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Abstract— Real time planning strategy is crucial for robots
working in dynamic environments. In particular, robot grasping
tasks require quick reactions in many applications such as
human-robot interaction. In this paper, we propose an approach
for grasp learning that enables robots to plan new grasps
rapidly according to the object’s position and orientation. This
is achieved by taking a three-step approach. In the first step,
we compute a variety of stable grasps for a given object. In
the second step, we propose a strategy that learns a probability
distribution of grasps based on the computed grasps. In the
third step, we use the model to quickly generate grasps. We
have tested the statistical method on the 9 degrees of freedom
hand of the iCub humanoid robot and the 4 degrees of freedom
Barrett hand. The average computation time for generating one
grasp is less than 10 milliseconds. The experiments were run
in Matlab on a machine with 2.8GHz processor.

I. INTRODUCTION

Given an object and a multi-fingered robotic hand, gener-
ating a set of contacts on the object’s surface which ensure
grasp stability while being feasible for the hand kinematics
is a common problem in grasp synthesis. Over the last few
decades, robot grasping has been a popular topic and numer-
ous approaches for grasp planning have been proposed [21].
Most of these approaches adopt iterative methods, which
are usually able to find a solution within a finite number
of iterations and the average computation time is usually in
the scale of a few to tens of seconds. However the number
of iterations required grows quadratically with the size of the
problem and this creates an uncertainty of the time for the
robot to plan a grasp. The upper bound of the computation
time is barely analyzed in the literature.

Moving from the traditional engineering environment into
a human dominated environment necessitates a fast grasp
planning strategy to respond in real time. For example, when
reaching out to grasp an object, a robust grasping strategy
must be able to adapt rapidly to external perturbations that
can modify the initial object position and orientation relative
to the robot hand. In the case of catching a flying object [12],
the robot has only a few milliseconds to plan a grasp before
the object touches the floor.

Another application is receiving objects handed over by
humans with a robot hand (Figure 1). In many circumstance
the object must be grabbed quickly: one such example is
when the object is heavy or hot; other examples involve time-
pressing situations, e.g. in surgery a robot assistant must react
sufficiently quickly to doctors handing back implements to
ensure smooth running of the surgery.
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Fig. 1: A human hands a can to an iCub

Besides human-robot interaction, real time planning for
the pick-and-place task in the industrial environment may
also be necessary: spare parts could be randomly placed
on the conveyer belt. The conveyer belt runs constantly at
a high pace and leaves no time for the robot to stop its
action and replan. The robot must therefore respond swiftly
to avoid incurring delays in production. Given the limited
computational power available on computers embedded in
the robot, a computationally expensive algorithm would
result in a prohibitively long decision time, leading to task
failure in the above scenarios.

Because of the complexity of the problem, real time grasp
planning has not been extensively studied. To tackle this
problem, we propose a closed-form solution which requires
at most three steps to compute a new grasp, and hence
guarantee a short computation time and the uncertainty is
reduced to the largest extent. This paper presents the pro-
posed method and is organized as follows. Section 2 reviews
the related work in grasp planning. Section 3 presents the
proposed method: section 3A illustrates how we generate
training data; section 3B explains the choice of the model
and how it is built; section 3C details the real time strategy of
generating new grasps from the model. Section 4 shows the
experimental results, followed by the discussion in Section 5.

II. RELATED WORK

In the robot grasping literature, the most extensively used
mechanism for guaranteeing grasp stability is the force-
closure criterion [16]. A grasp is said to achieve force-closure
when the fingers can apply appropriate forces on an object
to produce wrenches in any direction [22]. Optimal force-
closure grasp synthesis is a technique based on this concept
for optimizing the grasping performance by finding the con-
tact point locations. Some approaches optimize an objective



function according to a pre-defined quality criterion [27],
[28] in the grasp configuration space. These approaches do
not take into account the kinematics of the hand, which
is difficult to achieve. To bridge this gap, in our previous
work [11] we proposed a one shot grasp synthesis approach
that formulates and solves the problem as a constraint-based
optimization. However, multi-finger grasps usually involve a
large number of degrees of freedom. As a result, massive
computing time is required to search an optimal grasp in the
grasp space, considering the huge amount of possible hand
configurations.

