
  

Modeling Natural Action Selection 
 
 

Proceedings of an International Workshop 
Edinburgh, UK 

 
July 2005 

 
 
 

edited by 
Joanna J. Bryson, Tony J. Prescott, and Anil K. Seth  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
AISB Press 

ISBN 1-902956-40-9



  

The articles in this book are Copyright ©2005 by their respective authors.  No part of this book may be 
reproduced in any form without permission in writing from the respective authors. 
 
Printed and bound in the United Kingdom. 
 
For additional copies, please contact the Editors:  
 
jjb@cs.bath.ac.uk  
t.j.prescott@sheffield.ac.uk 
seth@nsi.edu 
 
 
ISBN 1-902956-40-9 
 
 
 
 
 
 
 
 



  

Contents 

 

Invited Presentations          1 

Theoretical Perspectives 
 
How a biological decision network can implement a statistically optimal test              2 
Rafal Bogacz, Eric Brown, Jeff Moehlis, Philip Holmes, and Jonathan D. Cohen 
 
Predicting violations of transitivity when choices involve fixed or variable delays to food  9 
Alasdair I. Houston, Mark D. Steer, Peter R. Killeen, and Wayne A. Thompson 
 
Combining action selection models with a five factor theory     16 
Mark Witkowski 
 
On compromise strategies for action selection with proscriptive goals    24 
Frederick Crabbe 
 
He/she-you-I formalism: A heuristic model of (en)action to make decisions   32 
Daniel Mellet-d’Huart 
 

Computational Neuroscience of Action Selection 
 
Forced moves or good tricks in design space? Great moments in the evolution of the neural  36 
substrate for action selection 
Tony J. Prescott 
 
Mechanisms of choice in the primate brain: A quick look at positive feedback   45 
Jonathan Chambers, Kevin Gurney, Mark Humphries, and Tony J. Prescott 
 
When and when not to use your subthalamic nucleus: Lessons from a computational model 53 
of the basal ganglia  
Michael J. Frank 
 
Action selection in a macroscopic model of the brainstem reticular formation   61 
Mark Humphries, Kevin Gurney, and Tony J. Prescott 
 
Contracting model of the basal ganglia        69 
Benoît Girard, Nicolas Tabareau, Jean-Jacques Slotine, and Alain Berthoz 
 
The basal ganglia as the selection mechanism in a cognitive task     77 
Tom Stafford and Kevin Gurney 
 
Action selection in subcortical loops through the basal ganglia     84 
JC Houk, D Fraser, A Fishbach, SA Roy, LK Simo, C Bastianen, D Fansler-Wald, 
LE Miller, PJ Reber, and M Botivinick 
 
Cognition, action selection, and inner rehearsal       92 
Murray Shanahan 
 
Goal and motor action selection using a hippocampal and prefrontal model    100 
Nicolas Cuperlier, Philippe Gaussier, Philippe Laroque, and Mathias Quoy 
 



  

A computational model of reach decisions in the primate cerebral cortex    107 
Paul Cisek 
 
Recognizing invisible actions          113 
James Bonaiuto, Edina Rosta, and Michael Arbib 
 
Estimation of eye-pupil size during blink by support vector regression    121 
Minoru Nakayama 
 

Agent-Based Modelling 
 
Biorealistic simulation of baboon foraging using agent-based modelling    127 
William I. Sellers, Russell Hill, and Brian Logan 
 
Tolerance and sexual attraction in despotic societies: A replication and analysis    135 
of Hemelrijk (2002) 
Hagen Lehmann, JingJing Wang, and Joanna J. Bryson 
 
Collective action selection in social insect colonies       143 
James A.R. Marshall 
 
Visual communication and social structure – the group predation of lions    146 
Alwyn Barry and Hugo Dalrymple-Smith  
 
Having it both ways – the impact of fear on eating and fleeing in virtual flocking animals  152 
Carlos Delgado Mata and Ruth Aylett 
 
Building agents to understand infant attachment behavior      158 
Dean Petters 
 
Simulation, emotion and information processing: Computational investigations of the   166 
regulative role of pleasure in adaptive behavior 
Joost Broekens and Fons J. Verbeek 
 

Network-Based Modelling 
 
Routine action: Combining familiarity and goal orientedness     174 
Nicolas Ruh, Richard P. Cooper, and Denis Mareschal 
   
Modelling routine sequential action with recurrent neural nets     180 
Matthew M. Botivinick 
 
Modelling primate task learning requires bad machine learning     188 
Joanna J. Bryson and Jonathan C.S. Leong 
 
Modelling perceptual phenomena using temporal abstraction networks    196 
Neil Madden and Brian Logan 
 
Prediction of the behavioural strategy in a chemotaxis search task     203 
Manuel A. Sánchez-Montañés and Tim C. Pearce 
 



  

 
Symbolic Approaches 
 
Selecting actions and making decisions: Lessons from AI planning     208 
Héctor Geffner 
 
Building plans for household tasks from distributed knowledge     215 
Chirag Shah and Rakesh Gupta 
 
Innate planning mechanisms          221 
Sule Yildrim 
 

Robotics 
 
Ecological integration of affordances and drives for behaviour selection    225 
Ignasi Cos-Aguilera, Lola Cañamero, Gillian M. Hayes, and Andrew Gillies 
 
Reinforcement learning of stable trajectory for quasi-passive-dynamic walking   229 
Kentauro Hitomi, Tomohiro Shibata, Yutaka Nakamura, and Shin Ishii 
 
Hierarchical reactive planning: Where is its limit?       235 
Cyril Brom 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Modeling Natural Action Selection

Joanna J. Bryson1, Tony J. Prescott2, and Anil K. Seth3

1Department of Computer Science, University of Bath, BA2 7AY, UK
2Department of Psychology, University of Sheffield, S10 2TP, UK

3The Neurosciences Institute, 10640 John Jay Hopkins Drive, San Diego, CA 92121, USA
jjb@cs.bath.ac.uk, t.j.prescott@sheffield.ac.uk, seth@nsi.edu

Action selection is an agent’s continuous problem of
choosing what to do next. In artificial intelligence, this prob-
lem has been addressed with strategies ranging from con-
structing long chains of intentions that provide provably op-
timal means of achieving goals to reactive or anytime algo-
rithms that do simple lookups based solely on the external
environment. But what does nature do?
These are the proceedings from a multidisciplinary work-

shop held in Edinburgh in late July of 2005 in association
with the IJCAI conference of that year. We dedicated the
workshop to advancing the understanding of the behavioral
patterns and neural substrates supporting action selection in
animals — including humans. Our hope was to create this
advance by collecting together examples of good work being
done in this area and introducing the authors to each other
in a workshop-style context. We also engaged three leading
researchers to deliver keynote presentations on different as-
pects of action selection: Randall O’Reilly (Colorado, USA;
Neuroscience), Michael Laver (New York University, New
York, USA: Political Science), and Marius Usher (Birkbeck
College, London, UK: Psychology). Our aim in bringing to-
gether this group of speakers and authors was to tutor each
other both on the methods we used to build our models, and
on doing and publishing good science using modelling.
We asked for all submitted papers to:

• Reference or describe a model of action selection,
• Reference or describe a data set derived from the actions
of living animals or humans, and

• Make direct comparisons between the model and biolog-
ical data.

Computational models of natural phenomena are hypothe-
ses, no different from other hypotheses except that they are
particularly well spelled-out and that their implications can
be gathered by sampling the output of the model. In other
words, hypothesis testing can take place by comparing the
behavior of the model to the behavior of the original targets
of the model, the animals. We were just as happy to get pa-
pers describing data supporting or undermining existing mod-
els/hypotheses as we were to get new models of existing data.
All aspects of action selection were acceptable, from single

task performance to evolutionary models of behavior, from
individual protozoa to human societies.

We received 36 strong papers for our conference. From
these, with the help of our reviewers, we chose 14 for presen-
tation (plus the three invited talks), reflecting five technical
approaches:

• Theoretical perspectives
• Computational neuroscience of action selection
• Agent-based modelling
• Network-based modelling
• Symbolic approaches and robotics
We also accepted an additional 18 papers in the proceed-

ings, to be presented as posters at the conference. Finally,
the remaining places in the workshop were filled with people
who submitted short papers and a few people who attended
without formally presenting.
We are grateful to SSAISB for publishing these proceed-

ings. At the same time, we hope that this is only the begin-
ning. These are preproceedings — revised versions of the
the papers submitted to the workshop (revised in the light of
reviews by two to three members of our program committee
of the original draft papers), but revisions finished before the
meeting took place. We hope at the meeting itself we will all
learn a great deal, and that this will be reflected in publica-
tions to come.
One note to those not familiar with workshops that publish

proceedings. We do not consider these proceedings a substan-
tial archival publication. Some of these papers are summaries
of work already appearing in journal articles, and most of the
others we expect will be expanded to journal or archival-level
conference publications soon, hopefully helped by the partic-
ipation of the workshop.
This proceedings reflects a snapshot of our field in early

2005, with work from a variety of backgrounds and in many
different stages of completeness. We hope that this will help
our participants and others prepare similar sorts of work. In
addition, we hope these proceedings will draw attention to
the excellent work being done in this field, which we aim to
to promote through the publication of extended versions of
selected papers in a journal special issue.
We are very grateful to IJCAI for their help in organizing

this workshop, even though in the end we chose not to be fully
affiliated with them. Thanks in particular to Carlos Guestrin,



and to Rob Milne, who will be much missed. Thanks to Na-
talio Krasnogor of AISB for help with the proceedings, to
Myra Wilson and BiroNet / the EPSRC for providing a bur-
sary for student support. Special thanks to Janet Thomas of
BiroNet who also provided much useful advice on running
workshops. We are very grateful to John Underwood for help
with the workshop finances, and to the staff of Edinburgh
First for handling many of the local arrangements. Tony
Prescott’s role in co-organizing the workshop was assisted by
grant support from the EPSRC grant no. GR/R95722, and
Joanna Bryson was similarly assisted by the EPSRC grant
no: GR/S79299/01.
We owe a significant debt of gratitude to Harriet Warbur-

ton and the UK’s BBSRC, who provided substantial funding
for the workshop thus enabling the participation of our guest
speakers and one of our organizing committee. She has of-
fered the following statement:

I am a Programme Manager in the Biotech-
nology and Biological Sciences Research Council.
My areas of interest and responsibility are animal
behaviour, neuroscience, cognitive systems (which
includes some areas of modelling natural action se-
lection) and animal welfare. Details of BBSRC’s
full remit and other activities can be found on our
website at www.bbsrc.ac.uk.

Finally, we are very grateful to our talented programme
committee for their excellent job of reviewing the papers
collected in this volume:

Gordon Arbuthnott, University of Edinburgh, UK
Orlando Avila-Garcia, University of Hertfordshire, UK
Christian Balkenius, Lund University, Sweden
Alwyn Barry, University of Bath, UK
Bettina Berendt, Humboldt University, Berlin, Germany
Hagai Bergman, Hebrew Univerity, Israel
Rafal Bogacz, University of Bristol, UK
Olivier Buffet, National ICT, Australia
Lola Canamero, University of Hertfordshire, UK
Angelo Cangelosi, University of Plymouth, UK
Ricardo Chavarriaga, EPFL, Switzerland
Richard Cooper, Birkbeck college, London, UK
Frederick Crabbe, United States Naval Academy, USA
Nathaniel Daw, University College London, UK
Peter Dayan, University College London, UK
Yiannis Demiris, Imperial College London, UK
Peter Dominey, CNRS, France
Kenji Doya, ATR Laboratories, Japan
Jason Fleischer, The Neurosciences Institute, USA
Philippe Gaussier, CNRS, France
Agnes Guillot, University Pierre et Marie Curie, France
Kevin Gurney, University of Sheffield, UK
James Houk, Northwestern University, USA
Karl MacDorman, Osaka University, Japan
Mark Humphries, University of Sheffield, UK
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Invited Presentations

1 Michael Laver1

Endogenous Political Parties. The spatial model of party
competition is one of the dominant paradigms of contem-
porary political science. Virtually all spatial models of
party competition are essentially static: most key model
parameters, including the identity of all parties and rules of
interaction between them, are set exogenously; the essential
solution concept deployed is some form of static equilibrium.
However, recent progress has been made with agent-based
models that treat party competition as an evolving complex
system that may never reach a steady state, (Kollman,
Miller and Page 1992; Kollman, Miller and Page 1998;
De Marchi 1999; De Marchi 2003; Kollman, Miller and
Page 2003; Laver 2005). The central purpose of this paper
is to extend the agent-based model of party competition
proposed in Laver (2005) to encompass the birth and death
of political parties and thereby make the identity of parties
in the system an output of, rather than an analyst-specified
input to, the model. This is done by modeling party birth as
an endogenous change of agent type from citizen to party
leader. In order to do this it becomes necessary to model
the ”memories” of citizens in the system, an issue that has
not previously been addressed in agent-based models of
party competition, which have hitherto assumed goldfish
memories. The birth and death of parties transforms into a
dynamic system even an environment where all agents have
otherwise non-responsive adaptive behaviors. Substantively,
the original purpose of this modeling exercise was to inves-
tigate how key system parameters condition the number and
identity of political parties in a given system. An unintended
but valuable spin-off has been that we are now able to
characterize the overall social welfare of the set of citizens,
taken as a whole, as a function of party system parameters.
1New York University, New York, USA; with Michel
Schilperoord, Erasmus University, Rotterdam, Holland.

2 Randall O’Reilly2

Toward an Executive without a Homunculus: Computational
Models of the Prefrontal Cortex/Basal Ganglia System. The
prefrontal cortex has long been thought to subserve both
working memory (the holding of information online for pro-
cessing) and “executive” functions (deciding how to manip-

ulate working memory and perform processing). Although
many computational models of working memory have been
developed, the mechanistic basis of executive function re-
mains elusive, often amounting to a homunculus. I present
an attempt to deconstruct this homunculus through power-
ful learning mechanisms that allow a computational model
of the prefrontal cortex to control both itself and other brain
areas in a strategic, task-appropriate manner. These learn-
ing mechanisms are based on subcortical structures in the
midbrain, basal ganglia and amygdala, which together form
an actor/critic architecture. The model’s performance com-
pares favorably with standard backpropagation-based tempo-
ral learning mechanisms on the challenging 1-2-AX work-
ing memory task, and other benchmark working memory and
cognitive control tasks. It also makes a number of testable
predictions about the contributions of the basal ganglia and
prefrontal cortex in various behavioral tasks, several of which
have been tested and confirmed.
2University of Colorado, Boulder, USA.

3 Marius Usher3
Neurocomputational modeling of human decision-making.
Decision-making is one of the most common and, at the same
time, open-ended and effortful human activities. One source
of its difficulty resides with the need to evaluate alternatives
whose ‘attractiveness’ varies on several incommensurable
dimensions. Experimental work in human decision-making
has also revealed a series of intriguing behavioral patterns
that indicate deviations from normative economic theories
and which raise a challenge for the development of a theory
of human performance. Here I will review some of these
patterns, such as loss-aversion and preference reversals under
a series of conditions (time constraints, the introduction
of contextual information in the choice set, etc). I will
then discuss and contrast a number of neurocomputational
theories that have recently been proposed to account for these
patterns and to explain the cognitive processes that mediate
choice-RT and human decision-making.
3Birkbeck College, University of London, UK.
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How a biological decision network can implement a statistically optimal test 
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3Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA 

4Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA 
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Abstract 
Neurophysiological evidence due to Schall, 
Newsome and others indicates that decision proc-
esses in certain cortical areas (e.g. FEF and LIP) 
involve the integration of noisy evidence. Within 
this paradigm, we ask which neuronal architectures 
and parameter values would allow an animal to 
make the fastest and most accurate decisions. Since 
evolutionary pressure promotes such optimality 
(e.g. in prey capture and predator avoidance), it is 
plausible that biological decision networks realise 
or approximate optimal performance. We consider 
a simple decision model proposed by Usher & 
McClelland consisting of two populations of neu-
rons integrating evidence in support of two alterna-
tives, and we analyze the dynamics of this model. 
We show that in order to implement the optimal 
decision algorithm (sequential probability ratio 
test) the linearised network must satisfy the follow-
ing two constraints: (i) it must accumulate the dif-
ference between evidence in support of each alter-
native, as would be implemented by mutual inhibi-
tion between the populations; and (ii) the strength 
of mutual inhibition must be equal to the leak of 
activity from each population. 

