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Abstract

This paper describes what is required to learn new tasks in general, then applies this knowledge to
understanding imitation learning in specific. We make some reference to the neurological literature,
including dual-speed hippocampal / neo-cortical learning systems. We suggest that this model solves
the problem of discrete replicants in memetics. We also describe some very preliminary work in
implementing and testing our ideas through social learning in a computer game context.

1 Introduction

Human-like intelligence requires an enormous
amount of knowledge — solutions to the hard
problems of survival and reproduction, which for
our species have come to involve complex social
and technological manipulations. Some of these
solutions are passed to us genetically, and some
are learned by an individual during their lifetime
through trial-and-error experience. For humans,
one key source of knowledge is culture. Byculture
here we mean any knowledge an agent has derived
from conspecifics by non-genetic means. In order
for such knowledge to be acquired efficiently, the
process of acquiring it must be significantly less
time consuming (at least for the individual) than
individual trial-and-error learning.

In this paper we discuss first how such learning
may be accumulated socially by a culture, and then
relate this to what we know about learning in individ-
uals. We propose a model for task learning in general,
which is clearly facilitated by social information. We
then briefly describe our preliminary attempts to build
and exploit such a model of learning.

2 Discretion in Memetics

Dawkins (1976b) proposes that knowledge and be-
haviour can be viewed as developing through a pro-
cess of evolution, just as biological life has. Ideas
or behaviours are propagated if they survive intact
long enough to be reproduced. Reproductive suc-

cess requires replication beyond a single host behav-
ing agent. While some behaviours are known ex-
plicitly and transmitted deliberately (by teaching),
there is evidence that our species may have evolved
the ability to take advantage of this powerful mech-
anism for increasing knowledge and fitness before
we were capable of such explicit mechanisms, and
that indeed we still implicitly learn complex multi-
modal behaviours from our conspecifics. This allows
us to build and transmit knowledge that our cultures
have not yet developed words or theories to describe
or deliberately represent. This theory of cumulative
knowledge generation is calledmemetics.

Dawkins (2000) describes a fundamental problem
with the theory of memetics. Memetics is based on
the concept of amemewhich is meant to be analo-
gous to a gene. Some theorists have claimed that this
analogy is invalid, on the grounds that genes are dis-
crete, but memes are not. This claim is itself suspect,
since to this day the termgenestill does not describe
a well-defined entity (Dennett, 2002), but is based on
the fact that the DNA molecule ultimately encodes
information in terms of discrete patterns of four pos-
sible chemical chains.

The underlying representation for a meme, though
still completely unknown, is suspected not to be dis-
crete, and therefore to be open to corruption. To
describe the problem, Dawkins (2000) proposes a
thought experiment where a child is shown a draw-
ing of an unfamiliar type of boat and asked to copy it;
then the process is repeated with another child who
sees only the new drawing. Dawkins believes the boat



would rapidly become as unrecognisable as a phrase
whispered by children playing a game of ‘telephone’
[Chinese WhispersU.K.]. Dawkins proposes a so-
lution to this problem, which is that one learns not
gross behaviours, butinstructionsas to how to be-
have. He proposes an alternate thought experiment,
whereby children learn to build a boat by origami, an
art based on folding paper. Here small mistakes pro-
duced by one child will be corrected by the next, be-
cause the second child is able to deduce the intention
of the first (or of the designer) because they under-
stand the nature of the operations. In other words,
because a process of origami consists of a relatively
short list of well-defined operations, Dawkins claims
it can be replicated more robustly than a process of
drawing.

We believe that Dawkins’ requirement that memes
must be instructions is over-specific, though correct
in principle. We think individuals learn in terms of
skills, not instructions. There are two differences:

• skills are not necessarily known or communi-
cated explicitly1, and

• skills are developed by the individual, and thus
open to individual variation.