Instead of directly searching the high dimensional config-
uration space of robotic hands, this space can be reduced
by generating a set of grasp starting positions, hand pre-
shapes [15] or eigengrasps [2] that can then be tested on
the object model. Such approaches reduce the dimensionality
of the hand configuration space, but doing so implies a
corresponding reduction in the accessible hand postures.

Other approaches avoid the complexity of computing kine-
matical constraints guaranteeing stable grasps by applying
machine learning techniques to the problem. In imitation
learning, some researchers use datagloves for human demon-
stration. The human hand configuration is then mapped
to an artificial hand workspace and the joint angles [6],
[8], or hand preshapes [13], [17], [26] are learnt. Some
other researchers use stereoscopy to track the hand when
a demonstrator is performing a grasp [10] or to match
the hand shape to a database of grasp images [20]. These
learning based approaches succeed in taking into account
the hand kinematics and generate hand preshapes that are
compatible with the object features. However they focus on
different problems, such as telemanipulation [8] and human
hand tracking [10], rather than real time unattended grasping.
Compared to those methods which concentrate on generating
a list of grasps for one object [13], [17], [24], [26], our
method takes one step further: we learn a model from the
list and use the model to quickly generate new grasps.

None of the previous work just mentioned addresses real-
time planning. The reported computation time varies from
0.1 seconds to a few minutes. Recently, there have been
some attempts to tackle the problem with real time solutions.
Richtsfeld et al. [19] use a laser scanner to detect cylindrical
shapes and plan grasps. This method is limited to cylindrical
objects. Kanehiro et al. [9] use approximation models of the
friction cone and roughly estimate the force closure criterion.
However, this approximation may limit their solutions. In
the planning step, they use random sampling techniques to
generate grasping postures and loop through the samples
to find a grasp satisfying all the kinematic constraints.
The reported computation time varies from 10sec to 25sec
including path planning of the arm using a 2GHz core. Daoud
et al. [4] employ a genetic algorithm optimization approach
to provide an initial grasp before online manipulation. This
evolutionary approach relies on several iterations of opti-
mization before reaching the solution. The reported time is
12.61sec for a spherical object with a 2.2GHz core. The
latter two methods, due to their iterative approaches, do not

guarantee fast computation in all cases. In contrast, with our
closed-form solution the computation time is bounded within
a few milliseconds.

III. METHODOLOGY

Traditional manipulation planning strategy usually in-
volves inverse kinematics and optimization, which are com-
putationally expensive. We avoid using these by adopting
a learning approach. Our method starts by generating a
training dataset of stable grasps. A Gaussian Mixture Model
(GMM) [3] is learned from the data, and the target pose is
predicted via Gaussian Mixture Regression (GMR). Hence
there is no inverse kinematics computation nor iterative op-
timization in our method. Generally speaking, our approach
is to:

1) Generate a set of stable grasping demonstrations for a
given object and a robot hand (subsection A).

2) Build a statistical model for the training dataset offline
(subsection B).

3) Use the model to quickly generate a new grasp, given
a starting object-hand configuration (subsection C).

A. Grasp generation given the hand kinematics

Two robot platforms available in our lab are chosen to
perform the grasping tasks: the iCub and the Barrett hand.
The iCub has an anthropomorphic hand with 9 degrees
of freedom: 3 in the thumb, 2 in the index, 2 in the
middle finger, 1 in the ring and little fingers and 1 for
the adduction/abduction movement. The Barrett hand is an
industrial grasper with 3 fingers and 4 degrees of freedom: 1
for each finger and 1 for the separation between the second
and the third finger. These two platforms differ drastically in
the range of motion for each finger and provide very different
grasp demonstrations.

There are numerous possible ways to grasp one object
depending on the task’s needs [11]. To encapsulate all the
possible ways, a large amount of training data is needed. To
collect this amount of data on a real robot is time consuming.
Therefore, instead of using a real robot, we generate training
data by synthesis. Two different approaches are used here:
optimization and simulation.

1) Optimization: As the official iCub simulator does not
provide a grasping module, we use the algorithm proposed
in our recent work [11] to generate grasp training data. The
iCub hand is modeled in 8 dimensions in this algorithm and
the thumb, index and middle finger are taken into account.
This approach formulates the problem as a constraint-based
minimization for a set of hand configuration parameters
(hand position h, hand orientation o and finger joints qqq ).
These parameters are subjected to a number of constraints
to satisfy the following criteria:

1) The grasp is kinematically feasible for the robot hand;
2) The grasp is a force-closure grasp;
3) The robot hand is not penetrating the object;
4) The robot fingertips contact the object surface;
5) The force provided by the robot hand is able to raise

the object.