1 Introduction 
Decision making is a very frequent element of life of hu-
mans and animals, and accuracy and speed of the decisions 
is critical to animal survival. During millions of years of 
evolution, evolutionary pressure promoted animals whose 
brains made more efficient decisions. Hence it is plausible 
that decision circuits in the brain possess architectures and 
parameters allowing them to implement optimal or nearly 
optimal algorithms. Therefore, in order to identify the archi-
tecture and parameters of decision networks in the brain, it 
may be informative to ask what is the optimal algorithm for 
decision making, and what biologically plausible network 
may implement this optimal algorithm. 

This optimality approach is not guaranteed to reveal the 
true decision network in the brain. But it can produce inter-
esting and counterintuitive experimental predictions, which 
may be used to test the model suggested by the approach. 
Furthermore, the algorithm optimally solving a decision 
problem may uncover (or may inspire) practical computa-
tional applications. This report shows how the mathematical 
analysis of decision processes may help in understanding 
them and make predictions concerning the architecture of 
neural networks involved in decision making. In particular, 
it identifies parameters of the decision making model pro-
posed by Usher & McClelland (2001) under which the 
computations of the neural decision network are equivalent 
to an optimal statistical test for decision making (sequential 
probability ratio test). 

In three following sections we briefly review neurophysi-
ology of decision, optimal statistical test, and the model of 
decision network by Usher & McClelland (2001). Then in 
Section 5 we identify conditions under which this model 
achieves optimal performance. Finally, in Section 6 we list 
other directions in which the theory has been extended. 

2 Neurophysiology of decision  
The neurobiology underlying decision making has been 
extensively studied in a task in which monkeys are pre-
sented with a visual field of small dots most of which are 
moving randomly, but a certain fraction of which are mov-
ing left on some trials and right on others (Britten et al., 
1993).  Typically, the animal is trained to respond by mak-
ing a saccade in the direction of the coherently moving dots.  
Figure 1a shows schematically the typical patterns of activ-
ity observed in area MT of monkeys performing this task 
(this area is involved in motion processing).  When a stimu-
lus with coherent leftward motion is presented, the firing 
rate of an MT neuron selective for leftward motion is higher 
than the firing rate of a neuron selective for rightward mo-
tion (Britten et al., 1993) (in Figure 1a the grey curve is 
more often above the black).  However, the firing rates for 
both types of neurons are noisy, hence decisions based on 
the activity of MT neurons at a given moment in time would 
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be inaccurate.  This reflects the uncertainty inherent in the 
stimulus and its neural representation. 

Figure 1b shows schematically the pattern of activity of 
neurons in area LIP, which is involved in controlling eye 
movements.  The LIP neurons are believed to integrate the 
input from MT neurons over the duration of a trial.  The 
decision based on the integrated evidence, namely on activ-
ity of LIP neurons after about 0.5s, is much more accurate.  
This example illustrates that the decision process may be 
realized in the neural substrate by the integration of noisy 
information. 
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Figure 1. Cartoon of typical peri-stimulus time histograms of neu-
ronal activity during ‘the moving dots task’.  The figure does not 
show the actual data, but it is a sketch based on data described by 
Britten et al. (1993), Shadlen & Newsome (2001), and Schall 
(2001).  Horizontal axes show time from stimulus onset.  Vertical 
axes indicate firing rate.  Representative firing rates are shown for 
stimulus with coherent leftward motion.  a) Firing rate of neurons 
in the area MT: gray line represents a typical neuron selective to 
leftward motion, and black line for rightward motion (the curves 
were generated by adding noise to exponentially decaying func-
tions).  b) Firing rate of neurons in the area LIP: gray line repre-
sents a typical neuron selective for leftward saccades, and black 
line for rightward saccades (the curves were generated by integrat-
ing the difference between curves from panel a and some noise). 

 

3 The decision problem  
Let us formalize the decision problem on the basis of the 
above example.  We assume that there are two populations 
of neurons whose activities provide evidence in support of 
the two alternative decisions (e.g., corresponding to the two 
groups of MT neurons in the above example).  We denote 
the activities of the first populations over a given trial by 
y1

1, y2
1, …, yn

1, and of the second population by y1
2, y2

2, …, 
yn

2. Let us assume that the samples yi
1 come from a normal 

distribution with mean I1 and standard deviation c, and sam-
ples yi

2 come from a normal distribution with mean I2 and 
standard deviation c. The goal of the decision process is to 
identify which mean activity, I1 or I2, is higher. Note that 
this is equivalent to asking whether I1–I2 is positive or nega-
tive, i.e. whether the differences between input samples 
have positive or negative mean. Let us denote the differ-
ences between activities of input populations by xi=yi

1–yi
2. 

Within this framework, the question of optimal decision 
making is the following: For given signal and noise levels 
I1, I2 and c in the input populations, what is the optimal 
strategy for integration of evidence (e.g., by LIP neurons) 
that would allow the most accurate and fastest decisions on 
average, over the course of many trials?  More precisely, 
there are two sub-questions: (i) Which strategy yields the 
lowest error rate (ER), when a given (fixed) time for deci-
sion is allotted, and (ii) which strategy yields the fastest 
reaction times (RT) for a given ER? 
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The two questions above refer to optimality in two differ-
ent conditions under which decision tasks can be run.  The 
first question relates to a decision process in which partici-
pants are presented with the stimulus for a fixed duration, at 
the end of which they are expected to answer, usually on 
presentation of response prompt, thus constraining their 
RTs.  The second question refers to a decision process in 
which participants are asked to respond freely, when they 
are ready, usually being instructed to be as accurate and as 
fast as possible.  We refer to this situation as the free-
response protocol.  We focus only on this protocol. 

The answer to the second question, regarding optimality 
in the free-response paradigm, is provided by the sequential 
probability ratio test (SPRT) of Barnard (1946) and Wald 
(1947).  In contrast to classical decision procedures in which 
a previously fixed number of samples is collected before the 
decision is rendered, SPRT may be applied to continuously 
accumulating data.  A decision is made as soon as a thresh-
old, which depends upon the required accuracy, is reached. 
Specifically, let H1 and H0 denote the two alternative hy-
potheses, as above, and assume that samples xi in support of 
these are drawn at random from two probability distribu-
tions with densities p1(x), p0(x).  In particular, in the case of 
the decision problem defined at the beginning of this Sec-
tion, H1: p1(x) is a normal distribution with positive mean μ 
and standard deviation σ, H0 : p0(x) is a normal distribution 
with negative mean –μ and standard deviation σ. After each 
sample the ratio of probabilities p1(xi)/p0(xi) is calculated 
and the product of these likelihood ratios is accumulated.  
Observations continue as long as the likelihood ratio lies 
within the boundaries Z0 < Z1: 
 

  (1) 
 
 
Thus, after each measurement one recomputes the current 
likelihood ratio, thereby assessing the net weight of evi-
dence in favor of H1 over H0.  When the ratio first exceeds 
Z1 or falls below Z0, sampling ends and either H1 or H0 is 
respectively accepted; otherwise sampling continues. 
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SPRT is the optimal test for decision-making on the basis 
of accumulating noisy data in the following sense: Among 
all fixed or variable sample decision methods that guarantee 
fixed error probabilities, SPRT requires on average the 
smallest number of samples to render a decision (Wald & 
Wolfowitz, 1948).  In other words, for given ER, SPRT de-
livers the fastest RT.   

The SPRT is equivalent to a random walk with thresholds 
corresponding to alternative decisions.  To see this, take the 
logarithm of both sides of Equation 1:  
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If we denote the logarithm of the likelihood ratio defined in 
Equation 1 by In, then Equation 1 implies that we iteratively 
accumulate In after each observation: 
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Let us evaluate the probability ratio for the hypotheses de-
fined earlier in the section. Equation 3 becomes: 
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Thus from the above equation, the SPRT is equivalent to a 
random walk starting at I0 = 0, and continuing until the loga-
rithm of the likelihood ratio In reaches one of the thresholds:  
log Z0 or log Z1. During this random walk the samples (i.e. 
the differences between the two inputs) are accumulated (a 
more rigorous and complete analysis of the relationship be-
tween SPRT and random walks is given by Gold & Shadlen, 
2001).  

4 Model of decision network 
Figure 2a shows the architecture of an abstract neural net-
work (or connectionist) model for the two alternative deci-
sion tasks (Usher & McClelland, 2001).  The model in-
cludes four units representing the mean activities of neu-
ronal populations: two input units representing populations 
providing evidence in support of the two alternative deci-
sions (e.g., corresponding to groups of movement sensitive 
MT neurons from the example in Section 2); and two deci-
sion units representing populations integrating the evidence 
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Figure 2. Usher & McClelland (2001) model. a) Architecture of the model: Arrows denote excitatory connections, line with filled circles 
denotes inhibitory connections. b) An example of the evolution of the model, showing y1 and y2 as functions of time.  c) The phase- or 
state space of the mutual inhibition model.  Horizontal axis denotes the activation of the first decision unit; vertical axis denotes the acti-
vation of the second decision unit.  The path shows the decision process from stimulus onset (where y1 = y2 = 0) to reaching a decision 
threshold (decision thresholds are shown by dashed lines).  The model was simulated for the following parameters: I1 = 2, I2 = 1.5, c = 
0.2, w = k = 1.5, Z = 1. The simulations were performed using Euler method with time-step Δt = 0.01. To simulate the Wiener processes, 
at every step of integration, each of the variables y1 and y2 was increased by a random number from normal distribution with mean 0 and 
variance c2Δt. 
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(e.g., corresponding to the LIP neurons involved in control-
ling eye movement). 

The decision units are modeled as leaky integrators with 
activity levels denoted by y1 and y2.  Each decision unit ac-
cumulates evidence from an input unit with mean activity Ij 
and independent white noise fluctuations ηi of Root Mean 
Square (RMS) strength c (ηi denote independent Wiener 
processes).  These units also inhibit each other by way of a 
connection of weight w.  Hence, during the decision proc-
ess, information is accumulated according to: 
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⎨
⎧

++−−=
++−−=

22122

11211

η
η

cIwykyy
cIwykyy

&

&
,  y1(0) = y2(0) = 0.   (4) 

 
In the equations above, the term k denotes the decay rate of 
the units’ activity (i.e., the leak) and –wyi denotes the mu-
tual inhibition.  Note that terms –kyi cause the activity to 
decay to zero in the absence of inputs to the unit (because if 
yi were positive in the absence of inhibition, input, and 
noise, i  would be negative, and yy& i would decrease).  The 
scale of the units’ activity is chosen so that zero represents 
the baseline activity of both units in the absence of all in-
puts, hence integration starts from y1(0) = y2(0) = 0. As soon 
as either unit exceeds a preassigned threshold Z, the model 
is assumed to make a response.   

The state of this model at a given moment in time is de-
scribed by the values of y1 and y2, and may therefore be rep-
resented as a point on a phase plane whose horizontal and 
vertical axes correspond to y1 and y2;  the evolution of ac-
tivities of the decision units during the decision process may 
be visualized as a path in this plane.  An example is shown 
in Figure 2c, corresponding to the individual time courses of 
y1 and y2 shown in Figure 2b.  

5 Model parameters resulting in optimal per-
formance 

As illustrated in Section 4, the behaviour of the model may 
be visualized by plotting states on the phase plane.  Figure 
2c shows a representative path in state space: initially the 
activities of both decision units increase due to stimulus 
onset, but as the units become more active, mutual inhibi-
tion causes the activity of the ‘weaker’ unit to decrease and 
the path moves toward the threshold for the more strongly 
activated unit (i.e., the correct choice). 

To better understand the dynamics of the model, Figure 3 
shows its vector fields for three different parameter ranges.  
Each arrow shows the average direction in which the state 
moves from the point indicated by the arrow’s tail, and its 
length corresponds to the speed of movement (i.e., rate of 
change) in the absence of noise.  In Figure 3, as for most 
other simulations described in this article, we set I1 > I2; that 
is, we assume that the first alternative is the correct one (the 
opposite case is obtained simply by reflecting about the di-
agonal y1 = y2).  

Note that in all three panels of Figure 3 there is a line (an 
eigenvector), sloping down and to the right, to which system 
states are attracted: The arrows point towards this line from 
both sides.  The orientation of this line represents an impor-
tant dimension:  the difference in activity between the two 
decision units.  Note that the evolution along the line differs 
for different values of decay and inhibition, as does the 
strength of attraction toward the line, and its location in the 
phase plane.  Most of the interesting dynamics determining 
decisions occur along this line.  Therefore, it is easier to 
understand these in terms of new coordinates rotated clock-
wise by 45° with respect to the y1 and y2 coordinates, so that 
one of the new axes is parallel to the attracting line.  These 
new coordinates are shown in Figure 3b, denoted by x1 (par-
allel to the attracting line) and x2.  The transformation from 
y to x coordinates is given by (cf. Seung, 2003): 

 

x1

x2

y1

y2 y2 y2

y1 y1

 a) Decay > Inhibition          b) Decay = Inhibition        c) Decay < Inhibition 
(λ < 0)              (λ = 0)            (λ > 0) 

Figure 3. Vector fields for the model.  In all plots I1 = 2, I2 = 1.  Inhibition (w) and decay (k) have different values in different panels: 
a) w = 0.5, k = 1.5; b) w = 1, k = 1; c) w = 1.5, k = 0.5. 
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Equations 5 derive from the geometry shown in Figure 

3b: x1 describes the difference between activities of the two 
decision units, while x2 describes the sum of their activities.  
The square root of two in the denominators of Equations 5 
is a normalization factor, included to ensure that y and x 
coordinates have the same scale. 

In deciding between two alternatives, it is natural that the 
difference between the activities of the units selective for the 
alternatives should be a useful descriptor of the decision 
process (see Section 3).  However, the new coordinates do 
more than merely emphasize this point.  They allow us to 
factor the two Equations 4 that describe the decision process 
into two decoupled processes, separating the evolution of 
the difference in the activity of the two units (x1) from the 
change in their overall (summed) activity (x2).  If we can 
show that the latter has minimal impact on the decision 
process, then we can reduce the description of this process 
from one that is two-dimensional to a simpler one that is 
one-dimensional.  As we will show, for certain parameters 
this one-dimensional description reduces to the diffusion 
model (Ratcliff, 1978). 

To transform Equations 4 into the new coordinates, we 
first calculate the derivative (rate of change) of x1.  Substi-
tuting Equations 4 into the first of Equations 5, we obtain: 
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We assumed earlier that the noise processes for the input 
units are independent.  Since the standard deviation of the 
sum (or difference) of two independent random variables is 
equal to the square root of the sum of their variances, the 
noise process in x1 may be written: 
 

 ( ) '1'1

22

21 22
1 ηηηη ccccc =

+
=− .             (7) 

 
In Equation 7, η1’ again denotes a noise process with mean 
equal to 0 and an RMS strength of 1.  Substituting Equation 
7 and the definition of x1 from Equation 5 into Equation 6, 
we obtain Equation 8.  Following analogous calculations for 
x2 , we have: 
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Equations 8 and 9 are uncoupled; that is, the rate of change 
of each xi depends only on xi itself (this was not the case for 
the decision units in Equations 4).  Hence, the evolution of 
x1 and x2 may be analyzed separately, and in fact each is 
described by an Ornstein-Uhlenbeck (O-U) process (Buse-
meyer & Townsend, 1993).  In particular, Equation 8, for 
the x1 process, involves a drift term proportional to the dif-
ference between the inputs I1 and I2.  This process may be 
stable or unstable, depending upon the relative magnitudes 
of k and w.  Equation 9, for the x2 process, always gives a 
stable O-U process (corresponding to attraction to the line in 
Figure 3), since –k – w < 0. 