This hypothesis has several interesting ramifica-
tions, mostly having to do with the consequences of
having variations ofgranularity in memetic represen-
tation. For example, consider some teacher J who
starts with relatively few mathematical skills, but has
by a slow laborious process managed to learn a tech-
nique for writing back-propagation networks. Her
representation might be a long string of relatively
simple arithmetic and trigonometric operators. If she
has a student, M, with more mathematical skills (for
example, calculus), and he observed her coding a net-
work, he might be able to form a new representation
which would create exactly the same sort of system.
But M’s representation of the system would be quite
different from J’s, consisting of a smaller number of
larger-granularity operators. Note too that the situa-
tion could be reversed — if J only knows trigonom-
etry but observes M coding an algorithm, she might
well be able to imitate the algorithm herself, how-
ever again she would perceive and remember the al-
gorithm at a different level of granularity than that
with which M was generating the code.

This sort of model could explain the results of
Whiten (2000). Whiten presents various species of

1Though quite probably Dawkins didn’t mean to limit memet-
ics to explicit knowledge and was using the terminstruction in
some kind of loose computational metaphor.

primates (including children) with complicated puz-
zle boxes which require one of a number of sequences
of actions to get open. Subjects are generally able to
open these boxes if they have first observed a demon-
strator, but they will not necessarily go through all
the same steps in the same order as the demonstra-
tor. However, if the demonstrator demonstrates re-
peatedly, on the second or third try the subjects will
often perfectly replicate the demonstrator’s model, at
least in terms of the sequence of affordances used.
Subjects may still choose to pull out a pin using their
teeth rather than their fingers, for example.

Our explanation would be that initially the subjects
are imitating only the goal and perhaps some other
simple attributes of the solution (e.g. knowing which
knobs on the box need attending to.) However, as
they develop skills by opening the box themselves,
the difficulty of performing a perfect replication is re-
duced, because it becomes a relatively short sequence
of relatively large-grain actions rather than a long se-
quence of basic motor commands.

3 Learning in Brains

The hypothesis described above ties in neatly to an-
other hypothesis in learning — this one about how
brains can learn from experience.

There are two ways to learn from experience. First,
we can learn very slowly, taking a large number of ex-
amples to build up a model of how the world seems
to be working, or at least what the right thing is to
do in a particular context. The second way is to learn
very quickly. The problem with learning very quickly
is that we may be overly influenced by a very im-
probable event, taking it to mean more than it should.
Learning from a large number of experiences very
quickly / perfectly also runs the risk of over-fitting.
General-purpose knowledge is usually considered to
derive from compiling large amounts of knowledge
into a few general rules or policies (Mitchell, 1997,
for a summary), although in some relatively deter-
ministic domains it can be derived by extrapolating
over a set of exemplars (Poggio, 1990; Atkeson et al.,
1997).

Generally speaking, our skills seem to be built up
slowly through practise over time. But any such slow-
learning system that builds its knowledge from expe-
rience faces a problem. The problem is, experience
happens quickly. Consequently, what is needed is a
second, quick system for jotting down salient events
as they happen. McClelland et al. (1995) build a
model of such a system, and using the neuroscience
literature, tie down their model to particular regions



of the brain. Slow learning, they say, happens in the
neocortex — fast learning happens in the hippocam-
pus (see also Treves and Rolls, 1994)

Another problem with fast learning is that it re-
quires learning a large number of things — particu-
larly if the system needs to hold each learned thing
around long enough to allow a slow-learning system
to process it. If two different things are learned that
happen to be similarly indexed (by whatever cate-
gory mechanism has emerged in a largely unsuper-
vised system), they might overwrite each other. If
accommodation of new information is not done sys-
tematically (which is generally seen as the purpose
of a slow learning system (McClelland et al., 1995;
Mitchell, 1997)) there’s no reason to expect two such
similarly-indexed events to be neatly, compatibly cat-
alogued together. One way to reduce the probabil-
ity of such ‘collisions’ (information about multiple
events overwritten into the same locations) is to make
sure that the information is encoded in a very sparse
way. That is, to use relatively few changes in mem-
ory in order to represent the full event. And indeed,
this seems to be what the hippocampus does (Rolls,
1996).

