 15 distinct
trials. Each trial executes the simulation for 5000
time steps. All internal states are initialised such
that Ei = δi, thus all behaviours are triggered
immediately once the simulation begins. At each
time step, the agent may execute a single action.
The results are simply the number of times each
primary action has been executed, averaged over
all agents and trials. In all cases, a two-tailed t-
test is used to test for significance with a confi-
dence of 99.995%. We chose the same threshold
settings across all behaviours and again, we drop
the subscripts from here on. Furthermore, we set
δ = 200 in all experiments, giving an agent suffi-
cient energy for200/e− = 2000 time steps before
the behaviour is triggered again.

Results
In this section, we will first present the results
from the controlled environments,sim 1, followed
by a comparison to the results obtained in the more
realistic settings,sim 2.

Controlled Environment: Sim1
The first experiment compares the unlatched ver-
sion with the strictly latched one. The results are
shown in Table 1. The data confirms that in the

unlatched case, dithering prevents the agent from
pursuing any of the lower priority behaviours.
The latch effectively solves this problem, although
only if the latch is sufficiently large. A latch of size
10 does increase the activity of behavioursB1 and
B2 but does not allow for the lower-priority be-
havioursB3 andB4 to be executed. Once the latch
increases in size, so does the activity of the lower-
priority behaviours. This result is not surprising
and the data indicates that larger latches are indeed
preferential.

The next experiment investigates the apparent
inefficiency of strict latching once an agent is con-
fronted with interruptions. The data for this exper-
iment is summarised in Table 2. Even in the case
of a single interruption, the frequency of consum-
matory actions executed drops significantly. The
right-most column in the table compares the per-
formance of a latch of size 100 with 0, 1, 3 and
5 interruptions and the differences for the lower-
priority actions are almost always significant.

The final experiment usingsim1determines the
performance of the flexible latch using the same
settings as in the experiment before. Here, dif-
ferent values for the intermediate thresholdψ are
tested. The value ofψ is denoted as the percent-
age of the latch itself. If, for example,δ = 100 and
φ = 120, a value of 25% would indicateψ = 105.
The results are shown in Table and a setting of
ψ = δ seems most successful. However, as shown
in Table 3, the differences are usually not signif-
icant. Nevertheless, such a setting is preferential
as it allows to simply the flexible latch by effec-
tively eliminating ψ altogether. Comparing the
flexible latch to the strict latch shows a significant
improvement in at least one action for any num-
ber of interruptions tested (compare Table 2 with
Table ; significance is indicated in the rightmost



unlatched latched significance
action φ = δ 10 50 100 0-10 10-50 50-100
Bα

1 443 452 478 494 * * *
Bα

2 443 452 479 498 * * *
Bα

3 0 0 454 468 *
Bα

4 0 0 1414 2037 * *
total 886 903 2824 3498

Table 1: Comparing latched and unlatched behaviours: a latch,φ− δ ∈ {10, 50, 100}, if sufficiently large,
allows the agent to pursue the lower-priority behavioursB3 andB4.

10 50 100 significance
action 1 3 5 1 3 5 1 3 5 0-1 0-3 0-5 1-3 3-5
Bα

1 458 442 420 478 481 462 519 504 508 * * *
Bα

2 454 441 429 474 481 455 521 512 519 * *
Bα

3 0 0 0 277 1 0 468 421 1 * * * *
Bα

4 0 0 0 95 0 0 1119 57 0 * * * * *
total 912 882 850 1324 962 917 2627 1493 1028

Table 2: The performance of the agents givenφ− δ ∈ {10, 50, 100} and interruptions of frequency 1, 3 or
5. This is compared to the case without interruptions (0) as shown in table 1.

1 3 5
action 0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75%
Bα

1 499 491 489 501 490 491 496 496 482 487 482 495
Bα

2 492 490 496 503 483 487 491 496 488 485 493 497
Bα

3 481 476 479 481 475 479 469 455 474 470 462 437
Bα

4 1723 1689 1528 1312 1458 1342 1059 651 1222 1150 880 495
total 3195 3146 2991 2797 2906 2799 2516 2098 2666 2592 2318 1923

1 3 5 significance
0-25 25-50 50-75 0-25 25-50 50-75 0-25 25-50 50-75 1-1 3-3 5-5

Bα
1 * *

Bα
2 * * *

Bα
3 * *

Bα
4 * * * * * * * *

Table 3: The performance of the agents usingψ = δ + p(φ − δ) wherep ∈ {0, 0.25, 0.5, 0.75}, δ = 200,
φ = 300 and frequency of interruptions equal to 1, 3 and 5. The right-most column compares the strictly and
flexibly latched implementation for the different frequencies of interruptions. The statistical significances
for this table is shown also.

column of Table 3).
Figure 3 shows graphically how the ability to

detect interruptions improves the agent’s overall
efficiency. The graph plots the number of time
steps spent executing the actions of interest given
different frequencies of interruption. Furthermore,
as a reference value, the unlatched and uninter-
rupted latched cases are also shown. As is evident,
the performance of the strict latch degrades very
quickly while the flexible latch degrades linearly.