We first consider the dynamics in the x2 direction, corre-
sponding to the summed activity of the two decision units.  
As noted above, on all panels of Figure 3 there is a line to 
which the noise-free state is attracted, implying that x2 ap-
proaches a limiting value as time increases.  The rate of this 
(exponential) approach is λ = k + w, and it is kept constant 
in the three cases of Figure 3 by setting k + w = 2. 

Figure 3 also shows that the dynamics of the system in 
the direction of coordinate x1 depends on the relative values 
of inhibitory weight w and decay k.  This dependence is due 
to the fact that the dynamics of x1 are described in Equation 
8 by a O-U process with coefficient λ = w – k.  When decay 
is larger than inhibition, then λ < 0, and there is also an at-
tractor for the x1 dynamics, as shown in Figure 3a.  When 
inhibition is larger than decay, then λ > 0, and there is re-
pulsion from the fixed point in the x1 direction, as shown in 
Figure 3c.  The fixed point is a saddle in this case. 

Since |k+w| > |k-w| for all parameter values k>0 and w>0, 
the average state of the system approaches the attracting line 
faster (and often considerably faster) than it moves along it 
(e.g., see Figure 2c).  Hence, the decision process divides 
into two phases:  an initial phase in which the activity of 
both units increases quickly, and there is rapid equilibration 
to a neighborhood around the attracting line; followed by 
slower motion along the line, governed by an O-U process 
in which the difference between the activities of the two 
units grows as one of them prevails and the other subsides.   

(6)

Most relevant to the current discussion, when inhibition 
equals decay the term (w – k) x1 in Equation 8 disappears.  
The vector field for this case is shown in Figure 3b.  When 
inhibition and decay are both fairly strong (as in Figure 3b), 
the attraction toward the line dominates diffusion along it.  
Hence, typical paths migrate quickly toward the attracting 
line and then move slowly along (or near) it. 

In this case when inhibition is equal to decay, the position 
of the system in direction x1 simply accumulates the differ-
ence between the evidence in support of first decision and in 
support of the second decision, and thus undergoes the dif-
fusion process (Stone, 1960; Lamming, 1968; Ratcliff, 
1978). Hence when inhibition is equal to decay, the Usher & 
McClelland model implements the optimal sequential prob-
ability ratio test described in Section 3.  
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Thus one can expect that the Usher & McClelland (2001) 
model makes the fastest decisions for fixed error rates when 
it is closest to the diffusion model, namely when the decay 
equals inhibition. This is indeed the case, as illustrated in 
Figure 4. 

 
Figure 4.  Performance of the model.  The following parameters 
were kept fixed: I1 = 1, I2 = 0, c = 1, w = 1. Decay (k) is varied 
(shown on X-axis). Y-axis shows decision time (DT) for the 
threshold set such that error rate (ER) = 10%.  For each set of pa-
rameter values, the threshold was increased from zero in steps of 
0.01 until the model reached an ER less than or equal to 10%.  For 
each value of the threshold 10,000 trials were simulated.  The dots 
below and above the line indicate the standard error; that is, the 
standard deviation of DTs across trials divided by the square root 
of the number of trials (100). 

 
 
To summarize, when decay is equal to inhibition and both 

are relatively large, the Usher & McClelland model (2001) 
approximates the sequential probability ratio test and thus 
achieves the optimal performance. Thus we predict that in 
cortical decision network effective decay is also equal to 
effective inhibition. 

6 Further directions 
We have extended the theory of neural bases of decision 
optimization in a number of directions: 

• We have shown how more biologically realistic 
model by Wang (2002) may implement the optimal 
test (Bogacz et al., 2005). 

• We analyzed the values of optimal threshold 
maximizing the reward rate, which yields a simple 
relationship between error rates and reaction times, 
which has been confirmed in a behavioural ex-
periment (Bogacz et al., 2005). 

• We analyzed biased decisions in which one of al-
ternatives is more frequent or more rewarded 
(Bogacz et al., 2005). 

• We analysed non-linear version of Usher & 
McClelland model (2001), and role of gain modu-
lation (Brown et al., 2005) 

• We investigated how the optimality generalizes to 
multiple alternatives (McMillen & Holmes, 2005). 
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ABSTRACT 
 

Incentive theory, an established model of behaviour, 
predicts how animals should choose between alternatives 
that differ in the amount of food delivered, and the delay 
until it is delivered.  Choice behaviour in such situations 
may be “irrational”, in that it fails to satisfy Strong 
Stochastic Transitivity (SST).  We apply incentive theory 
within the framework of a standard choice procedure from 
operant psychology and show that choice behaviour does 
not satisfy substitutability, and therefore SST does not hold.  
This occurs because of a change in the context of choice, 
implicit in the change of experimental conditions necessary 
to test SST.  The predictions from our model are similar to 
the results of experimental studies of choice behaviour in 
pigeons.  This agreement suggests that behavioural theories 
may provide insight into other apparent departures from 
rational behaviour. 
 
 
1. INTRODUCTION 
 

One of the most commonly cited properties of rational 
choice is transitivity. In a series of choices between two 
alternatives, preference is said to be transitive if, from the 
fact that a is preferred to b and b is preferred to c, it follows 
that a is preferred to c.  Transitivity seems a natural 
requirement for rationality, in that it produces a ranking of 
alternatives in terms of preference and eliminates cyclic 
patterns of preference.  A number of cases from the 
psychological and behavioural ecological domains have 
been described where decision makers have violated this 
axiom, thereby behaving in what can be called an irrational 
manner (Navarick and Fantino 1972; Shafir 1994; Waite 
2001b;  c.f. Bateson 2002; Schuck-Paim and Kacelnik 2002 
where no violations were observed).   

When choice is stochastic, rather than deterministic, 
there are various forms of transitivity (see Fishburn 1973 for 
a review). Let be the probability of choosing option a 

when faced with options a and b. Strong stochastic 
transitivity (SST), with which we are concerned in this 
paper, requires that 

),( bap

 

if  
2
1),( >bap  and 

2
1),( >cbp , 

 
then  .          (1) )],(),,(max[),( cbpbapcap >
 
SST differs from weak stochastic transitivity in that it puts 
limits on the magnitude of the preference for a over c, 
whereas weak stochastic transitivity simply states that a will 
be preferred to c.  Violations of both strong and weak 
transitivity have been shown in grey jays, Perisoreus 
canadensis (Waite 2001b) and honeybees, Apis mellifera 
(Shafir 1994).  In this paper we show that a well-established 
model of choice can account for behaviour that has been 
interpreted as intransitive.   

Tversky and Russo (1969) showed that SST is a 
necessary and sufficient condition of scalability. Scalability 
is closely related to the existence of a uni-dimensional 
model of choice (see Navarick and Fantino 1974; 1975; 
Houston 1991).  Shafir (1994) demonstrated intransitivity of 
choice in honeybees choosing between artificial flowers 
varying in nectar volume and length of corolla.  Using a 
conceptually similar experimental procedure, Waite (2001b) 
observed intransitive choices in gray jays choosing between 
tubes which differed in the amount of food in the tube and 
the distance from the entrance to the tube at which the food 
was placed.  Navarick and Fantino (1972; 1974; 1975) 
found that preferences obtained from a standard choice 
procedure used in operant psychology (the concurrent-chain 
procedure) failed to satisfy the requirements of SST, and 
hence argued that choice probabilities could not be 
predicted by a uni-dimensional model of behaviour.  These 
results from animals, together with data from humans (e.g. 
Tversky and Simonson 1993) suggest that the value of an 
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option depends on the overall context of the choice 
procedure.  

Alterations of the context under which a subject makes 
a decision have been posited, in different guises, as an 
explanation for the appearance of irrational behaviours.  
Schuck-Paim et al. (2004) show that unintentional 
differences in energetic state at the time of decision, 
resulting from studies’ experimental design, can account for 
some reported violations of regularity (e.g. Waite 2001a; 
Bateson et al. 2002). (Regularity is violated if the 
proportion of choice for an option is increased after the 
inclusion of a new alternative in the choice set, Luce and 
Suppes 1965). This reasoning cannot, however, provide an 
explanation for the intransitive preferences in which we are 
interested.  Houston (1997) showed that intransitive 
preferences could arise from a decision process that 
incorporates a constraint on the accuracy of decision-
making.  This perceptual error model can predict the 
qualitative form of the violations of transitivity found by 
Waite (2001b) and Shafir (1994). 

The condition that Houston (1997) showed to be 
violated was that used by Navarick and Fantino (1972, 
1974, 1975):  
 
if      (2a) ),(),( cbpcap =
 

then  
2
1),( =bap .    (2b) 

 
This condition is part of what Tversky and Russo (1969) 
call substitutability.  Following Houston (1991; 1997), we 
will say that a and b are equivalent in terms of choice 
against c if they satisfy equation (2a).  The other condition 
for substitutability is 
 
if     ),(),( cbpcap ii >
 

then  
2
1),( >bapi .  

    
Tversky and Russo show that substitutability is a necessary 
and sufficient condition for SST.  In going from the premise 
(2a) to the conclusion (2b) the choice alternative c no longer 
appears in the context.  We note that the absence of c in the 
choice context may have an effect on the constituent 
preferences for a and b.  In the following section we show 
that in a standard model of choice it is possible to find many 
sets of behaviours that satisfy equation (2a) but not equation 
(2b). 
 
2. THE DELAYED REINFORCEMENT MODEL 
 

We will be concerned with the standard concurrent-chain 
procedure (see box 1).  These schedules were designed to 
measure preference for environments in which an animal  

 

Box 1. 

Diagram of the standard concurrent-chains procedure used
by Navarick and Fantino (1972; 1974; 1975).  During the
initial link both keys are white.  The keys change colour to
signal the terminal link, with one key (the unchosen option)
becoming inoperative.  Each option is associated with a
different terminal link colour.  Following a further delay (D)
the reward (M) is gained before the initial link
recommences.   

 
can work to obtain rewards. To explain this procedure we 
need to define some of the schedules that are used in operant 
experiments.  On a fixed-interval schedule, an animal 
receives a reinforcer (e.g. some food) for the first response 
that it makes on the schedule after a time equal to the 
schedule interval has elapsed since the last reinforcer.  This 
sort of schedule is usually referred to as a FI h, where h is 
the interval.  On a variable-interval schedule, the time that 
must elapse is variable rather that fixed.  This sort of 
schedule is usually referred to as a VI h, where h is the mean 
interval. 

In a simple concurrent schedule procedure, an animal 
such as a pigeon is faced with two alternatives, A1 and A2.  
Each alternative has an associated key, which presents 
stimuli (coloured lights) and measures responses.  At the 
start of the experiment both of these keys are illuminated 
with a particular colour (e.g. white). The pigeon can peck on 
either of these keys, which will provide immediate access to 
food. This procedure may be used to test preferences 
between different types or amounts of food. The concurrent-
chains procedure generalizes this arrangement.  Each 
alternative consists of a VI schedule that, instead of giving 
the pigeon immediate access to food, gives it access to 
another schedule that provides food after a delay. The initial 
VI schedule is referred to as an initial link (of the chain) and 
the schedule to which it gives access is referred to as a 
terminal link.  The transition from an initial to a terminal 
link is marked by a change of key colour. This might be a 

  10



change from white to green for A1 and a change from white 
to red for A2.   The terminal link determines both a delay 
until food is obtained and the amount of food that is 
obtained (for further information see Fantino and Logan 
1979).  In a given experiment, the schedule on a terminal 
link may have either a fixed or variable delay.  We shall use 
the subscripts 1 and 2 to identify components in the 
schedule for A1 and A2, respectively.  Let 1/λi be the mean 
delay on initial link i and Di, be the mean delay on terminal 
link i (i = 1, 2).  The magnitude of reinforcement on the 
terminal link i is Mi, (i = 1, 2).  The relative allocation of 
responses on the initial link for A1 is denoted α(A1, A2).  If Ni 
is the number of responses made in the initial link of Ai 
during the course of the experiment then 
 

21

1
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NN
NAAα
+

=  .   (3) 

 
In modelling the above experimental procedure, we use the 
Delayed Reinforcement Model (DRM) of Killeen and 
Fantino (1990).  The DRM can be derived from Incentive 
theory (Killeen 1982).  We give below a brief description of 
the DRM, together with a slight extension and modification.  
Houston (1991) showed that SST can be violated in models 
of choice between the initial links of concurrent-chains 
schedules.  Houston considered two models: one based on 
matching, and the other based on the delay-reduction 
hypothesis.  Both models are unable to incorporate variable 
delays in the terminal links.  The DRM includes variable 
delays and as we show it predicts violations of SST when 
terminal links involve such delays.  It also predicts 
violations under the conditions considered by Houston 
(1991). 

In the DRM, the choice between two alternatives 
depends on the product of the rate of access to an alternative 
and the value of that alternative.  The rate of access, ri, to Ai 
is 
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To allow for variable delays in the terminal link of Ai we 
introduce a set of ni delays, dij, j = 1, 2, …, ni where dij 
occurs with probability wij.  The mean delay on terminal 
link i is 
 

∑
=
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The value of Ai is the sum of the conditioned reinforcing 
strength, Ci, of the stimuli signalling that terminal link, and 

the primary reinforcing strength, Pi, of the delayed outcome.  
The number of responses made on the initial links is 
 

)( iiii PCrN += .     (6) 
 

The conditioned reinforcing strength of a stimulus is 
proportional to the expected rate of reinforcement that it 
signals: 
 

∑
=

=
1

1

n

j ij

ij
i d

w
pC      (7) 

 
where p is the constant of proportionality.  Other 
representations of Ci are given in Killeen (1994).  The 
primary reinforcing strength of an incentive is modelled by 
 

∑ −= ))/(exp( iijiji kTmdwqP    (8) 

 
where q and k are positive constants and T is the overall 
time between incentives, given by 
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For a fixed delay in the terminal links, the analogues of 
equations of (7) and (8) are 
 

i
i D

pC =      (10)  

and   
 

)/exp( iii kTmDqP −=     (11) 
 

respectively.  We note that the effect of k is to rescale the 
magnitude of reinforcement on each terminal link.  Let Mi = 
kmi, i = 1, 2 be the rescaled magnitudes of reinforcement.  In 
the following section we present some calculations for the 
case where the terminal links for each alternative lead to a 
reinforcement of the same magnitude, but the delay may be 
fixed or variable.  As we are mainly concerned with the 
effects of different schedules on the terminal links we set λ1 
= λ2 = λ, say.  Throughout we set p = q = 1.  This model 
gives a good account of the allocation of behaviour to the 
initial link of concurrent-chains (Killeen 1982); see Grace 
(1994) for a more general model. 
 
3. ANALYSIS 
 

We now investigate whether substitutability holds when 
allocation is determined by the DRM.  If substitutability 
does not hold, then SST is violated.  The current model  
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Table 1.  The fixed interval schedule FI(h; M, D) that results in an 
allocation of ½ when it is one terminal link and the other terminal 
link is either (a) a VI with mean delay D = 23s or (b) a VI with 
mean delay D = 54s when both links result in a reward of 
magnitude M. 
 