In order for a few changes to represent a com-
plex event, each change must be highly salient —
it must represent a relatively broad chunk of seman-
tics, a complex concept. As McClelland et al. (1995)
point out, this strategy is very compatible with the
hippocampal memory indexing theory (Teyler and
Discenna, 1986). However, that theory was origi-
nally motivated as the use of the hippocampus for a
compact, almost symbolic type of representation that
would be useful for certain kinds of complex pro-
cessing. For example, animals without a hippocam-
pus can learn a new map, but they can’t learnhow
to learn a map if they’ve never learned one before
(Bannerman et al., 1995). Similarly, animals with-
out a hippocampus can learn to associate actions with
stimuli, but they can’t learn to prioritise these actions
(Alvarado and Bachevalier, 2000; Wood et al., 2004;
Buckmaster et al., 2004). Whichever purpose might
have originally driven the evolution of a hippocam-
pus, the sparse representation is clearly useful enough
to be necessary for at least some sorts of long-term
memory storage (Squire et al., 2001), though it’s pos-
sible that another similar region, perhaps the entorhi-
nal cortex, performs some of the quick-learning roles
that McClelland et al. propose for the hippocampus.

We believe that this indexical learning may be
based on dynamic categories. That is, the representa-
tion of a newly observed behaviour is determined by
the ‘granularity’ of the indexing in the fast-learning

system, which is in turn driven by a set of skills
learned or formed in the slower learning system. We
already know that representations in the hippocam-
pus are highly dynamic and vary by context (Wiener,
1996; Kobayashi et al., 1997). And clearly learned
experience is itself a form of context. Thus the hy-
pothesis that what (and how) we can learn with this
system changes over time and experience is not ex-
cessively radical, although it does have interesting
implications for the veracity of recall.

4 A Model of Task Learning
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Figure 1: Task learning requires learning four types
of things: relevant categories of actions, relevant cat-
egories of perceptual contexts, associations between
these, and a prioritized ordering of the pairings. As-
suming there is no more than one action per percep-
tual class, ordering the perceptual classes is sufficient
to order the pairs. See text for details.

In short, we believe there are at leastfour separate
types of things that are learned in the process of learn-
ing a task (see Figure 1):

1. perceptual classes:What contexts are relevant
to selecting appropriate actions.

2. salient actions:What sort of actions are likely
to solve a problem.



3. perception/action pairings:Which actions are
appropriate in which salient contexts.

4. ordering of pairings: It is possible that more
than one salient perceptual class is present at the
same time. In this case, an agent needs to know
which one is most important to attend to in order
to select the next appropriate action.

With respect to perception/action pairings, our cur-
rent work indicates that there should only be one ac-
tion possible per salient perceptual context, but there
may be many perceptual contexts in which a partic-
ular action may be relevant, particularly if the object
of the action is coded diectically (Wood et al., 2004;
Bryson and Leong, 2005). Also not that although
we mention perceptual contexts, we obviously do not
mean the full context of all sensory information from
a moment in time. Such a representation leads to
overfitting / failure to generalize, besides generally
being computationally intractable to process. Rather,
detailed perception at any particular moment tends to
be focussed on a few salient cues which will hope-
fully help disambiguate the current action-selection
problem (Rensink, 2000).

Researchers familiar with Behaviour-Based AI
may think of these four sub-problems in a differ-
ent way. The first three items contribute to form-
ing behaviour modules— tight couplings of percep-
tion and action, while the last contributes to form-
ing behaviour arbitration(Bryson, 2000a; Bryson
and Stein, 2001). Researchers familiar with Cog-
nitive Modelling may realise that what we describe
is quite similar to ACT-R (Anderson and Matessa,
1998) except with extra emphasis on the forming of
categories for sensing and action. However, ACT-
R has a relatively simplistic ordering system which
cannot account for all animal data on even rela-
tively constrained tasks (Wood et al., 2004). ACT-R
learns relatively simple ‘utility values’ for each per-
ception/action paring, but complex tasks may require
hierarchy and/or some other powerful sequence-
learning representation such as POMDPs (Kaelbling
et al., 1998; Bryson, 2000b).