The iCub’s finger joints can only apply a limited amount
of torque. The less joint torque required, the easier it is for
the iCub to lift the object. For this reason, we choose the
objective function to be the minimum joint torque required
to balance the gravity wrench, formulated as:

J(hhh,ooo,qqq) = kÂ
i, j

t j
i k (1)

where t j
i is the ith joint torque of the jth fingers under the

force feasibility constraints:

t j
i 2 [t̄ j

i , t̂
j

i ] (2)

where t̄ j
i and t̂ j

i are the lower and upper boundaries of t j
i .

Minimizing this cost function is equivalent to minimizing the
energy required in the joint space in order to accomplish the
grasping task.

The optimization is solved by the Interior Point OPTimizer
(IPOPT) method proposed by Wächter and Biegler [25],
written in the AMPL Model Language for Mathematical
Programming. To generate a variety of grasps, we exploit the
fact that the IPOPT solver converges to local solutions. We
provide the solver with a large number of initial conditions,
varying from 1000 to 2000. From these initial conditions,
which are located in different areas of the space, the IPOPT
converges to their corresponding local optima. By this means
500 to 1000 optimized grasps for an object can be obtained.
They will be used as the training data in the next phase. The
average computation time for the IPOPT to converge to one
solution is 2.65sec, with a standard deviation of 1.82sec. As
additional information, the quality Q of each optimized grasp
is calculated in the form described in [18]:

Q = k1
3 Â

j
ccc jk (3)

where c

j is the contact point (i.e. fingertip) position of the
jth finger. Though it is not included in the optimization, the
quality is used in the comparison between the training set
and the result set shown in Section 4.

The algorithm above can generate a variety of high quality
force-closure grasps for a given robot hand kinematic struc-
ture and a simple shaped object modeled by a superquadric.
Since IPOPT is a continuous optimization solver, generating
grasps on complex objects requires a continuous implicit rep-
resentation of the whole object model. Representing complex
objects as an assembly of superquadrics induces a disconti-
nuity in this model preventing IPOPT from converging to a
feasible solution. An implicit object representation for grasp
generation using optimization will be addressed in our future
work. This paper will only focus on grasps generated, for the
iCub hand, on simple shaped objects such as a cylinder and
cuboid.

2) Simulation: As the Barrett hand is modeled in the
widely used simulator GraspIt! [14], we use simulation to
generate its data. GraspIt! is designed for grasp analysis and
it provides a library of robots and object models. Its quality
measurement module computes the grasp quality according
to all the contacts between the hand and the object, in the
form described by Ferrari and Canny [7]. A grasp planning

(a) Initial distribution (b) Final distribution

Fig. 2: An illustration of part of the grasp position lattice of an airplane model.
Each grey dot in the lattice represents one robot hand position. The long arrows at
each dot represent the hand normal directions and the short arrows represent the fix
finger directions. The hand normals are initialized by pointing toward the center of
the object, as shown in (a). Small random variance is then added to each grasp later
to even the distribution and the final distribution is shown in (b).

module for primitive shapes, i.e cylinder, sphere, cuboid
and cone, is available, allowing users to easily generate
grasps [15]. To sample grasps for objects with complex
shapes, we alter the module and generate grasps as follows.

Firstly a robot hand position “lattice” is generated. Each
vertex in the lattice represents one robot hand position, where
the hand will be placed to grasp the object (Figure 2). The
object is located in the center of the lattice surrounded by the
grasping positions. All palm normals are initially pointing to
the center of the object. Random finger separation angles are
assigned to each point to form a list of grasp configurations
for testing. According to the object size, 1000 to 200001

testing grasps can be generated to ensure that the entire
object is surrounded by the lattice and the farthest point to
grasp the object is included. The density of the hand position
lattice depends on the object shape. Objects with sharp edges,
where the normals on the surface change sharply, should
have a higher lattice density compared to those with smooth
surfaces.