(a) VI with D = 23s, consisting of the following ten intervals, each 
with probability 0.1: 
2.7,  4.1,  5.2,  7.7,  10.1,  16.4,  23.7,  34.8,  52.0,  74.8 
 
M 0.05 0.1 0.5 1.0 
FI (h; M, 23) 8.20 9.43 15.86 17.90 
 
 
(b) VI with D = 54s, consisting of the following ten intervals, each 
with probability 0.1: 
2.7,  3.7,  5.7,  9.0,  15.2,  25.3,  43.3,  74.5,  130.0,  228.0 
 
M 0.05 0.1 0.5 1.0 
FI (h; M, 54) 10.67 13.36 28.90 36.92 
 
 
reproduces the findings of Houston (1991) in that 
substitutability doesn’t necessarily hold when fixed-interval 
terminal links differ in terms of the magnitude of 
reinforcement and hence the DRM violates SST.  Here we 
look at whether this violation is still obtained when 
reinforcement magnitude remains constant across the 
options, but the delay to reinforcement imposed by a 
terminal link may be fixed or variable.  Following Navarick 
and Fantino (1972) we consider two Variable Interval 
schedules having means of 23s and 54s.  The intervals that 
constitute these schedules are given in Table 1; they are the 
schedules employed by Killeen (1968), the first constituting 
an approximately rectangular distribution of intervals, and 
the second an approximately geometric distribution. 

Navarick and Fantino (1972) used initial links of 56 or 
60s.  We assume in all cases that the initial links are VI 
schedules with mean interval 1/λ1 = 1/λ2 = 60s; making 
alterations to the length of the initial links of just 4s makes 
little difference to the results of our analysis.  Each terminal 
link has the same reward magnitude M; we explore the 
effect of this parameter.  When one of the VIs given in Table 
1 is one of the terminal links, we ask what the value of an FI 
schedule on the other terminal link must be for an animal to 
have a relative allocation of ½, according to the DRM.  Let 
one terminal link be a variable interval with mean delay D.  
(In fact the mean delay D does not completely characterise a 
schedule, but as we only consider two schedules that have 
different means, they can be distinguished by their mean 
delay.)  FI(h; M, D) is the value of the FI on the other 
terminal link such that the relative allocation is ½ when both 
terminal link give a reward of magnitude M, i.e. α(VI(M, D), 
FI(h; M, D)) = ½.  Table 1 gives this FI for the VI 23s and 
the VI 54s.  In both cases we consider several values of M.  
It can be seen from the table that when one terminal link is  

Table 2.  Both terminal links deliver equal reward magnitudes (M).  
For different values of M, the FI (h; M, D) that results in an 
allocation of ½ to the initial links is calculated when the FI is one 
terminal link and the other terminal link is a VI with D = 23s.  If 
SST holds then the allocations to the initial links for FI(h; M, D) 
and VI 23s will be equal when each is tested against a different 
option (either FI 20 or VI 54).  If the difference between the 
allocations (∆AN(h)) ≠ 0, SST is violated. 
 
 
 

M h ∆AFI 20 ∆AVI 54 

0.10 9.4 0.005 0.031 

0.05 8.2 0.015 0.013 

0.04 7.2 0.010 0.051 

 
 
 
 
 
the VI23, FI(h; 0.5, 23) = 8.20, which is the value that 
Killeen (1968) estimated for pigeons. 

Navarick and Fantino (1972) tested for substitutability 
by measuring whether the VI and its FI(h) were equivalent 
in terms of choice against an FI20s.  We carry out this test 
with a range of values of the new FI.  Let the new FI have 
delay h and define 
 

)),(),,;(()),(),,((),;( xMFIDMhFIαxMFIDMVIαDMxy −= . 
 

If substitutability is to hold, the allocation when one 
terminal link is one of the VIs and the other terminal link is 
the test FI should be the same as the allocation when one 
terminal link is the FI that gives an allocation of ½ against 
the VI and the other terminal link is the test FI.  In other 
words, this difference should always be zero.  Figures 1a 
and 1b show that this is not the case for either of the VIs, 
and so out model of preference predicts behaviour that is 
inconsistent with SST.  It is clear that the two allocations 
will be equal when x = h, and so y will be zero at this point.  
It can be seen from the figures that y can be zero for other 
values of x. 

Navarick and Fantino (1972) produced departures from 
SST using pigeons, testing for substitutability over a range 
of reward parameters.  Two terminal links were taken to be 
equivalent if the allocations to both initial links were 
approximately equal for a pair of options (α(A1, A2) = 0.5 ± 
0.05); each option was subsequently tested against a third 
option.  Navarick and Fantino arbitrarily counted departures 
from SST as significant if ∆AN(h) = |α(A1, A3) - α(A2, A3)| > 
0.05, (N(h) describes the reward parameters of the third 
option).  Their most striking result was obtained where 
option 1 = VI 23s and option 2 = FI 7s.  When these options 
were each tested against option 3 = FI 15s, choice was 
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transitive (∆AFI 15s = 0). In contrast, when option 3 = VI 54s 
the resulting choices became strongly intransitive (∆AVI 54s = 
0.120).  We replicate these experimental findings and show 
further departures from transitivity over a range of reward 
values. 

Using our version of the DRM if option 1 = VI 23s and 
option 2 = FI(h), if h < 8.2s true equivalence (i.e. α(A1, A2) 
= 0.5) is not reached for any value of M.  However, at h = 
7.2s, M = 0.04, α(A1, A2) = 0.45 and by Navarick and 
Fantino’s (1972) criteria this would be counted as 
equivalence.  Under these conditions ∆AFI 15s = 0.025 and 
∆AVI 54s = 0.051, so intransitivity is found in both situations, 
but it is only apparent to a large enough degree to be 
counted as intransitive choice using Navarick and Fantino’s 
experimental criteria when option 3 = VI 54s.  We have 
therefore qualitatively reproduced the experimental results 
using a simple model of choice.  Table 2 shows a range of 
further cases where intransitive choice results from the 
model, the degree of difference between the initial link 
allocations, however, is small in each case. 
 
3.1. The causes of stochastic intransitivity 
 

We remarked that in passing from equation (2a) to equation 
(2b) the context of the choice changes.  In general, a 
possible cause of stochastic intransitivity is that the value of 
an alternative depends on some aspects of both alternatives 
(Houston 1991; 1997).  In the DRM it can be seen from 
equation (8) that the primary reinforcement strength of an 
alternative depends on the overall time between incentives 
which by equation (9) depends on both D1 and D2.  To 
illustrate this, consider choice involving initial links with 
1/λ = 60s and the following three terminal links: 

(a) M = 0.03, D = 30s 
(b) M = 0.036,  D = 10s 
(c) M = 0.643,  D = 90s 

(b) and (c) are equivalent in that when (a) and (b) are the 
terminal links, the allocation to the initial link leading to (a) 
is 0.2, and when (a) and (c) are the terminal links, the 
allocation to the initial link leading to (a) is also 0.2.  A 
necessary condition for SST is that when (b) and (c) are the 
terminal links, the allocation should be 0.5.  In fact, the 
allocation to (b) is 0.6.  The reason for this result is that the 
overall time T to reinforcement, and hence by equation (11) 
the P value of a terminal link, depends on both terminal 
links.  Thus when (a) and (b) are the terminal links T = 50s, 
whereas when (b) and (c) are the terminal links, T = 80s and 
when (a) and (c) are the terminal links, T = 90s.  This 
example shows that incentive theory does not assign a fixed 
value to a terminal link; the value of a link depends on the 
context in which it occurs.  It is clear from equation (9) that 
the effect depends on the fact that the delays on both links 
influence T, which in turn influences P.  The DRH would 
not predict an effect in a procedure in which T was fixed.  
Even in the absence of initial links, both D1 and D2 
influence T and hence P.  Thus violations of SST are 
theoretically possible even in discrete trial procedures such  

 
Figure 1. The difference y(x; M, D) = α(VI(M, D)) – α(FI(h; M, 
D), FI(x, M)), where FI(h; M, D) is the FI such that relative 
allocation = ½ when it is one terminal link and a VI with mean 
delay D is the other terminal link, both links delivering reward of 
magnitude M.  x is the duration of the test FI.  If substitutability is 
to hold, the VI(M, D) and the FI(h; M, D) must be equivalent in 
terms of choice against the test FI, i.e. α(VI(M, D)), FI(x, M)) = 
α(FI(h; M, D), FI(x, M)) and so y should be zero.  (a) y(x; M, 23) 
for M = 0.05; M = 0.1; M = 0.5 and M = 1.0.  (b) y(x; M, 54) for the 
same values of M.  In both cases 1/λ = 60s and p = q = 1.  (c) as (b) 
but with λ = 1. 
 
 
 
as that used by Mazur and Coe (1987).  As an illustration, in 
Figure 1c we have taken λ to be quite large (1 sec).  The 
deviations are often greater than when λ = 1/60 (Figure 1b). 
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4. DISCUSSION 
 

We have shown that the DRM can predict violations of SST 
on the concurrent-chains procedure, a standard technique for 
investigating how choice depends on the magnitude of 
reward and the delay before the reward is obtained.  The 
violations are possible both for FIs with unequal reward 
magnitudes as the terminal links and for FIs or VIs with 
equal reward magnitude as the terminal links.  As Figure 1 
shows, the extent of the violations depends on the 
parameters in a complex way.  Houston (1991) showed for 
the first case that violations could be predicted from 
modifications of previous models of choice.  The results we 
present here are the first demonstration of violations in the 
second case.  Whilst the effects predicted by the model are 
relatively small, we find stronger intransitivity when using 
similar reward parameters to Navarick and Fantino’s (1972) 
experimental study. 

Previously it has been shown that uncontrolled 
differences in energetic state (Schuck-Paim et al. 2004) and 
errors during foraging (Houston 1997) can produce 
seemingly irrational behaviour.  In this paper we have 
extended the findings of Houston (1991) to show that 
intransitivity is also predicted by the DRM.  Since the DRM 
is an established mechanistic account of behaviour, our 
analysis demonstrates that descriptive models of choice can 
account for violations of transitivity.  

Our analysis of the DRM does not produce departures 
from transitivity which are as of great a magnitude as found 
in experimental studies, but the model does not include such 
factors as differences between individuals, perceptual errors 
and bias, all of which could interact with a choice 
mechanism to alter behaviour (e.g. see Grace 1993).  It 
would be interesting and informative for future work to 
investigate whether incentive theory predicts other 
seemingly irrational behaviours, such as departures from 
regularity, when analysed within a framework mirroring 
other experimental paradigms. 
 
4.1. Context and Choice 
 

The notion that the value of an entity can be dissociated 
from the context in which it is chosen is one of the many 
idealizations in science that is correct only to a first order of 
approximation. The way in which humans frame their 
choices has profound effects on what they choose (Tversky 
and Kahneman 1981; Kahneman et al. 1982). Decisions 
made after a loss are different than ones made after a win. 
Only an Olympian view of value that insists on utility as 
independent of the state of the user would view such 
temporal and contextual choices as irrational. There is a 
large literature on how to assess valuation independently of 
introspective estimates; finding consilience among the 
various measures is an unaccomplished task. It may remain 
unaccomplished, as each of the contexts for assaying 
preference adds its own character to the choice. 
 Framing may be conscious or unconscious; in the latter 

case one speaks more generally of “context effects”, 
sometimes signalled by complaints such as “It seemed like a 
good idea at the time”, “I guess my eyes were bigger than 
my stomach”, or “It looked a lot better on him!”.  Foraging 
strategies of less verbal organisms also depend on current 
resources, contexts and histories. In theory, such context 
effects can be “internalised” in a model by treating aspects 
of the choice context as adding value or cost to the object 
chosen. This is the gambit used in attempting to assay the 
expected utility of delayed or uncertain goods. Rational 
models with exponential discounting diminish the value of 
long-delayed outcomes to negligible values (Ainslie 2001), 
making prudence irrational and leading behavioural 
economists to seek other ways of internalising the discount 
functions.  

Self control may be fostered by increasing the salience 
of the outcomes—listening to preachers elaborate the 
pleasures of heaven and pains of hell—but our analysis has 
shown that less dramatic changes in context can have 
important qualitative effects on preference, in that they 
undermine one of the standard transitivity axioms of utility 
theory. The failure of stochastic transitivity seems 
paradoxical because it is contemplated in a context-invariant 
manner, as a set of equations and inequalities that are 
viewed in a moment while reading a paper such as this. The 
most rational economist will transcend his training to make 
intransitive choices given the right context. In the 
experiments we analyse, the context is always changing; the 
average time in an initial link might rarely be  experienced; 
instead, a sequence of binary choices in a sequence of 
unique temporal contexts is averaged to represent a dynamic 
process. The next step for researchers, given the luxury of 
otherwise-invariant Skinner boxes and organisms at 
relatively constant levels of deprivation, is to extend the 
analysis to a real-time model of fluctuations in preferential 
behaviour as a function of fluctuations in history of 
exposure (Roe et al. 2001). It is only at this level that we are 
likely to find the invariances that all scientists seek. 
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Abstract 
 
This paper describes a unifying framework for five 
highly influential but disparate theories (the five 
factors) of natural learning and behavioral action 
selection. These theories are normally considered 
independently, with their own experimental procedures 
and results. The framework builds on a structure of 
connection types, propagation rules and learning rules, 
which are used in combination to integrate results from 
each theory into a whole. Exemplar experimental 
procedures will be used to discuss the areas of genuine 
difference, and to identify areas where there is overlap 
and where apparently disparate findings have a 
common source. The paper focuses on predictive or 
anticipatory properties inherent in these action 
selection and learning theories, and uses the Dynamic 
Expectancy Model and its computer implementation 
SRS/E as a mechanism to conduct this discussion.    

1    Introduction 
The overall aim of this paper is to provide a unifying 
description to encompass and combine five classical and 
highly influential “theories” of natural action selection and 
learning. These are the five factor theories. Each held a 
dominant place in theorizing during the 20th century and 
was supported by a wealth of meticulously gathered 
experimental data, but there has been little or no attempt to 
provide a single framework with which to rationally 
consider how they might interact.  

The problem, in part, arises from the fact that these 
theories have been treated as largely competitive, at times 
with considerable animosity being generated between 
proponents of the differing approaches, or, more often, a 
tacit isolationism between the different schools of thought.  

Such isolationism is surprising, as it clear that individual 
animals will demonstrate a whole range of behavioral 
phenomena, each of which might be most satisfactorily 
described by one or another of the approaches, largely 
depending on the circumstances the animal finds itself in. It 
is also very apparent that no single approach explains all 
animal action selection behavior.  

Each factor theory is characterized by the underlying 
assumption that immediately observable and measurable 
behavior results from sensations arising from the interaction 
between the general environment of the organism (including 
its body) and its sense organs.  

The issue under debate was the principles by which that 
interaction was to be characterized. In itself, expressed 
behavior gives little indication of which, indeed, if any, of 
these theories best describes the internal action selection 
mechanism that gives rise to the observable behavior. 

The task, then, is to provide a minimal description of the 
principles underlying the mechanisms involved that 
recognizes natural diversity, yet covers the range of 
phenomena observed. This paper identifies where these 
mechanisms clearly differ, and where they are apparently 
different, but can be explained as manifestations of a single 
type of mechanism, and how these differences may be 
resolved into a single, structured framework. Given the 
range and diversity between individual animals and species, 
there is a fine balance to be struck between highly specific, 
quantitative, descriptions, trivially refuted due to this 
natural variation - and untestable generality. This paper 
attempts such a balance.  

The five factor approach described here substantially 
extends, details and revises the approach to anticipatory 
learning and behavioral action selection introduced in 
[Witkowski, 2003]. The approach will be developed in the 
light of the Dynamic Expectancy Model (DEM) 
[Witkowski, 1998, 2000, 2003] and its actual (C++) 
computer implementation SRS/E. The analysis in this paper 
will be performed mainly at the level of the five factor 
theories, each of which is itself a digest of many exemplar 
experimental procedures. The paper will call on specific 
procedures where necessary, and illustrate issues with 
reference to the DEM and its implementation. 