Clearly solving four problems simultaneously
makes learning new skills a very hard problem, but
equally it motivates social learning. In a social con-
text, sensing and action categories can be recognised
by their co-occurrence (Roy, 1999). In all probabil-
ity, sequential and hierarchical ordering may also be
induced (Dawkins, 1976a).

5 Learning in Practice

In previous work we have shown successful models
of solitary primate (including human) task learning
where the salient actions and perceptions were al-
ready fixed, but the pairings between actions and per-
ceptions and the prioritizations between these varied
(Bryson, 2005; Bryson and Leong, 2005). We have
also shown that one can create a complete set of pos-
sible mappings between perceptual and action classes
and then simply prioritize all of these, since only the
highest priority item for any perceptual category will
be chosen (Wood et al., 2004).

In our current work, we are looking at the role of
social learning in perceptual category formation. We
are also hoping to explore more complex hierarchical
representations. A complete agent needs to be able to
move between many different tasks, and indeed de-
termining when one is in a new task context is clearly
a part of the problem for determining salient actions
and perceptions.

5.1 A Working Model

As in our previous work, we are again not attempting
to learn all four categories simultaneously. We have
made the following simplifications / assumptions in
our preliminary experiments:

• The imitator is initially able to recognise some
actions that are key to learning the task.

• Only oneperceptual class applies to the imitator
at any one time.

The second assumption means that, for the time
being, we are not worrying about learning priortiza-
tions, but merely perceptual classes and their pairings
to actions.

Our perceptual classes are defined by boundaries
in n-dimensional sensor space (n is the number of
sensors providing a reading at any given time). Thus
far we have keptn, and then operative sensors them-
selves, constant throughout, although having differ-
ent sets of sensors operating in parallel is one possible
way of introducing parallel perceptual classes. The
cardinality of each dimension of sensor space differs
depending upon the sensor type. For example, a sen-
sor which measures the presence of an object would
return a discrete reading∈ {true, false}, whereas a
sensor which measures distance would return a con-
tinuous reading∈ R+.

The actions we have made recognisable by the imi-
tator are simply discrete. In some sense, actionsmust
be discrete (e.g. in categories like turn, move and



shout), but they could also be defined by parameters.
These in turn can be either absolute (turnTonorth)
or deictic (turnTonearest actor) discrete values,
but they can also be in terms of continuous values
(turn42.6◦).

Since exactly one perceptual class applies to any
given context, and only one action should be associ-
ated with any given perceptual class, the problem of
perception/action pairing is in this case equivalent to
partitioning sensor space and mapping each partition
to an action. Given that there is no need for the prior-
itization of these pairings, this completes our simpli-
fied version of the model.

5.2 Domain

For both this initial exploration of perception/action
map generation, and future more complex studies, we
are carrying out experiments in the domain of virtual-
reality computer games. VR games are an excellent
platform for experiments involving learning from hu-
man subjects because they are real-time, provide a
common sensing and action framework for both ar-
tificial and human agents, and require many elements
of human and animal intelligence, including navi-
gation, reacting to complex, dynamic environments,
planning and cooperation (Laird and van Lent, 2001).

We are currently working with two games:
Robocode(Nelson, 2002) andUnreal Tournament
(Digital Extremes, 1999).

Robocodeis designed to be both a game and a Java
teaching tool, provided for free download from IBM
alphaWorks. Users have no direct control over their
agents, but must provide Java code to drive them. The
agents themselves are robotic tanks armed with a sin-
gle cannon, a few basic sensors, and enough action
commands to navigate the map and ‘interact’ with the
other agents therein. The map is a simple 2-D rectan-
gle surrounded by walls, without any obstacles that
are not opponents.