In the final step before testing, small random perturbations
are added to each grasp so that the testing points are evenly
and continuously distributed in all dimensions. To test these
grasps, the hand is first placed at each position on the test list
with the desired posture (hand orientations and finger joints).
Next, the fingers clutch around the object until contacts
or joint limits prevent further motion. We then use the
quality measurement module to compute the quality of each
grasp. The non-zero quality grasps, i.e. force-closure grasps,
are recorded and used as training data. Note that not all
the testing grasps result in feasible grasps. Points causing
collisions are removed from the list and only the force-
closure grasps are kept as the training data. The average
generating rate for the feasible grasps is roughly one per
five seconds.

The Barrett hand has one joint in each finger. These three
joints can only rotate in one direction and how much they
rotate is determined by the object surface, given the hand
position, orientation and the separation angle. Therefore we
drop this redundant information and model a Barrett hand

1Note that the number of samples for the Barrett hand is an order of
magnitude larger than for the iCub because the target object shapes for the
Barrett hand are more complex.
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grasp only with the hand position, hand orientation and the
finger separation angle. The robot kinematics is programmed
into the simulator and all simulated robot movement is
feasible.

In the above two methods, the size of the generated
training data varies from 500 to 1600 (Table I). Each training
dataset is split into 5 groups for the 5-fold cross validation
in the later step.

B. Model learning
The second phase of the approach is to build a model W

for the grasp demonstrations. A Gaussian Mixture Model
(GMM) is used here to get a probabilistic encoding of the
joint distribution p(h,o,q | W ). We choose to use GMM
because of its ability to effectively extrapolate the missing
data, as has been exploited in many applications [1], [23].
It also has the advantage of capturing the non-linearity of
the space, as well as determining how likely a point in the
input space is under the model. The ability to estimate the
likelihood of an input query point is crucial: an inference far
away from the region covered by the training data can be
unreliable, resulting potentially in an infeasible grasp. With
GMM we are able to make sure that each input query point is
located in or projected to a reliable region (this is explained
in the next phase).

Given a set of sample grasps represented by the hand
position h, orientation o and the finger configuration qqq , we
model the distribution with a GMM as a sum of K Gaussian
components:

P(hhh,ooo,qqq |W) =
K

Â
k=1

pk p(hhh,ooo,qqq |µµµk,SSSk) (4)

where k is the number of Gaussian components, pk the prior
of the Gaussian component and the µµµk, SSSk the corresponding
mean and covariance as:

µµµk =

0

@
µµµh,k
µµµo,k
µµµq ,k

1

A SSSk =

0

@
SSShh,k SSSho,k SSShq ,k
SSSoh,k SSSoo,k SSSoq ,k
SSSqh,k SSSqo,k SSSqq ,k

1

A (5)

A GMM approach requires that the data space is locally
convex. For a complex object shape, however, the grasp space
of hand configuration — coupled with the finger joint space
and constrained by the geometry of the object surface — may
be a non-smooth manifold. In both of the data generation
methods described above, we evenly distribute the testing
points so as to reduce the possibility of missing small good
grasp regions. By these means we obtain most of the possible
grasps for the object and approximate a locally convex data
distribution, which is suitable for a GMM.

Before training we 1) convert all data into the object refer-
ence frame and 2) normalize the data so that all dimensions
have a zero mean and a unit variance. Initialized by the K-
means, the Expectation-Maximization algorithm (EM) [5]
is used to find the value of µµµ and SSS that maximizes the
probability of the training data under the GMM. The number
of Gaussian K is selected by the Bayesian In f ormation
Criterion (BIC) and verified by 5-fold cross validation to
make sure the model is not overfitting (Figure 3).
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Fig. 3: The Bayesian In f ormation Criterion and 5-fold cross validation test results
of the training dataset of the Barrett hand and a joystick shaped object. For each
number of Gaussians, the test is run 5 times. After empirical testing, the number of
Gaussians is chosen to be 20. The corresponding experiment are shown in Section 4.

C. Grasp Planning

With the learned GMM model of the grasping demon-
strations, we plan a feasible grasp given a current hand
configuration q={h,o}. As discussed above, we first need
to determine whether the q is a valid query point. To do this
we define a membership function f (q) as:

f (qqq) =
K

Â
k=1

N̄NN(qqq; µµµk,SSSk) (6)

where N̄NN is the normal distribution with the output being
normalized between 0 and 1:

N̄NN(qqq; µµµk,SSSk) = exp
✓
�1

2
(qqq�µµµk)

T SSS�1
k (qqq�µµµk)

◆
(7)