Section 2 provides a thumbnail sketch of each of the five 
factor theories. Comprehensive descriptions of the five 
theories can be found in any textbook of natural learning 
theory (e.g. [Bower and Hilgard, 1981]). Section 3 
considers the interface between animal and its environment, 
and how issues of behavioral motivation might be 
addressed. Sections 4, 5 and 6 respectively build the 
arguments for the structural, behavioral and learning 
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components of the combined approach. Section 7 
reconstructs the factor theories in the light of these 
component parts, and emphasizes the role of the action 
selection policy map, which may be either static or 
dynamic. Section 8 describes an arbitration mechanism 
between these policy maps, leading to final action 
expression.  

2    The Five Factor Theories 
The first of the five factor theories takes the form of 
Stimulus-Response (S-R) Behaviorism; which holds that 
action (the “response”) selection is determined by the 
current sensory condition (the “stimulus”). Although first 
proposed in the final years of the 19th century [Thorndike, 
1898], the approach continues to find contemporary support 
in the work of [Brooks, 1991; Bryson, 2000; and Maes, 
1991]. This behavior is not defined by degree. The 
stimulus-response unit could be as apparently simple as a 
low-level reflex, such as the blink of an eye in response to a 
puff of air. Alternatively, behavioral repertories of 
considerable complexity can be postulated from essentially 
reactive models [Tyrrell, 1993; Tinbergen, 1951]. Such 
behaviors are generally considered to be innate (genetically 
determined) to the individual. Learning in the behaviorist 
regime is reward based, strengthening or weakening the 
connection between stimulus and response. It may be 
conjectured that not all such behaviors will be amenable to 
learning at the same rate, if at all. 

The second factor theory, classical conditioning, was 
proposed by Ivan Pavlov (1849-1936) following 
observations that some innate reflexes can be associated 
with an otherwise neutral stimulus by repeated pairing, 
which will in turn elicit the reflex action. The procedure is 
highly repeatable and is easily demonstrated across a wide 
range of reflexes and species, and has been extensively 
modeled both mathematically and by implementation (e.g. 
[Vogel et al., 2004], for recent review).  

The third theory, operant or instrumental conditioning, 
proposed by B.F. Skinner (1904-1990), who argued that 
actions were not “elicited” by impinging sensory conditions, 
but “emitted” by the animal in anticipation of a desired 
reward outcome. The effect is also highly repeatable under 
appropriate conditions, and it is clear that, given a suitable 
source of reward, an animal’s (or indeed, a person’s) 
behavior can be modified (“shaped”) at will by judicious 
application of this principle. Whilst enormously influential 
in its time, only a relatively small number of computer 
models follow this approach (e.g. [Saksida et al., 1997], or 
Schmajuk [1994] implementing Mowrer’s [1956] “two-
factor” theory, incorporating both classical and operant 
conditioning effects.) 

The fourth theory, the “cognitive” model, proposed by 
E.C. Tolman [1932] describes a three-part basic cognitive 
unit, which establishes the expectation or anticipation of a 
specific stimulus following, and contingent on, an action 
taken in the immediate context of another stimulus. The 
context stimulus and action provide the means to achieve a 
desired and anticipated stimulus, the end. Tolman’s means-

ends approach both inspired and continues to be a 
fundamental technique of problem solving and planning for 
artificial intelligence ([Russell and Norvig, 1995], for 
instance). The Dynamic Expectancy Model (DEM) 
[Witkowski, 1998; 2000; 2003] and the Anticipatory 
Classifier System (ACS) model [Stoltzmann et al., 2000] 
represent recent three-part cognitive models. 

A fifth theoretical position, broadly characterized by the 
term associationism (e.g. [Hebb, 1949]), concerns the direct 
associability and anticipation of stimuli following repeated 
pairing of activations. While of greater significance in other 
aspects of animal modeling, this approach does not directly 
incorporate an action component, and discussion of it will 
be restricted here to a minor supporting role in the action 
selection problem.  

3    Sense, Action and Valence 
For largely historical reasons sensations are widely referred 
to as stimuli in this body of literature and the actions or 
behaviors generated as responses. This is not entirely 
satisfactory, as it largely fails to capture the range of 
interpretations required by the five theories taken together. 
Consequently, this paper will refer to the sense-derived 
component as a sensory signature or Sign, and denote such 
events by the symbol S, sub-scripts will be used to 
differentiate Signs were necessary. The philosophically 
neutral term sense data might also be employed for this 
purpose (e.g. [Austin, 1962]). In the SRS/E model, S := 
{0,1}. 

Equally, the term “response” seems pejorative, and the 
more neutral term Action will be preferred, similarly 
abbreviated to A. Each Action will have associated with it 
an action cost, ac, (in SRS/E, by definition, ac ≥ 1) 
indicating the time, effort or resource required to perform it.  

Any Action may also be assigned an activation level, 
determined according to the rules presented later. Once 
activated, an Action becomes a candidate for expression, in 
which the Action is performed by the animal and may be 
observed or measured directly. 

A Sign will be defined as a conjunction of detectable 
conditions (or their negations, acting as inhibitory 
conditions), typically drawn directly from the senses. Any 
Sign where all the conditions currently hold is said to be 
active. A Sign may be activated by some very specific set of 
detected sensory conditions, or be active under a wide range 
of conditions, corresponding to highly differentiated or 
generalized sensing.  

Any Sign that is anticipated, but not active, is termed 
sub-active. Sub-activation is a distinct condition from full 
activation. It is important to distinguish the two, as the 
prediction of a Sign event is not equivalent to the actual 
event, and they have different propagation properties.  

Additionally, any Sign may assume a level of valence 
(after [Tolman, 1932]), the extent to which that Sign has 
goal like properties, indicating that it may give the 
appearance of driving or motivating the animal to directed 
action selection behavior. Valence may be positive (goal 
seeking or rewarding) or negative (initiating avoidance 
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behaviors or being aversive). A greater valence value will 
be taken as more motivating, or rewarding, than a lesser 
one. Some Signs will hold valence directly, some via 
propagation to other Signs holding valence. 

As with activation and sub-activation, the valence and 
sub-valence properties may also be propagated between 
Signs under the conditions described in section 5. A Sign 
that is the direct source of valence is deemed satisfied once 
it has become active, and it and the propagated chain of sub-
valenced Signs will revert to their normal, unvalenced, state 
(unless there are multiple sources of direct valence).  

4    The Forms of Connection 
The anticipatory stance proposes that the principal effects of 
the five target theories can be adequately explained by 
adopting a combination of three connection types, and that 
their underlying function is to provide a temporally 
predictive link between different Sign and Action 
components. While noting that the model described here is 
highly abstracted, its biologically inspired background 
grounds it in the notion that, in nature, these abstract links 
represent physical neural connections between parts of the 
animal’s nervous system and brain. These links, and such 
properties as sub-activation and valence, represent 
conjectures (from experimental observation) about the 
function of the brain that may be corroborated or refuted by 
further investigation.  

With the exception of a connection of type C1, the 
abstract link types proposed below are bi-directional. 
Propagation effects across these links are asymmetric, and 
these properties are discussed in section 5.  

This is not intended to imply that there are “bi-
directional neurons”, only that the structures that construct 
these linking elements have a complexity suited to the task. 
Where the animal does not possess a link or type of link (on 
the basis of its genetic makeup) it will be congenitally 
incapable of displaying a corresponding class of action 
selection behavior or learning. Of course, there are many 
other possible connection formats between arbitrary 
combinations of Signs and Actions; but it will be argued 
that these are sufficient to explain the principal properties of 
the five factor theorems. 

Connection type C1 (SA):     S1  w!t±τ (A ∧ S2) 

Connection type C2 (SS):      S1  v, c"t±τ S2 

Connection type C3 (SAS):   (S1 ∧ A)  v, c"t±τ  S2   

While connections of type C1 have only an implicit 
anticipatory role, connection types C2 and C3 are both to be 
interpreted as making explicit anticipatory predictions. 

The type C1 connection (“SA”) is a rendition of the 
standard S-R behaviorist mechanism, with a forward only 
link from an antecedent sensory condition initiating (or at 
least predisposing the animal to initiate) the action A, as 
represented by the link “!”. This symbol should definitely 
not be associated with logical implication, its interpretation 
is causal not truth preserving. The symbol t will indicate 
temporal delay (with range “±τ”), which may be introduced 

between the sense and action parts. The (optional) Sign S2 is 
postulated as a mechanism for reinforcement learning, and 
is not required where learning across the connection 
(updating w) is not observed. The conjunctive connective 
symbol “∧” should be read as “co-incident with”. 

In keeping with standard behaviorist modeling, w will 
stand to indicate the strength, or weight, of the connection. 
This weight value will find application in selecting between 
candidate connections, and in considering reinforcement 
learning. Traditionally, the strength of the stimulus and a 
habituation mechanism for the action would also be 
postulated ([Hull, 1943], for a comprehensive discussion of 
these and related issues). Specifically the strength or 
likelihood of the response action will be modulated by the 
strength of the stimulus Sign.  

4.1 Explicitly Anticipatory Connection Types 
Connection type C2 notates a link between two Signs, and 
indicates that Sign S1 anticipates or predicts the occurrence 
of Sign S2 within the specific time range t±τ in the future. 
This is indicated by the right facing arrow in the link 
symbol “"”. The link has a corroboration value, c, 
associated with it, indicating the reliability of that 
prediction, based on continuing prior observation. A generic 
corroboration value update rule will be considered in 
section 6.1.  

The valence value, v, of S1 is a function of the current 
value of the valence value of S2, and is hence associated 
with the left facing part of the link. Where the value t±τ is 
near zero, the link is essentially symmetric, S1 predicts S2 as 
much as S2 predicts S1. This is the classical Hebbian 
formulation. Where t is greater than zero (negative times 
have no interpretation in this context), the link is considered 
asymmetric. The assertion that S1 predicts S2 is no indicator 
that S2 also predicts S1. As the relationship between the two 
Signs is not necessarily causal, the animal may hold both 
hypotheses simultaneously and independently, as separate 
C2 connections. 

The C3 connection differs from C2 by the addition of an 
instrumental Action on the left hand side. The prediction of 
S2 is now contingent on the simultaneous activation of both 
S1 and the action A. The interpretation of the corroboration 
value c and the temporal offset t and range τ remain the 
same. The transfer of valence v to S1 needs to now be a 
function of both S2 and the action cost of A. This 
connection can be read as “the Sign S2 is anticipated at time 
t in the future as a consequence of performing the action A 
in the context of S1”. Equally, it may serve as an 
instrumental operator: “to achieve S2 at time x in the future, 
achieve S1 at time x-t, and perform action A”. Such links 
also take the form of independent hypotheses, giving rise to 
specific predictions that may be corroborated. 

5    The Forms of Propagation 
The five “rules of propagation” presented in this section 
encapsulate the operations on the three connection types 
with regard to the five factor theories. The rules define (i) 
when an Action becomes a candidate for expression, (ii) 
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when a Sign will become sub-activated, (iii) when a 
prediction will be made, and (iv) when a Sign will become 
valenced by propagation.  

In the semi-formal notation adopted below active(), 
sub_active(), expressed(), valenced() and sub_valenced() 
may be treated as predicate tests on the appropriate property 
of the Sign or Action. Thus active(S1) will be asserted if the 
Sign denoted by S1 is active. The disjunction “∨” should be 
read conventionally as either or both, the conjunction “∧” 
should be interpreted as in section 4. On the right hand side 
of the rule, activate(), predict() and sub_valence() should be 
taken as “internal actions”, operations taken to change the 
state or status of the item(s) indicated. 
Rule P1 Direct Activation:  
For any C1 (SA) link,  

if (active(S1) ∨ sub_active(S1))  
then activate(A, w)  

Rule P2 Sign Anticipation:  
For any C2 (SS) link,  

if (active(S1) ∨ sub_active(S1))  
then sub_active(S2) 

Rule P3 Prediction:  
For any C2 (SS) link,  

if(active(S1))  
then predict(S2, t±τ) 

For any C3 (SAS) link,  
if(active(S1) ∧ expressed(A))  
then predict(S2, t±τ) 

Rule P4 Valence transfer:  
For any C2 (SS) link,  

if(valenced(S2) ∨ sub_valenced(S2))  
then sub_valence(S1, f(v(S2), d)) 

For any C3 (SAS) link,  
if(valenced(S2) ∨ sub_valenced(S2))  
then sub_valence(S1, f(v(S2), c, ac(A))) 

Rule P5 Valenced activation:  
For any C3 (SAS) link,  

if(active(S1) ∧ sub_valenced(S1))  
then activate(A, v’) 

Rule P1 expresses the standard S-R behaviorist rule. 
Only in the simplest of animals would the activation of the 
action A lead to the direct overt expression of the action or 
activity. As there is no assumption that Signs are mutually 
exclusive, many actions may become candidates for 
expression. The simplest strategy involves selecting a 
“winner” based on the weightings and putting that action 
forward to the effector system for external expression. 

Rule P2 allows for the propagation of sub-activation. 
The effect is instantaneous, notifying and allowing the 
animal to modify its action selection strategy immediately 
in anticipation of a possible future event. Evidence from 
second order classical conditioning studies would suggest 
that sub-activation propagates poorly (i.e. is heavily 
discounted).  

Rule P3 allows for a specific prediction of a future event 
to be recorded. This calls for a limited form of memory of 

possible future events, analogous to the more conventional 
notion of a memory of past events. Under this formulation, 
predictions are created as a result of full activation of the 
Sign and actual expression of the Action, and are therefore 
non-propagating. Predictions are made in response to direct 
sense and action and are employed in the corroboration 
process (section 6.1). This process is distinct from sub-
activation, which is propagating, but non-corroborating.  

Rule P4 indicates the spread of valence backwards along 
chains of anticipatory links. The sub_valence() process is 
shown in different forms for the C2 (SS) and C3 (SAS) 
links, reflecting the discounting (d) process mentioned 
earlier. As an exemplar, in the SRS/E model valence is 
transferred from S2 to S1 across the C3 link according to the 
generic formulation: v(S1) := v(S2) * (c / ac(A)). By learning 
rule L2 and L3 (section 6.1) 0 < c < 1, and as ac(A) ≥ 1.0 
(by definition), therefore v(S1) < v(S2). Valence propagates 
preferentially across high confidence links with “easy”  (i.e. 
lower cost value) Actions. Transfer is straightforward and 
has proved robust in operation in the DEM and SRS/E.  

Rule P5 indicates the activation of any Action A where 
the antecedent Sign S1 is both active and valenced. As with 
rule P1, many Actions may be affected. The one associated 
with the highest overall S1 valence value is selected.  

The choice process by which the various activated 
Actions give rise to the action to be selected for overt 
expression is the subject of section 8. For a simple S-R only 
(rule P1) system, this might be summarized as selecting the 
action associated with the highest weight value, but there 
must be a balance between the actions activated by rule P1 
and those by P5. Note here that the valence value v’ refers 
to the valence value of the Sign holding direct valence (the 
top-goal), whose value has been propagated to the SAS 
link, not that of either S1 or S2 of the C3 (SAS) link in 
question. 

6    The Forms of Learning 
This section describes the conditions under which learning 
will take place. In the anticipatory action selection model 
presented, the net effect of learning is to modify the Actions 
or activities to be expressed (and so the observable behavior 
of the animal) in response to a particular Sign. Each of the 
five factor theories takes a particular stance on the nature of 
learning.  

In the first, reward based learning, learning is taken to 
be a consequence of the animal encountering a valenced 
situation following an action – one that is characterised as 
advantageous/disadvantageous and thus interpreted as  
“rewarding” (or not) to the animal. This is frequently 
referred to as reinforcement learning. There are a wide 
range of reinforcement learning methods, so a generic 
approach will be adopted here. 