Unreal Tournament(UT) is a commercially re-
leased, multi-player ‘First Person Shooter’. As the
term suggests, the user has an agent’s-eye view of
the game and direct, real-time control of an avatar’s
actions. UT also supports remote control of agents
by sending commands to the game server over a net-
work. This provides a framework for allowing ex-
ternal programs to direct an agents’ actions. Such
AI-controlled agents are commonly known as ‘bots’
in the literature and gaming community. The game
server, in turn, sends two categories of sensor data
back to the client. The first is synchronous: at regu-
lar intervals the client is informed of the agent’s status

(e.g. level of health, amount of ammunition, currently
wielded weapon, etc). The other is asynchronous:
for example whenever a wall is bumped, a footstep
is heard or damage is taken.

5.3 Preliminary Experiments

Our earliest social experiments were conducted in
Robocode, because we believed it would be simpler
since it was two dimensional (2D) and came with
pre-coded sample opponents. However, many aspects
of Robocode control and sensing proved inaccessi-
ble, presumably to keep competitors from ‘cheating’
by affecting the code of other robots. Subsequently
we have switched to a simple, effectively 2D Unreal
Tournament environment.

Our work in UT is still in early stages, but we have
had agents successfully learn simple plans from ob-
servation. In addition to providing a basic proof of
concept, these experiments also point to representa-
tional issues which lie ahead. These will be discussed
below.

M

I

Figure 2: The experimental arena

The experiment consisted of two actors (bots)
moving within a single cuboid room (see Figure 2).
World co-ordinates are given in three dimensions by
the game engine, but since the bots only moved on
the floor plane, the problem is well-defined in two
dimensions. Similarly, the bots have three rotational
degrees of freedom, but only one is used here (2D
heading).

Themodel bot (labelledM in the figure) executes
the following behaviour: move forward if not too



close to a wall; otherwise turn away from the nearest
wall and then move forward. The actual distance at
which the proximity sensor is triggered is determined
by a setting in the sensor module. The region that
this state applies to is represented by the shaded area
in the figure. The angle through which the bot turns is
calculated randomly, constrained by the fact that the
bot must then head away from the nearest wall.

The goal of theimitator bot (labelledI in the fig-
ure) is to locate a model, and then remain a fixed dis-
tance behind it and record observations (after Billard
and Dautenhahn (2000)). In this toy environment, it
probably would have been sufficient to have a station-
ary imitator, but for larger and more complex envi-
ronments and model behaviours, the imitator would
need to stay close to its model in order to observe as
closely as possible what the model observes. The im-
itator needs to be aware of when the model initiates a
new action, so that it can record the sensor state at that
instant and use it later to construct a perception/action
mapping (see Section 5.1). We have tried two types
of cue for this purpose:

1. The model acts explicitly as a teacher, informing
the imitator of its decisions as and when they are
made. The imitator only records an observation
when this cue is given.

2. The model is passive, forcing the imitator to
take snapshots of the sensor space at some pre-
determined regular interval.

The former simulates the training of a team-mate,
i.e. where the goal of the model is for the imitator
to learn as efficiently as possible. This method could
not, however, be used to learn behaviour from ‘un-
helpful’ agents (such as opponents). The latter could
be used in this way, but risks missing the decision in-
stant if the observation frequency is too low. There
is also a risk of storing redundant data if thresholds
between motions are not accurately detected. Never-
theless, either of these problems should be address-
able given sufficient learning opportunities and a ro-
bust probabilistic representation.

Whichever cue is used, we endow the imitator with
the ability to recognise the actionsmove forwardand
turn. The first set of sensors we gave to the imita-
tor detected thex- andy-position respectively of the
model in World co-ordinates, resulting in a 2D sen-
sor space. At first glance, the partition would seem
to be obvious; in fact directly analogous to the plan
shown in Figure 2. The problem is thatmove forward
decisions are taken both in the white zone, and in the
shaded zone immediately after the robot has finished

turning. If the shaded area cannot be mapped to a
unique action, then the partition it generates is un-
suitable. In fact, there is no suitable partition of this
sensor space. Even if we take a more powerful rep-
resentation and give the imitator a sensor that detects
the distance of the model from the nearest wall, the
problem remains.