We consider a point to belong to the model if its Maha-
lanobis distance to any Gaussian component is less than a
given threshold s . In our experiments, we find that within
1 standard deviation the success rate of finding a feasible
grasp is constantly high. For example in the Barrett hand
and the model plane grasping task, the rate of producing a
feasible and stable grasp within 1 standard deviation is 85%
(Table I) while it is 64% within 3 standard deviations. On
the other hand, it is possible that GMM encapsulates two
different clusters of data within a single Gaussian, leaving
the mean of the Gaussian at an infeasible point. This means
getting closer to the means does not ensure a higher success
rate. Taking this trade-off into account, we choose 1 standard
deviation as our threshold, which gives us a cutoff criterion
h = exp(� 1

2 s2). If the membership function of a point has a
higher value than h , we consider this point as a valid query
point. Note that the finger configuration qqq is not part of this
input query point as qqq will be inferred by GMR later.

This membership function differs from the marginal like-
lihood p(h,o) in two aspects. Firstly, it gives each Gaussian
component the same weight, regardless of their priors pk. As
the prior of each Gaussian is proportional to the number of
data points that are explained by this Gaussian, using this
information in our selection may bias our choice toward the
“most popular” grasps, yielding less variety in the results.
Secondly, N̄NN is a normalized function bounded between 0
and 1. This ensures the points with the same Mahalanobis
distance from a Gaussian will have the same membership
value, regardless of the size of the covariance [23].



In the case that q is not a valid query point, we need to
project it to a new point qqq⇤ that has a membership function
value higher than h . Here we use a closed-form solution by
considering each individual Gaussian component. We first
compare the Mahalanobis distances between the query point
q and each Gaussian to find the nearest Gaussian component.
The projection point qqq⇤ is found by projecting qqq to this
nearest component (Figure 4). In the Mahalanobis space the
Gaussian is in a uniform shape. As a result, the projection
point qqq⇤ lays on the direction from the q to the center of
the Gaussian. Therefore the projection point qqq⇤k of the kth

Gaussian can be written as:

qqq⇤k = qqq+ak(qqq�µµµk) (8)

where ak is a scalar. With s = 1 and the equation

N̄NNk(qqq; µµµk,SSSk) = exp(�1
2

s2) (9)

we have the equation to easily compute qqq⇤k :

�1
2
(qqq⇤k �µµµk)

T SSS�1
k (qqq⇤k �µµµk) =�1

2
·12 (10)

Once the projection point qqq⇤ is found, the Gaussian
Mixture Regression (GMR) is used to predict a feasible
finger configuration qqq ⇤ for it. First we define:

µµµq,k =

✓
µµµh,k
µµµo,k

◆
SSSqq,k =

✓
SSShh,k SSSho,k
SSSoh,k SSSoo,k

◆
(11)

and GMR then uses:

µ̂µµq ,k = µµµq ,k +SSSqq,k(SSSqq,k)
�1(qqq�µµµq,k) (12)

ŜSSqq ,k = SSSqq ,k �SSSqq,k(SSSqq,k)
�1SSSqq ,k (13)

Finally, all the K components are taken into account and
the target finger configuration qqq ⇤ is predicted as the mean
µ̂µµq with the covariance ŜSSqq according to:

µ̂µµq =
K

Â
k=1

bk(qqq⇤)µ̂µµq ,k (14)

ŜSSqq =
K

Â
k=1

bk(qqq⇤)
2ŜSSqq ,k (15)

where

bk(qqq⇤) =
pk p(qqq⇤|µµµq,k,SSSqq,k)

ÂK
k=1 pk p(qqq⇤|µµµq,k,SSSqq,k)

(16)

Due to the probabilistic nature of the GMR, the inferred
result qqq ⇤ is not a unique value but a mean value with
variance. Though this mean does not guarantee a feasible
solution, it provides a good estimation of a feasible one. The
performance of this method is discussed in the next section.

IV. EXPERIMENTAL RESULTS

This section presents a few results of our method (Fig-
ure 42, 53, 7). As mentioned above, grasps of the iCub
hand are described in 14 dimensions: hand position (3D),
hand orientation (3D in Euler angle), finger joint angles
(8D), and grasps of the Barrett hand are described in 8
dimensions: hand position (3D), hand orientation (4D in
axis-angle representation), finger separation angle (1D). Six
different objects are presented here: cylinder, cuboid, ashtray,
shoe, joystick and airplane model. For each object, three
different initial postures and their final grasps are shown.
Figure 4 shows the results of iCub grasping a cylinder, and
the corresponding projections from the initial query points to
the model. The results of the cylinder and cuboid show that a
variety of grasps can be obtained for simple shapes to satisfy
different task requirements. The ashtray, airplane model and
joystick shapes are chosen from the GraspIt! object library,
showing the method indeed works with complex shapes.