In the second, anticipatory learning, “reward” is derived 
from the success or otherwise of the individual predictions 
made by the propagation rules given in section 5. In one 
sense, the use of link type C3, as described here, can be 
seen as subsuming link type C1, but the converse does not 
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hold. In the C1 link, the role of anticipation in the learning 
process is implicit but is made explicit in the C3 type link.  
Learning rule L1 (the reinforcement rule): 
For any C1 (SA) link  

if (active(A) ∧ (valence(S2) ∨ sub_valence(S2)))  
then update(w, α) 

This is a generic form of the standard reinforcement 
rule. If the action is associated with any sensation that 
provides valence, then the connection weight w will be 
updated asymptotically by some factor α. Several well 
established weight update strategies are available, such as 
Watkins’ Q-learning and Sutton’s temporal differences 
(TD) method, see [Sutton and Barto, 1998] for review. In 
each the net effect is to increase or decrease the likelihood 
that the link in question will be selected for expression in 
the future.  

6.1 Methods of Anticipatory Learning 
A central tenet of the anticipatory stance described in this 
paper is that certain connective links in the model make 
explicit predictions when activated. Recall that propagation 
rule P3 creates explicit predictions about specific, 
detectable, events that are anticipated to occur in the future, 
within a specific range of times (denoted by t±τ). The 
ability to form predictions has a profound impact on the 
animal’s choice for learning strategies. This section 
considers the role played by the ability to make those 
predictions.  
Learning rule L2 (anticipatory corroboration): 
For any (C2 ∨ C3) link  

if(predicted(S2, -t±τ) ∧ active(S2))  
then update(c, α) 

Learning rule L3 (anticipatory dis-corroboration): 
For any (C2 ∨ C3) link,  

if(predicted(S2, -t±τ) ∧ ¬active(S2))  
then update(c, β) 

Learning rule L4 (anticipatory link formation): 
if(¬predicted(Sx)),  
then create_SAS_link(Sy, Ay, Sx, t, τ)  
or create_SS_link(Sy, Sx, t, τ) 

These three rules encapsulate the principles of 
anticipatory learning, and are applicable to both C2 and C3 
link types. Three conditions are significant, where a 
prediction has been made, and the predicted event did occur 
at the expected time (learning rule L2). The link is 
considered corroborated and is strengthened. Where a 
prediction is made, but the event does not occur (learning 
rule L3), the link is considered dis-corroborated and 
weakened. Lastly, where an event occurs, but it was not 
predicted at all (learning rule L4).  

The SRS/E computer implementation employs the 
simple but robust, effective and ubiquitous update rule c := 
c+α (1-c), where (0 ≤ α ≤ 1) for L2, and the generic update 
rule c := c-β(c), where (0 ≤ β ≤ 1), is again simple, effective 
and robust for L3. Both update functions are asymptotic 
towards 1.0 and zero respectively. The net effect of these 

update rules is to maintain a form of “running average” 
more strongly reflecting recent outcomes, with older 
outcomes becoming successively discounted (tending to 
zero contribution). The greater the values of α and β, the 
more aggressively recent events are tracked. The particular 
settings of these values are specific to the individual animal. 
Where no prediction was made by a rule, c remains 
unchanged regardless of the occurrence of S2. This is 
consistent with the notion that a rule is only responsible for 
predicting an event under the exact conditions it defines.  

The key issue here is that anticipatory learning is 
everytime. Every prediction made, regardless of its cause, 
initiates learning. Learning is independent of valenced 
reward (this is the phenomenon of latent learning 
[Witkowski, 1998], [Thistlethwaite, 1951]). Anticipatory 
links are measured relative to their predictive ability, not 
their usefulness. Correct anticipation is its own reward. 
Such anticipatory reward is generated locally to the C2 or 
C3 link, and is independent of all others. Further, if 
circumstances change, each link adjusts automatically to the 
prevailing circumstances based on recent predictive 
experience. Anticipation may also be combined with 
valence, to preferentially focus the learning process on 
Signs that have, or have had, valence (e.g. the Valence Level 
Pre-Bias technique [Witkowski, 1998]). 

Where an event is unpredicted by any link, this is taken 
as a cue to establish a new link between the unpredicted 
event (as S2) and some recent recently active event (as S1) at 
time t, rule L4. Where a C3 link is created some expressed 
Action A contemporary with the new S1 is also implicated. 
Again the choice of how many new links are formed, and 
the range of values for t and τ are specific to the individual 
animal. Without any a-priori indication as to which new 
links might be effective, higher learning rates can be 
achieved by forming many links, and then allowing learning 
rules L2 and L3 separate the effective from the ineffective.  

The key issue here is that link learning may be invoked 
everytime a novel or unpredicted Sign is detected. Learning 
may proceed from tabula rasa, and is rapid while much is 
novel. In a restricted environment, link learning will slow as 
more is predicted, but resume if circumstances change.   

No rule for link removal is considered here, but has been 
discussed elsewhere in the context of the DEM. Witkowski 
[2000] considers the rationale for retaining links even when 
their corroboration values fall to very low values, based on 
evidence from behavioral extinction experiments 
[Blackman, 1974].  

7    Explaining the Five Factors 
This section returns to the action selection factor theories 
outlined in section 2, and will discuss them in turn in terms 
of the link types, propagation rules and learning rules 
presented and discussed in sections 4, 5 and 6. As 
previously indicated, each theory supports and is supported 
by an (often substantial) body of experimental evidence, but 
that each theory in turn fails to capture and explain the 
overall range of action selection behaviors displayed by any 
particular animal or species. The conceptually simpler 
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approaches are covered by single links and rules, others 
require a combination of forms, and yet others perhaps 
require re-interpretation in the light of this formulation.  

7.1   Stimulus-Response Behaviorism 
S-R Behaviorism holds that all, or the majority of, observed 
and intelligent behavior can be ascribed to an innate, pre-
programmed, pairing of sense data driven stimuli and pre-
defined actions.  

7.1.1  Static Policy Maps 
With no embellishments, S-R behaviorism is reduced to 
connection type C1 and propagation type P1. The 
underlying assumption that all these strategies adopt is to 
tailor the behavior of the organism, such that the actions at 
one point sufficiently change the organism or its 
environment such that the next stage in any complex 
sequence of actions becomes indicated. We may refer to this 
as a static policy map. The DEM records these connections 
in a list, effectively ordered by the weight parameter, w. 
Recall that the weighting value w may be modified by 
reinforcement learning [Sutton and Barto, 1998]. 

Given a sufficient set of these reactive behaviors, the 
overall effect can be to generate exceptionally robust 
behavioral strategies, apparently goal seeking, in that the 
actually independent elements of sense, action and actual 
outcome combinations, inexorably leads to food, or water, 
or shelter, or a mate [Bryson, 2000; Maes, 1991; Tinbergen, 
1951; Tyrrell, 1993].  

Such strategies can appear remarkably persistent, and 
when unsuccessful, persistently inept. Any apparent 
anticipatory ability in a fixed S-R strategy is not on the part 
of the individual, but rather a property of the species as a 
whole. With sufficient natural diversity in this group 
strategy, it can be robust against moderate changes in the 
environment, at the expense of any individuals not suited to 
the changed conditions.  

7.2   Classical Conditioning 
Reactive behaviorism relies only on the direct activity of the 
Sign S1 to activate A, this is the unconditioned response 
(UR) to the unconditioned stimulus (US): the innate reflex. 
As reflexes are typically unconditionally expressed (i.e. 
have high values of w) the US invariably evokes the UR. 
Rule P1 allows for sub-activation of the S1 Sign. Therefore, 
if an anticipatory C2 connection is established between a 
Sign, say SX and the US Sign S1, then activation of SX will 
sub-activate S1, and in turn evoke A, the conditioned 
response (CR).  

Note the anticipatory nature of the CS/US pairing [Barto 
and Sutton, 1982], where the CS must precede the US by a 
short delay (typically <1s). The degree to which the CS will 
evoke CR depends on the history of anticipatory pairings of 
SX and S1, and is dynamic according to that history, by 
learning rules L2 and L3, the rates depending on the 
function of α and β. If the link between CS and US is to be 
created dynamically, then learning rule L4 is invoked. The 
higher order conditioning procedure allows a second 
neutral Sign (SY) to be conditioned to the existing CS (SX), 

using the standard procedure: SY now evokes the CR. This 
is as indicated by the propagation of sub-activation in P2. 

Overall, the classical condition reflex has little impact 
on the functioning of the policy map of which its reflex is a 
part. Indeed the conditioned reflex, while widespread and 
undeniable, could be thought of as something of a curiosity 
in learning terms (B.F. Skinner reportedly held this view). 
However, it provides direct, if not unequivocal, evidence for 
several of the rule types presented in this paper.  

7.3 Operant Conditioning 
Operant conditioning shapes the overt behavior of an animal 
by pairing the actions it takes to the delivery of reward. The 
experimenter need only wait for the desired action and then 
present the reward directly. This is typified by the Skinner 
box apparatus, in which the subject animal (typically a 
hungry rat) is trained to press a lever to obtain delivery of a 
food pellet reward. We interpret this link as an anticipatory 
one. The action anticipates the sensory condition (food), 
which, as the rat is hungry, holds valence. Further, the 
experimenter might present the food only when the action is 
taken in some circumstances, not others. The animal’s 
behavior becomes shaped to those particular circumstances. 
These are the conditions for the C3 connection type. This is 
equivalent to Catania’s [1988] notion of an operant three-
part contingency of “stimulus - response - consequence”.  

The association between lever (S1), pressing (A) and 
food (S2) is established as a C3 (SAS) link by L4. When the 
action is preformed in anticipation of S2, the link is 
maintained, or not, by L2 and L3 according to the outcome 
of the prediction made (P3). While food (S2) retains 
valence, and the rat is at the lever, the rat will press the 
lever (P5), and in the absence of any alternative, continue to 
do so. Action selection is now firmly contingent on both 
encountered Sign and prevailing valence. 

Due to valence transfer (P4) such contingencies 
propagate. Were the rat to be in the box, but not at the lever, 
and some movement AM would take to rat from its current 
location SC to the lever SL, then the C3 contingency 
(SC∧AM) " SL would provide propagated valence to SC and 
result in AM being activated for expression. Once the rat is 
satiated, the propagation of valence collapses and the 
expression of these behaviors will cease. This transfer of 
valence may be used to create long chains of behaviors 
(such as in preparing animals for film performances) by 
building the sequence back one step at a time. 

Propagation rule P4 also allows for secondary or 
derived reinforcement effects ([Bower and Hilgard, 1981], 
p.184), in which normally non-reinforcing C2 links may be 
paired with (or even chained from) an innately valenced 
one.   

7.4  Tolman’s Expectancy Model 
Catania’s [1988] description of the operant three-part 
contingency, described in the light of this formulation looks 
suspiciously like Tolman’s [1932] Sign-Gestalt Expectancy, 
an explicitly anticipatory three-part Sign-Action-Sign (i.e. 
C3) link. Skinner, as a staunch “old-school” behaviorist, 
would definitely not have approved! Where the Skinner box 
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investigates the properties of the individual C3 link, which 
may be explored in detail under a variety of different 
schedules, Tolman’s work primarily used mazes. Rats, in 
particular, learn mazes easily, recognize locations readily 
and are soon motivated to run mazes to food or water when 
hungry or thirsty. Mazes are also convenient 
experimentally, as they may be created with any desired 
pattern or complexity. 

Choice points and other locations in the maze may be 
represented as Signs (a rat may only be in one location at 
once, though it may be mistaken as to which one), and 
traversal between them as identifiable Actions. Every 
location-move-location transition may be represented as an 
anticipatory C3 connection. Recall that these links are only 
hypotheses - errors, or imposed changes to the maze are 
accommodated by the learning rules L2, L3 and L4.   

 It is now easy to see that, placed in a maze, the animal 
will learn the structure as a number of C3 connections with 
or without (i.e. latently) the presence of valence or reward. 
Novel locations encountered by random (or guided) 
exploration invoke L4, and the confidence value c is 
updated each time a location is revisited, by L2 or L3.  
Once encountered, food may impart valence to a location 
(by P4). 

7.4.1   Dynamic Policy Maps 
If at any time a location becomes directly or indirectly 
linked to a source of valence (i.e. food to a hungry rat), this 
valence will propagate across all the C3 (and indeed C2) 
links to establish a dynamic policy map (DPM). This takes 
the form of a graph of all reachable Signs. In SRS/E this is 
considered as form of a modified breadth first search, in 
which each Sign node is assigned the highest propagated 
valence value. Again this generic process, as implemented 
in SRS/E, is computationally fast and robust in operation.  

Once created, each Sign implicated in the DPM is 
associated with a single Action from the appropriate C3 
link, the one on the highest value valence path, and a single 
valence value v, indicating its rank in the policy map. Given 
this one to one, ordered mapping, an action may be selected 
from the DPM in a manner exactly analogous to a static 
policy map. In this respect, the behavior chaining technique 
described in section 7.3 looks to be no more than an attempt 
to manipulate the naturally constructed dynamic policy to 
prefer one chain of actions to all the others. 

The dynamic policy map must be recomputed each time 
there is a change in valence or any learning event takes 
place (i.e. almost everytime). Sometimes this has little 
effect on the observable behavior, but sometimes has a 
dramatic and immediate effect, with the animal reversing its 
path or adopting some completely new activity.  

Figure 1 illustrates this (from [Witkowski, 2000]). The 
animat (circle) is in a grid maze, and each square represents 
a location Sign, and the arrows indicate the current policy 
action in that square. The animat was allowed to explore the 
maze shown on the left completely by selecting random 
actions, but without any source of valence (i.e. latently). 
When G is given valence, the animat builds a DPM and 
takes the shortest path via B. With the animat returned to S, 

and G still valenced, but B now blocked, the DPM will still 
indicate a path via B (the blockage is undiscovered), center. 
As the intended (up) action to B now fails, the DPM alters 
to prefer the apparently longer path via A, and the 
observable behavior of the animat will abruptly change as a 
new DPM is constructed and a new path is preferred, right.    

 

   
Figure 1: Rapid changes in the Dynamic Policy Map 

8   Combining Static and Dynamic Policy Maps 
For any animal that displays all the forms of action 
selection, it becomes essential to integrate the effects of 
innate behaviour, the static policy map, and the valence 
driven dynamic policy map. The dynamic policy map is 
transient, and must interleave with the largely permanent 
static policy map. The valence value of the original source 
(v’ from section 5, the top-goal) is (numerically) equated to 
the C1 connection weight values, w. While v’ ≥ active(w), 
actions are selected only from the DPM. If at any point 
active(w) > v’, DPM selection is suspended, and actions are 
taken from the static policy. Once completed or abandoned, 
control reverts to the DPM.  

This allows for high-priority activities, such as predator 
avoidance, to invariably take precedence over goal-seeking 
activities. As the valence of the goal task increases, the 
chance of it being interrupted in this way decreases. After 
an interruption from static actions, valenced action selection 
resumes, The DPM must be reconstructed, as the animal’s 
situation will have been changed, and the static actions may 
also have given rise to learned changes – a case of 
everytime learning. 

Static policy maps may also be partitioned. Tinburgen 
[1951] proposed the use of hierarchical Innate Releaser 
Mechanisms (IRM) to achieve this. In each case, the 
releasing enabler should take its place in the static ranking, 
with all its subsidiary SR connections simultaneously 
enabled, but then individually ranked within that grouping. 
Selection may then proceed as for the Dynamic Policy Map 
example. Note that in the DEM, valence setting is reserved 
as a static policy map activity, a type of Action. In this 
context the IRM releasing enablers start to look, in 
evolutionary terms, like the beginnings of valenced items. 