There are (at least) two ways to solve this problem.
The first is to give the imitator a sensor which de-
tects the past (commonly known as memory) or, more
specifically, detects the previously recorded action. If
we use this in tandem with the distance sensor, we can
create the following map: if close to a wall and the
previously recorded action wasmove forwardthen
turn; otherwisemove forward. This makes sense, as
there is an implicit two-item sequence present in the
behaviour of the model. The second is to add to the
distance sensor another which can detect whether or
not the model is facing the nearest wall. The resulting
map is equivalent to the one above: if close to a wall
and facing it thenturn; otherwisemove forward. This
also makes sense, as the model’s behaviour contains a
piece of state indicating whether or not it is facing the
nearest wall. What is noteworthy is the two different
ways of solving the same problem; one temporal and
one atemporal.

5.4 Discussion and Future Work

Given this ambiguity, our next task is to investigate
whether harder tasks are better solved by a greater
number of ‘immediate’ sensors, or by the introduc-
tion of temporal dependencies. We expect POMDPs
(Kaelbling et al., 1998), which we also mentioned in
Section 4, will provide a way of more naturally mod-
elling temporal systems, as well as the latent variables
which are bound to be components of more complex
behaviour.

Also, as we alluded to in Section 5.1, we conjec-
ture that grouping sensors into modules that com-
pete probabilistically for saliency in a particular ac-
tion context will create naturally competing percep-
tual classes which will in turn need prioritization (see
part 4 of the task learning model in Section 4). Using
the scenario in Section 5.3, as an example suppose we
created several sensor modules each containing one
sensor as follows:

1. Distance of model from nearest wall.

2. Distance of model from second nearest wall.

3. Distance from the North wall.



After repeated observations it would become clear
that module 1 influences the decision process of the
model with a far greater probability than modules 2
or 3; that perceptual class should be given a higher
priority at least in the context of generating turns.
On the other hand, if there is a door in the North
wall, for some other tasks the absolute location may
be more salient. In general, we expect an agent will
need to actively maintain modules which utilise dif-
ferent viewpoints (e.g. World (absolute / allocentric
) view, model / imitator (egocentric) view, teammate-
and opponent-oriented views, etc.) to see which pro-
vide the most easily interpretable behaviour data in
different contexts.

Currently however we are still working with rela-
tively simple representational issues, including that of
discreteness. Many actions are not easy to discretize:
a bot that is turning may make one decision to turn
in a long, continuous arc, or many consecutive deci-
sions to turn in a series of smaller arcs. As we said
in Section 2, it may not be important that the imitator
forms the same perceptual categories as the model is
using. In particular, since our models are using a rad-
ically different action-selection mechanism than our
imitators, it is actually quite likely that the optimal
behavioural categories may be different.

To reiterate our hypothesis, we assume that, some
of these discriminations will be informed by skills
the learning agent has already accumulated, whether
through individual learning, previous imitation learn-
ing, or by ‘innate’ predisposition.

6 Summary

If we can build a model of task learning in the games
domain, then it will be fairly simple to test how much
social learning of a task can accelerate task learning
by individual agents, as we can easily create experi-
mental subjects that do or don’t attend to other agents
in the room. Also, if we allow for both individual
and social learning at the same time, we believe we
will quite naturally demonstrate agents with similar
expressed behaviour, but with different internal rep-
resentations. Finally, assuming we acquire learners
with different perceptual categories (either through
learning as just described or by programming) we
will be able to test in what circumstances successful
behaviours can be propagated through multiple ‘gen-
erations’ across multiple learning agents.

In this paper, we have described one of the key
problems in memetics, the problem of discreteness
in the representation of behaviour observed in con-
specifics. We have suggested that the units of memet-

ics may in fact vary between individuals based on
their skills, knowledge and random factors in the
self-organization of the underlying neurological rep-
resentations of these. This may not be a bad thing,
in fact it may account for why some observers are
able to exceed the performance of their models. We
have proposed a framework for representing this sort
of learning and described preliminary experiments in
building and using such a framework for social learn-
ing in the context of real-time multi-player computer
games. In the future, we hope to radically expand our
experiments and in the process continue to refine our
model.
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