To test the computation time we generated 3000 random
initial query points for each grasping task. The initial query
points are placed at different distances away from the object
surface, varying between 3cm to 50cm, and the hand orien-
tation is random. The initial finger configuration is not taken
into account in finding the feasible region and hence it is set
to the robot hand starting values. The computation time and
experimental details are shown in Table I.

Table I also shows the success rate of generated grasps
with the iCub and the Barrett hands. A grasp is considered
to be successful if it satisfies the force-closure criterion, is
feasible for the hand kinematics and is not in collision with
the object (see Section 3A). When executing the obtained
grasp, the fingers will continue to clutch until contact is
made; if they contact the object surface before reaching
the expected finger configuration, they will halt to avoid
penetration. All the results shown in Figure 4, 5, 7 are good
grasps.

As can be seen from Table I, the success rate depends on
the dimensions of the grasp space and the surface geometry
of the target objects. Grasps in lower degrees of freedom
(the Barrett hand) have higher success rates than those in
higher degrees of freedom (the iCub hand). This suggests
that the higher dimension grasp space is more complex than
the lower dimension grasp space and needs more data to
represent the full complexity. On the other hand, objects with
smooth surfaces have a success rate around 90%. Objects
with a couple of prominences have success rates over 85%
as the configuration space of grasping is discontinuous. In the
Barrett hand and airplane model task, the failed grasps are

2In some figures the wrist may seem to rotate over 360 degrees to reach
the final grasps from the initial pose. This is because the path planning of
the arm is not taken into account in our approach. In terms of the hand
orientation solely, a much smaller rotation is needed to go from the initial
pose to the final grasp.

3The small penetrations and gaps between the fingers and the object
are caused by two factors, (1) that the width of the fingers are not taken
into account in the optimization and (2) the variance of the results. A
supplemental implementation will be applied on the real scenario to handle
the variances.



(a) Initial pose 1 (b) Initial pose 2 (c) Initial pose 3

(d) Final grasp 1 (e) Final grasp 2 (f) Final grasp 3
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Fig. 4: Two-dimensional illustration of the learned model. hy and hz correspond
to the hand position along the y and z axis of the object reference frame. a, b and c
are the initial query points, while d, e and f are their corresponding computed grasps.
Green dots correspond to initial query inputs q, black dots to found feasible query
inputs q

⇤, contours to parts of the space with constant likelihood, and the thick green
contour to threshold value h = exp(- 1

2 s 2) of each Gaussian, where s = 1 standard
deviations. The initial finger joint angles in a,b,c are all set to zero. After each feasible
query point is found, GMR is used to predict the finger configuration to get the final
grasp d,e,f.

(a) Initial pose 1 (b) Initial pose 2 (c) Initial pose 3

(d) Final grasp 1 (e) Final grasp 2 (f) Final grasp 3

Fig. 5: Examples of iCub hand grasping of a cuboid. The first row (a,b,c) shows
the initial postures and the second row (d,e,f) shows the corresponding final grasps.

(a) Best grasp found.
Quality is 0.16.

(b) Best grasp found.
Quality is 0.19.

(c) Neighbor grasp of
(a). Quality is 0.027.

(d) Neighbor grasp of
(b). Quality is 0.03.

Fig. 6: (a) The best grasp found for the Barret hand and the ashtray. (b) The best
grasp found for the Barret hand and the joystick. (c) The nearest grasp of (a) in the
training set. Note the gap between the finger and the object. (d) The nearest grasp of
(b) in the training set.

concentrated on two places: the thin edges of the wings and
the propeller. Grasping these places requires high accuracy
and more training data on these parts would be needed.

To compare with the training data, we compute the grasp
quality of the results with the same metrics we used in data
generation. The mean of the grasp quality of the training
set and the result set are similar, though the result set has
slightly higher value in most of cases. We are able to find
some grasps of higher quality than all grasps in the training
set (Figure 6). This shows that GMM is able to model and
generalize the high dimensional grasp space, especially for
objects with smooth surfaces.