9   Summary and Conclusions 
This paper has presented a high-level view of the action 

selection properties of five central theories of behavior and 
learning. Each of these theories holds that actions are 
selected on the basis of prevailing sensory conditions. They 
do not agree on how this occurs, yet it is clear that it may be 
demonstrated experimentally that each theory accounts for 
only a part of an individual animal’s behavioral repertoire, 
and that what the experimenter sees is at least partly due to 
the design of their experiments. The paper has developed a 
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set of five propagation rules and four learning strategies 
over three connection types to encapsulate and unify these 
otherwise apparently disparate approaches.  

This has lead to the notion of different types of policy 
map operating within the animal, from static to dynamic, 
and how they may be combined to exhibit apparently 
different behavioral phenomena under the variety of 
circumstances the animal may encounter, in nature or the 
laboratory. The Dynamic Expectancy Model has been 
employed as an implemented (SRS/E) framework for this 
discussion. 

Much remains to be done. This overview paper has laid 
a ground plan, but the devil remains in the detail. There 
exists a truly vast back catalogue of experimental data from 
the last 100 years of investigations that might be revisited in 
the light of this framework. Two substantive questions 
remain: (i) whether the links, propagation and learning rules 
presented sufficiently describe the five factor theories, and 
(ii) whether, even taken together as a whole, the five factor 
theories are sufficient to explain all animal behavior.  

On the first, the theories are based on these experiments, 
and much falls into place as a consequence. On the second, 
it seems unlikely - as evolutionary pressure has lead to 
incredibly diverse behavior patterns and mechanisms. 
Identifying these experimentally observed exceptions will 
serve to refine the multi-factor approach presented, leading 
in time to a better, more encompassing, solution.  

Even though one can observe classical and operant 
conditioning, and means-ends behavior in humans, it is 
abundantly clear than even taken together the five factors 
fail to explain human behavior to a very considerable 
extent. It is vastly apparent that human (and possibly other 
primate) activities are not solely, or even predominantly, 
driven directly by immediately prevailing and observable 
circumstances. However, one might see these five 
mechanisms as both a foundation for, and a bridge to, the 
evolutionary development of higher-level cognitive 
functions.  
 
References 
 
[Austin, 1962] Austin, J.L. Sense and Sensibilia, Oxford 

University Press, 1962 
[Barto and Sutton, 1982] Barto, A.G. and Sutton, R.S. 

Simulation of Anticipatory Responses in Classical 
Conditioning by a Neuron-like Adaptive Element, 
Behavioral Brain Research, 4:221-235, 1982 

[Blackman, 1974] Blackman, D. Operant Conditioning: An 
Experimental Analysis of Behaviour, London: Methuen & 
Co. 

[Bower and Hilgard, 1981] Bower, G.H. and Hilgard, E.R. 
Theories of Learning, Englewood Cliffs: Prentice Hall Inc., 
fifth edition, 1981 

[Brooks, 1991] Brooks, R.A. Intelligence Without Reason, MIT 
AI Laboratory, A.I. Memo No. 1293. (Prepared for 
Computers and Thought, IJCAI-91, pre-print), April, 1991 

[Bryson, 2000] Bryson, J. Hierarchy and Sequence vs. Full 
Parallelism in Action Selection, 6th Int. Conf. on Simulation 
of Adaptive Behavior (SAB-6), pages 147-156, 2000 

[Catania, 1988] Catania, A.C. The Operant Behaviorism of 
B.F. Skinner, in: Catania, A.C. and Harnad, S. (eds.) The 
Selection of Behavior, Cambridge University Press, pages 3-
8, 1988 

[Hebb, 1949] Hebb, D.O. The Organization of Behavior, John 
Wiley & Sons, 1949 

[Hull, 1943] Hull, C. Principles of Behavior, New York: 
Apple-Century-Crofts, 1943 

[Maes, 1991] Maes, P. A Bottom-up Mechanism for Behavior 
Selection in an Artificial Creature, 1st Int. Conf. on 
Simulation of Adaptive Behavior (SAB), pages 238-246, 
1991 

[Mowrer, 1956] Mowrer, O.H. Two-factor Learning Theory 
Reconsidered, with Special Reference to Secondary 
Reinforcement and the Concept of Habit, Psychological 
Review, 63:114-128, 1956  

[Russell and Norvig, 1995] Russell, S. and Norvig, P. Artificial 
Intelligence: A Modern Approach, Prentice Hall, 1995. 

[Saksida et al., 1997] Saksida, L.M., Raymond, S.M. and 
Touretzky, D.S. Shaping Robot Behavior Using Principles 
from Instrumental Conditioning, Robotics and Autonomous 
Systems, 22-3/4:231-249, 1997 

[Schmajuk, 1994] Schmajuk, N.A. Behavioral Dynamics of 
Escape and Avoidance: A Neural Network Approach, 3rd 
Int. Conf. on Simulation of Adaptive Behavior (SAB-3), 
pages 118-127, 1994 

[Stoltzmann et al., 2000] Stolzmann, W., Butz, M.V., 
Hoffmann, J. and Goldberg, D.E. First Cognitive 
Capabilities in the Anticipatory Classifier System, 6th Int. 
Conf. on Simulation of Adaptive Behavior (SAB-6), pages 
287-296, 2000 

[Sutton and Barto, 1998] Sutton, R.S. and Barto, A.G. 
Reinforcement Learning: An Introduction, Cambridge, MA: 
MIT Press, 1998 

 [Thistlethwaite, 1951] Thistlethwaite, D. A Critical Review of 
Latent Learning and Related Experiments, Psychological 
Bulletin, 48-2:97-129, 1951  

[Tinbergen, 1951] Tinbergen, N. The Study of Instinct, Oxford: 
Clarendon Press, 1951 

[Thorndike, 1898] Thorndike, E.L. Animal Intelligence: An 
Experimental Study of the Associative Processes in 
Animals, Psychol. Rev., Monogr. Suppl., 2-8, 1898 

[Tolman, 1932] Tolman, E.C. Purposive Behavior in Animals 
and Men, New York: The Century Co., 1932 

[Tyrrell, 1993] Tyrrell, T. Computational Mechanisms for 
Action Selection, University of Edinburgh, Ph.D. thesis, 
1993 

[Vogel et al., 2004] Vogel, E.H., Castro, M.E. and Saavedra, 
M.A. Quantitative Models of Pavlovian Conditioning, Brain 
Research Bulletin, 63:173-202, 2004 

[Witkowski, 1998] Witkowski, M. Dynamic Expectancy: An 
Approach to Behaviour Shaping Using a New Method of 
Reinforcement Learning, 6th Int. Symp. on Intelligent 
Robotic Systems, pages 73-81, 1998 

 [Witkowski, 2000] Witkowski, M. The Role of Behavioral 
Extinction in Animat Action Selection, proc. 6th Int. Conf. 
on Simulation of Adaptive Behavior (SAB-6), pages 177-
186, 2000 

[Witkowski, 2003] Witkowski, M. Towards a Four Factor 
Theory of Anticipatory Learning, in Butz, M.V. et al. (Eds.) 
Anticipatory Behavior in Adaptive Learning Systems, 
Springer LNAI 2684, pages 66-85, 2003 

23



On Compromise Strategies for Action Selection with Proscriptive goals
Frederick Crabbe
U.S. Naval Academy

Computer Science Department
572M Holloway Rd, Stop 9F
Annapolis, MD 21402
crabbe@usna.edu

Abstract
Among many properties suggested for action selection
mechanisms, one prominent one is the ability to select
compromise actions, i.e. actions that are not the best
to satisfy any active goal in isolation, but rather com-
promise between the multiple goals. This paper per-
forms an analysis of compromise actions in situations
where the agent has one proscriptive goal. It concludes
that optimal compromise behavior looks quite different
from what was expected, and, while optimal compro-
mise actions are beneficial to an agent, the benefit is
often small compared to greedy algorithms. It goes on
to suggest that much of the discussion about compro-
mise behavior is the result of an equivocation on its
definition, and it proposes a new compromise behavior
hypothesis.

1 Introduction
Traditional Artificial Intelligence planning systems use search in
order to fully characterize the space of actions a robotic agent can
select in a given situation. The agent considers the outcomes of
possible actions into the future until it finds sequences of actions
that achieve its goals. One feature of this approach is that given
enough time, a planning system can determine the optimal action
sequence for the agent. Of course, the issue of time is a funda-
mental problem for these planning systems: the agent may not
have at its disposal the time needed in order to discover the opti-
mal actions—in fact, often the amount of time required exceeds
the age of the universe.
Behavior-based approaches to robotics and agents in general

have been introduced to address these sorts of problems [Brooks,
1986; Arkin, 1998]. These distributed reactive-style approaches
are designed to generate “good enough” actions in a very small
amount of time. Without optimality, there arises the important
question of exactly what “good enough” means. In his now clas-
sic Ph.D. thesis, Tyrrell introduced a list of fourteen requirements
for Action Selection Mechanisms. Of these, number twelve was
“Compromise Candidates: the need to be able to choose ac-
tions that, while not the best choice for any one sub-problem
alone, are best when all sub-problems are considered simulta-
neously.” [Tyrrell, 1993, p. 174] Tyrrell’s list has had signif-
icant impact on the Action Selection field [Humphrys, 1996;
Decugis and Ferber, 1998; Bryson, 2000; Girard et al., 2002,
e.g.], and a number of researchers have developed systems to
meet the criteria he set out [Werner, 1994; Blumberg, 1994;

Crabbe and Dyer, 1999; Avila-Garcia and Canamero, 2004, e.g.].
Meanwhile biologists and ethologists have noted apparent com-
promise among animals in several scenarios.
The ability to consider compromise actions in an uncertain

world makes great intuitive sense. When multiple goals inter-
act, solving each optimally is not always optimal for the overall
system. Yet, recent work has generated empirical results that
seem to contradict the claim that the ability to consider compro-
mise candidates is necessary [Jones et al., 1999; Bryson, 2000;
Crabbe, 2004]. Despite this, there have been few in-depth anal-
yses of the nature of compromise actions and their effect on the
overall success of an agent. This paper presents an extension of
the work by Hutchinson [1999] and Crabbe [2004] to investigate
the nature of compromise actions in various environmental con-
ditions, concluding that: optimal compromise behavior is quali-
tatively different from what might be expected; optimal compro-
mise behavior provides less benefit than expected in the scenarios
tested; and the apparent disagreement about the utility of com-
promise behavior might possibly arise from an equivocation on
its definition.

2 Problem Formulation

The action selection problem we will discuss in this paper de-
pends on the types of actions the agent can select, the types of
goals the agent pursues, and the formal representation of the
problem.

2.1 Actions

When designing an action selection system, the character of
the “actions” selected by the agent affect the behavior exhib-
ited. For instance, there is a clear difference between an agent
selecting the action contract left quadricep 3 cm. and the ac-
tion go to the refrigerator. The distinction is based on the
level of specificity given by the action; the former is as spe-
cific as possible, while the latter leaves much room for interpre-
tation on how it is to be accomplished. In this paper we will
define our domain to be that of navigation of a mobile agent,
similar to several authors’ simulated domains [Maes, 1990;
Tyrrell, 1993] or navigating mobile robots [Choset et al., 2005].
The space will be continuous, but time will be discrete, such that
the action at each time step is defined as a movement 1 distance
unit at any angle. The importance of this choice of the definition
of “action” will be discussed in Section 6.
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2.2 Goals
Tyrrell famously defined compromise as follows: “a compromise
candidate, which might be beneficial to two or more systems to
an intermediate degree, may be preferable to any of the candi-
dates which are most beneficial for one system alone.” [1993, p.
170] The problem of compromise in action selection has multiple
guises. One fundamental distinction pivots on the nature of the
involved goals: are they prescriptive or proscriptive? Prescrip-
tive goals encourage an agent to take some action or sequence of
actions in order to be satisfied. These goals are typically satisfied
by a final consumatory act. Proscriptive goals encourage an agent
to not perform certain actions in certain situations. These goals
are typically not satisfied by a particular action, but can be said
to have been satisfied over a period of time if offending actions
are not performed. The nature of a possible compromise scenario
changes depending on whether there are two prescriptive goals or
one prescriptive and one proscriptive goal.

Two Prescriptive Goals
In a two-prescriptive-goal case, an agent has goals to be co-
located with one of two target locations in the environment.
These could be, for instance, the locations of food, water, poten-
tial mates, or shelter. At any moment either or both of the targets
can disappear from the environment. The agent must select an ac-
tion that maximizes its chances of co-locating with a target before
it disappears. This model is drawn from several scenarios in biol-
ogy. For example, frogs or cricket males sometimes advertise for
mates by emitting calls. The males may disappear with respect to
the female through a cessation of signaling. This can occur either
due to the actions of predators, the arrival of a competing female,
or for internal reasons such as energy conservation. Another sce-
nario in biology is that of a hunter such as a cat stalking prey such
as birds in a flock, where an individual bird can fly at any moment
[Hutchinson, 1999]. Several action selection mechanisms, such
as Werner [1994] and Montes-Gonzales et al. [2000] have been
specifically designed to exhibit this sort of compromise. Further,
biologists and ethologists have advocated in favor of the prescrip-
tive version for some time [Morris et al., 1978; Lorenz, 1981;
Latimer and Sippel, 1987; Bailey et al., 1990].
Crabbe [2004] gave strong evidence that while this sort of be-

havior is seen in nature, it confers little absolute advantage to
the agent. In particular: the optimal compromise strategy per-
formed only slightly better than the best non-compromise (or
greedy) strategy and all other known compromise strategies per-
form worse than maximum expected utility. They conclude that
“animals that exhibit apparent compromise [in the 2 prescriptive
goal case] are either using some unknown strategy or are doing
so for some other reason.” [Crabbe, 2004] This paper discusses
the implications and a possible explanation of Crabbe’s result in
greater detail in Section 6 below.

One Prescriptive, One Proscriptive Goal
Although the two-prescriptive-goal scenario has had significant
impact on the action selection community, the more famous of
the two compromise scenarios discussed here is when there is
one prescriptive goal and one proscriptive goal.

“...proscriptive sub-problems such as avoiding hazards
should place a demand on the animal’s actions that it
does not approach the hazard, rather than positively
prescribing any particular action. It is obviously prefer-
able to combine this demand with a preference to head
toward food, if the two don’t clash, rather than to

head diametrically away from the hazard because the
only system being considered is that of avoid hazard”
[Tyrrell, 1993]

As the quote above indicates, the idea that compromise actions
are especially beneficial in the proscriptive goal case is intuitively
appealing. Further, examples of this appear in the ethological lit-
erature. Blue herons will select sub-optimal feeding patches to
avoid predation by hawks in years when the hawk attacks are
frequent [Caldwell, 1986]. Similar behavior has been shown in
sparrows [Grubb and Greenwald, 1982], minnows [Fraser and
Cerri, 1982], pike and sticklebacks [Milinksi, 1986]. At the mo-
tor level, geese and other anatidae who are offered food by a
human can sometimes exhibit behavior where the neck muscles
for both a feeding behavior and a recoiling behavior are activated,
causing a trembling in the neck [Lorenz, 1981].
The purpose of this paper is to provide an analysis of the pro-

scriptive goal scenario using the techniques developed by Crabbe
for the prescriptive goal scenario, to determine both the amount
of benefit of compromise actions, as well as under what condi-
tions compromise actions are the most useful.

2.3 Formal Model
To approximate the scenario described in the quote above, we
examine a continuous environment with a target t and a dan-
ger d, corresponding to a resource such as a mate and a preda-
tor respectively. At any time the target can disappear from the
environment (e.g. the prospective mate stops signaling) with a
probability 1� pt, and the danger can disappear (e.g. the preda-
tor becomes bored and wanders off) with a probability 1 � pd.
That is, at each time step, the target remains in the environment
with probability pt and the danger remains in the environment
with probability pd. Also at each time step, there is a probability
pn(d) that the predator will not strike or pounce on the agent.
This probability is a function of the distance between the agent
and the danger. The experiments in this paper use four different
functions to generate the pn(d). The agent also has a goal level
associated with the target and the danger, (Gt and Gd) that can
vary with the quality of the resource and the damage due to the
predator. Notationally, i, j is the distance from some location i

to some location j. All distances are measured in the number of
time steps it takes the agent to travel that distance.