Random Environment: Sim2
The previous results showed that insim1, latching
is necessary to allow an agent to execute lower-
priority behaviours, and that it is best to abort a
latched behaviour immediately upon interruption.
We now examine these results in a system with a
more “natural” setup usingsim2, where the tim-
ing and frequency of interruption depends on the

dynamics of the environment itself.
Table 4 compares all three implementation on

sim2. The overall results are similar to before al-
though there are some striking differences. Now,
a latch of size 10 is sufficient to generate at least
some frequency of execution for behavioursB3

and B4 and there is no difference whether the
agent is able to detect interruptions. Once the size
of the latch increases, flexibility creates a signifi-
cant difference for behaviourB4 but notB3.

Discussion and Conclusion

The results forsim1show the utility of latching in
the condition where there is a significant cost of
switching between goals, and of flexible latching
when there are large latches and frequent interrup-
tions. The results forsim2show that when goal
opportunities are more randomly and frequently



unlatched strict latched flexible latched significance
action 0 10 50 100 10 50 100 10-10 50-50 100-100
Bα

1 451 454 470 500 454 466 468 *
Bα

2 452 454 475 490 455 466 469 * *
Bα

3 0 178 365 452 154 423 471
Bα

4 0 71 264 689 22 704 1289 * *
total 903 1156 1574 2131 1084 2058 2697
dead 0 0 0 0 0 0 0

Table 4: Comparing the unlatched, strictly and flexibly latched implementations insim2using latch sizes of
φ− δ ∈ {10, 50, 100} andψ = φ.

1 3 5
Interruptions
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Figure 3: A graphical comparison of strict and
flexible latching (

∑4
i=1B

α
i ). The top and bottom

lines refer to the latched but uninterrupted and un-
latched cases and are shown as reference values.

available, there is little selective pressure for ad-
ditional mechanisms.

We have presented a relatively simple way to in-
troduce flexible latching into an autonomous sys-
tem and presented an initial analysis of how to set
appropriate thresholds. The completely unlatched
condition may seem unrealistic, but several well-
known “reactive” architectures have added latch-
ing only as an afterthought, and then to be han-
dled with rather inelegant exception mechanisms
(Rosenblatt & Payton 1989; Connell 1990). Oth-
ers assume latching can be handled by intelligent
planning (Bonassoet al. 1997), which is a rather
high cognitive load. In general, reasoning about
time and distant rewards is difficult for strictly
symbolic systems (Ainslie 2005). We therefore
support and elaborate the theory that evolved latch
parameters create effectively an implicit time bud-
get, as has been proposed by Dunbar (Dunbar
1993; Korstjens, Verhoeckx, & Dunbar 2006).

There have been surprisingly few recent at-
tempts to propose general-purpose architecture
features for homeostatic control, those that do tend
to represent hormone levels in detail (Vargaset al.
2005). Gadanho (1999) has a similar perspective
to our work4, using emotions to control the tempo-

4and indeed shared a graduate supervisor, John Hal-

ral expression of behaviour. However, she focuses
on modelling specific emotions and their impact
on reinforcement learning systems, rather than a
clear study of control. The mechanism demon-
strated here is simple to implement and incorpo-
rate into standard module-based agent architec-
tures. Also, she uses rising levels of emotions as
thesourceof interrupt, rather than dealing with in-
efficiencies due to interruptions generated by the
world.

Interestingly, at least two established models of
consciousness are similar to our new model of
flexibly-latched drives. Norman & Shallice (1986)
describe consciousness as a higher-cost attentional
system which is brought on line whenever the
more basic, reliable, low-cost action-sequencing
mechanism is unable to proceed. More recently,
Shanahan (2005) proposes a model of mutually-
inhibiting motives in a global workspace. We do
not agree with Shanahan that such models can ac-
count for all of action selection (see e.g. the Tyrrell
1994 critique of Maes 1991). However, his model
is similar to what we propose here for arbitration
between certain types of high-level tasks.

This draws attention to an important limit of our
work. Although we have shown massive efficiency
improvements, time still increases linearly with
the number of interruptions. Further, some forms
of interruptions themselves will increase with the
number of potential behaviours, particularly those
that are generated by the action-selection mecha-
nism itself as higher priorities trigger. What this
implies is that agents should have a limited num-
ber of high-level motivations which are contested
this way. In other work, we have suggested that
the psychological entities called ‘drives’ or ‘emo-
tions’ may be seen as each correlating to and reg-
ulating one such high-level need (Bryson 2008).

Of course, a simple system of eliciting drive
levels and (possibly) weighing them against ex-
pected costs does not explain all the phenom-
ena ordinarily associated with the termconscious-
ness. That term is a repository of aggregated folk-
psychological theories for aspects of behaviour
ranging from perceptual experience through self-
concept and on to the soul (Hobson, Pace-Schott,

lam, with our second author.



& Stickgold 2000; Dennett 2001). What we do
note here is a control-level utility to adding a min-
imally cognitive mechanism to an otherwise reac-
tive action-selection system.
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