V. DISCUSSION

We presented a method for computing grasps in real time.
This is demonstrated on two very different robot platforms:
the iCub hand and the Barrett hand. The result shows that the
method can capture the versatility of grasps that are typical
of grasps performed by an industrial gripper, and those that
can be performed by a humanoid hand. With the computation
time in the millisecond scale, this method would enable the
robot to react quickly in robot-human interaction, such as
picking up heavy objects from a person’s hand, as well as
adopting to fast perturbations in a dynamic environment.

We achieve this goal by using a closed-form solution. A
GMM model is learned from the grasping demonstration
generated offline for a given object. During the online
execution no iterative method is used, we only need to
solve a few equations with basic arithmetic operations.
Hence the computation time is significantly shorter than the
conventional optimization methods. Though we need to pre-
train the robot to grasp different objects, in many scenarios
such as surgery assistance, robots and humans must work
with a predefined set of objects. This allows us to build the
grasping model for each object beforehand.

To find the closest Gaussian component we used the
Mahalanobis distance rather than the Euclidean distance. The



TABLE I: Average computation time for generating new grasps for the iCub hand and the Barrett hand.

Robot/Object Number
of training

data

Average Grasp
Quality(train)

Number
of

Gaussians

Force-
Closure

Grasp Found

Average
Grasp Qual-

ity(result)

Mean of
Computation
Time(msec)

Variance
(msec)

iCub/Cylinder 621 0.0965 40 90% 0.1008 9.1 0.0001

iCub/Cuboid 532 0.1317 40 89% 0.1224 9.4 0.0007

Barrett/Ashtray 1560 0.0975 15 100% 0.1644 4.3 0.0001

Barrett/Shoe 629 0.0019 25 99% 0.0034 6.9 0.0001

Barrett/Joystick 1500 0.0061 20 98% 0.0064 5.9 0.0002

Barrett/Plane 1374 0.0002 55 85% 0.0003 15.1 0.0003

(a) Initial pose 1 (b) Initial pose 2 (c) Initial pose 3 (d) Initial pose 4 (e) Initial pose 5 (f) Initial pose 6

(g) Final grasp 1 (h) Final grasp 2 (i) Final grasp 3 (j) Final grasp 4 (k) Final grasp 5 (l) Final grasp 6

(m) Initial pose 7 (n) Initial pose 8 (o) Initial pose 9 (p) Initial pose 10 (q) Initial pose 11 (r) Initial pose 12

(s) Final grasp 7 (t) Final grasp 8 (u) Final grasp 9 (v) Final grasp 10 (w) Final grasp 11 (x) Final grasp 12

Fig. 7: Examples of Barrett hand grasping different objects (ashtray, shoe, joystick, airplane model). The first and third rows (a,b,c,d,e,f and m,n,o,p,q,r) show the initial
postures and the second and forth rows (g,h,i,j,k,l and s,t,u,v,w,x) show the corresponding final grasps.



advantage of this is that it takes into account the correlations
among each dimension of the hand configuration. In a
space of different types of measurements, i.e. length and
angle, Mahalanobis space is a better representation than the
Euclidean space. Indeed, humans do not always use the
Euclidean distance to select their grasps. We may move our
hand further than needed to grasp an object, in order to avoid
flipping our hand to another orientation.

Our approach provides a good estimation of a stable and
feasible grasp for the given object and robot hand. To model
the actual contact points between the robot hand and the
object is difficult in real time because of the high dimension
of the solution space and the non-linearity of the kinematic
constraints. In our method, instead of computing the actual
contact point position, we compute the most likely solution
using a GMM. Though a certain amount of accuracy is traded
off to achieve the real time goal, the overall performance is
satisfying. In our experiments, over 90 percent of the testing
points find good grasps within a few milliseconds. This
method is most efficient for objects with a smooth surface.
For complex objects this method can achieve a high success
rate of over 85%. When grasping the parts requiring high
precision, additional feedback from visual or tactile sensors
is needed for further refinement of the grasp.

In contrast to the common approach of learning from
human demonstrations, these grasps are generated solely
according to the mechanics of the robot hand. Some resulting
grasps are markedly different from human grasps, especially
for the Barrett hand which is very different from the human
hand. Our method may therefore out perform human demon-
strations in some contexts by better exploiting differences
between human and robot “physiology”.
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