3 Analytical Set-up
In order to investigate compromise candidates, we will analyze
the initial configuration using Utility Theory [Howard, 1977].
Utility Theory assigns a set of numerical values (utilities) to
states of the world. These utilities represent the usefulness of
that state to an agent. Expected Utility (EU) is a prediction of the
eventual total utility an agent will receive if it takes a particular
action in a particular state. The Expected Utility (EU) of taking
an action A in a state S is the sum of the product of the prob-
ability of each outcome that could occur and the utility of that
outcome:

EU(A|S) =
X

So2Outcomes

P (So|A,S)Uh(So) (1)

where P (So|A,S) is the probability of outcome So occurring
given that the agent takes action A in state S, and Uh(So) is the
historical utility of outcome So as defined below.
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Assuming the agent is rational, the set of goals to consume ob-
jects will be order isomorphic1 to the set of the agent’s utilities of
having consumed the objects. Therefore, EU calculated with util-
ities is order isomorphic with EU calculated with goals instead.
For our purposes, we will assume that the goals and utilities are
equivalent (U(t) = Gt).
Because a rational agent is expected to select the action with

the largest EU, the historical utility of a state is the utility of the
state plus future utility, or the max of the expected utility of the
actions possible in each state:

Uh(S) = U(S) + max
A2Actions

EU(A|S). (2)

An agent can calculate EU using multiple actions in the future by
recursively applying equations (1) and (2).

3.1 Optimal Behavior
We analyze compromise by comparing a close approximation
of optimal behavior with several non-optimal but easy to gener-
ate behaviors. We approximate the optimal behavior based on
the dynamic programming technique adapted by Crabbe from
Hutchinson [1999]. This technique overlays a grid of points on
top of the problem space and calculates the maximal expected
utility of each location given optimal future actions. This is done
recursively starting at the target locations and moving outward
until stable values have been generated for all grid points.
The value we are trying to calculate is the expected utility of

acting optimally at some location � in a state where the target
and the danger are still in the environment: EU(O|t, d,�). If ✓

is the angle of the optimal move for the agent at location � and
�
0 is 1 unit away from � in direction ✓, then by equations 1 and 2
the expected utility of being at � is:

EU(O|t, d,�) =ptpdpn(�)EU(O|t, d,�
0)+

pt(1� pd)EU(O|t, �0)+
pd(1� pn(�))Gd,

(1� pt)pdpn(�)EU(O|d, �
0) (3)

EU(O|t, �) =Gtp
�,t

, and, (4)
EU(O|d,�) =pn(�0)pdEU(O|d, �

0)+
(1� pn(�0))Gd. (5)

The total expected utility is the expectation over four possible
situations: both target and danger are still there, but the danger
does not strike; the target remains, but the danger disappears; the
danger remains and strikes the agent; and the target disappears,
the danger remains but the danger does not strike. When only the
target remains, the optimal strategy is to go straight to the target,
as in equation (4). When the target disappears but the danger
remains, the agent must flee to a safe distance from the danger,
as in equation (5). A safe distance is a variable parameter called
the danger radius. Once the agent is outside the danger radius, it
presumes that it is safe from the danger.
Using the above equations, the expected utility of each

grid point in the environment can be calculated provided
EU(O|t, d,�

0) can be accurately determined and ✓ can be found.
Since �

0 is most likely between grid-points, the local EU func-
tion must be interpolated from the expected utility values of the

1“Two totally ordered sets (A,) and (B,) are order isomorphic
iff there is a bijection fromA toB such that for all a1, a2 2 A, a1  a2

iff f(a1)  f(a2).”[Weisstein, 2001]

Open is a list of grid-points that need to be updated.
Closed table of updated points.
N is the point currently being updated.
VN is the current EU estimate at N .
repeat

Open enqueue target locations
Closed ;
repeat

N  dequeue from Open

when N /2 Closed

EU(O|t, d,�) interpolated EU

function from VN at neighboring points
VN  max equation 3
Open enqueue neighbors of N
Closed add N

until Open = ;
until convergence

Figure 1: The dynamic programming algorithm for estimating
the expected utility at all the grid points in the environment.

surrounding grid points. Using the interpolated surfaces for the
local values of EU(O|t, d,�), the value of ✓ can be determined
by searching for the angle that maximizes the function described
by equation 3. Once the expected utility is determined for a grid
point, its value is then used to calculate the expected utility of
its neighboring grid-points. This process is repeated until values
are collected for all the grid points. Because the estimated util-
ity value can change for a point when the values of its neighbors
change, the values of all the points are repeatedly re-estimated
until the values stabilize. The pseudocode for the algorithm is
given in figure 1.

3.2 Other Action Selection Mechanisms
It is typically computationally prohibitive for an agent to calcu-
late the optimal action using a technique similar to the one de-
scribed in the previous section. Instead, many researchers pro-
pose easy to compute action selection mechanisms that are in-
tended to approximate the optimal behavior [Cannings and Orive,
1975; Fraenkel and Gunn, 1961; Römer, 1993]. In addition to the
optimal strategy described above, we also examine three other
action selection strategies:

• Direct: The agent moves directly to the target, ignoring the
danger. This is a non-compromise strategy that one would
expect to do poorly.

• Max goal: This strategy moves directly to the target unless
the agent is within the danger zone. Within the danger zone,
the agent moves directly away from the danger until it leaves
the danger zone. This strategy zig-zags along the edge of
the danger zone as the agent moves toward the target. Max
Goal is also a greedy strategy that only acts upon one goal
at a time.

• Skirt: This strategy moves directly toward the target unless
such a move would enter the danger zone. In this case, the
agent moves along the edge of the danger zone until it can
resume heading directly to the target. Skirt is also primar-
ily a greedy strategy. Outside the danger radius, the agent
moves straight to the target. Inside the danger radius the
agent moves straight away from the danger. At the edge of
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the danger radius the behavior is still optimal for the avoid
danger goal, as any movement not into the danger zone is
equally optimal. With respect to the target goal, the move-
ment is sub-optimal.

The expected utility of each of these mechanisms can be cal-
culated for any particular scenario by using equations 3, 4 and 5,
where the action ✓ is the one recommended by the strategy, not
the optimal action.

4 Experiments
The experiments were designed to determine how much better
the optimal strategy is over the other strategies, as well as quali-
tatively examine what sorts of compromise actions are exhibited
by the optimal strategy. In all of the trials, a target was placed
at (50, 90) with a Gt = 100 and a danger was placed at (60, 50)
with Gd = �100. In each trial, a pt was selected in the range
[0.95; 1), and pd was selected in the range [0.5; 1). The pn(d)
function was one of four functions, all of with with a danger ra-
dius of 20:

• Linear A: pn(d) = 0.04d + 0.2 when d  20, 1 otherwise.
• Linear B: pn(d) = 0.005d + .9 when d  20, 1 otherwise.
• Exponential: pn(d) = d

2
/400 when d  20, 1 otherwise.

• Sigmoid: pn(d) = 1/(1 + 1.810�d) everywhere.
Linear A was selected as a baseline strategy where the probabil-
ity of a strike was high near the danger, but low at the edge of
the danger zone. Linear B was selected to make the chance of
a strike low overall, thus increasing the tendency to stay in the
danger zone longer, for more compromise actions. Exponential
has a high probability of a strike for much of the danger zone, but
drops off sharply at the edge, perhaps encouraging compromise
behavior near the edge. Sigmoid should resemble exponential,
but the area with low strike probability is larger, and there is the
possibility of some strike for every location in the environment,
not just inside the danger radius.
Once the scenario was generated, the expected utility for each

of the three non-optimal strategies and the optimal strategy was
calculated for 200 points in the environment.

5 Results
Figure 2 shows the results of the optimal strategy when pt =
0.995, pd = 0.99, and pn(d) is Linear A. There are two interest-
ing properties to note. First, within the danger zone, there is little
display of compromise action; the agent flees directly away from
the danger at all locations, ignoring the target. Second, there
is compromise action displayed outside the danger zone, to the
lower right. While this makes sense (the agent would want to
take the shortest path around the danger zone) it does not fit into
the common conception of compromise action. In that area of
the environment, the goal to avoid the danger would not be ac-
tive (since the agent is too far away from the danger) and thus
one would expect it to have no effect of the action selected.
Figure 3 shows the optimal strategy when pt = 0.995, pd =

0.5, pn(d) is Linear A. The main difference is that the compro-
mise action in the lower right is less pronounced. The optimal
strategy is to assume that the danger will disappear by the time
the agent gets there. This property is seen in all the other exper-
iments, i.e., when pd is high, the agent avoids the danger zone
and exhibits compromise behavior in the lower right region, but
when pd is low, the agent moves straight to the target.
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Figure 2: Optimal behavior when the target and danger are likely
to stick around (pt = 0.995, pd = 0.99, and pn(d) is Linear A).
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Figure 3: The same scenario as figure 2, but with pd = 0.5. It
shows effect of pd on behavior outside the danger zone.
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Figure 4: When pt = 0.95, pd = 0.5, and pn(d) is Linear A, the
results show some compromise action within the danger zone as
well as without.

When pt = 0.95, pd = 0.99, and pn(d) is Linear A, the results
are qualitatively identical to figure 2, but when pt = 0.95, pd =
0.5, and pn(d) is Linear A, we start to see some serious compro-
mise action (figure 4). The combination of both the urgency to
get to the target with the likelihood that the danger will disappear
leads to more target focused behavior in the danger zone.
When using Linear B, the behavior is identical to Linear A

when pd is high. When pd is low, the low probability of a strike
makes the compromise action more pronounced (figure 5).
With the non-linear pn(d) functions, compromise action is

seen clearly in all cases. Figure 6 shows pt = 0.995, pd = 0.99,
and pn(d) is sigmoid. The compromise behavior is evident both
near the center of the danger zone and again near the edges as the
probability of a strike drops gradually from the danger. This is
the same for the exponential pn(d).
The quantitative results of the optimal strategy compared to

the greedy strategies described above is shown in table 1. The
table shows how the various strategies (optimal, max goal, and
skirt) compare to each other in term of percentage improvement.
The percentages are of the average expected utility for each strat-
egy across all the starting positions and scenarios2 listed. “All”
is across all scenarios and starting positions; “opposite” is across
just the starting positions that are opposite from the target (the
lower right region); “danger zone” is across the starting positions
inside the danger radius; “Linear A” is all positions when the
pn(d) is Linear A; “Linear B”is all positions when the pn(d) is
Linear B; “Exponential” is all positions when the pn(d) is Ex-
ponential”; and “Sigmoid” is all positions when the pn(d) is Sig-
moid”. The direct strategy was predictably poor (less than half as
good as the other strategies across all trials, and 1/6 as good in-
side the danger zone) so we omitted those results from the table.
We see that across all samples, the optimal behavior performs

2A scenario is a single set of values for the parameters in the model.
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Figure 5: pt = 0.95, pd = 0.5, and pn(d) is Linear B.
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Figure 6: pt = 0.995, pd = 0.99, and pn(d) is sigmoid.
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optimal over optimal skirt over
scenario max goal over skirt max goal
all 29.6% 0.1% 29.1%

opposite 64.9% 0.2% 63.3%
danger zone 26.2% 0.01% 26.1%
Linear A 40.9% 0.02% 40.8%
Linear B 13.5% 0.1% 13.1%
Exponential 48.6% 0.03% 48.5%
Sigmoid 16.7% 0.2% 15.2%

Table 1: Results comparing optimal compromise behavior to the
greedy strategies.

26% better than max goal, but only 0.1% better than skirt. When
we consider just those locations on the other side of the danger
zone from the target, we see the benefit is greater for optimal over
max goal, but still only slightly so over skirt. This is the same for
when we consider just those locations inside the danger zone, or
we consider just the samples from each of the pn(d) functions.

6 Discussion
In discussing the results above, we will present some new in-
sights into the nature of the compromise problem, develop its
dual nature, propose a new hypothesis and reinterpret the data
from ethology.

6.1 Experimental Results
The biggest surprise in the qualitative results is in the number
of scenarios where there is almost no compromise action at all.
It appears that in stable environments, the priority is to get away
from the danger as soon as possible. Even in a case where the tar-
get is likely to disappear and the danger unlikely to remain more
than a few time steps, with a moderate chance of a strike, the
best thing to do is to flee the danger first (figure 4). In contrast,
the probability of a strike has a larger effect on the qualitative
behavior than we would have suspected, as shown in figures 5
and 6. The pattern of optimal behavior in figure 6 is as we pre-
dicted around the edge of the danger zone, but not at all what
we expected in the center, with the optimal behavior ignoring the
danger entirely. We are exploring possible causes for this.
The quantitative results in table 1 show that compromise ac-

tions in the danger zone (an original reason for proposing them)
provide much less benefit than compromise actions in the area
opposite from the target. On the other hand, the optimal compro-
mise actions are significantly better than the max goal strategy.
This arises from the zig-zag nature of this strategy resulting in
much longer paths to the target. When this zig-zag is removed
(as in the skirt strategy) the optimal strategy is only the slight-
est bit better. Although there appear to be other patterns in the
data with respect to which locations or which pn(d) functions fa-
vor which strategies, more research need to be done to reach a
conclusion.

6.2 Blending vs. Voting
In the work so far, we have looked at compromise candidates us-
ing the view described in the quotes and examples from ethology
given above. The result is that compromise actions qualitatively
appear to be blends of the actions best for each sub-goal (the best
direction to move is somewhere in-between the directions that
are best for each of the goals). There is an alternative description

l
a b

1 2

3

l

a l0

l

b

Figure 7: An example scenario where compromise makes sense.

of compromise candidates, also described by Tyrrell, sometimes
called the council-of-ministers analogy. In this perspective, there
are a collection of “ministers” or experts on achieving each of the
agent’s various goals. Each minister votes for courses of action
that it likes, casting, for example, five votes for its favorite action,
four for its second favorite, and so on. The prime minister tallies
all the votes and selects the action with the most votes. In this
configuration, the compromise selected can be radically different
from the non-compromise actions. Imagine an agent at a location
l0 that needs some of resource a and some of resource b. There is
a quality source of a at l1, a location far from a quality source of
b at l2. There is a single low-quality source of both a and b at l3
(figure 7). Assuming that the utility of a at ln is an, and there is
some cost of movement c (a chance of the resource moving away
or a direct cost such as energy consumed) then the agent should
move l3 whenever a3+b3�c(l0, l3) > a1+b2�c(l0, l1+ l1, l2).
In the council-of-ministers, the a minister would cast some votes
for l1, but also some for l3. Similarly, the b minister would cast
votes votes for both l2 and l3. The agent might then select mov-
ing l3 as its compromise choice when it is beneficial.
This presents us with an interesting discrepancy: in one model

of compromise selection, drawn from real world examples in
ethology, compromise is a form of action blending that appears to
have little overall benefit to the agent in the prescriptive goal case,
and benefit in a limited sense in the proscriptive goal case. In
the other, largely hypothetical, model, compromise seems much
more granular, results in actions that are qualitatively different
from the non-optimal actions, and appears to have the ability to
confer real advantage. In the literature, this contrast (in terms of
compromise) is unknown, beginning with Tyrrell who used the
two definitions interchangeably.
It is our position that the difference between these two mod-

els of compromise are because of the level at which the action
is defined. Blending compromises take place at the lower levels,
where the outputs are essentially the motor commands for the
agent. Thus changes allow for little variation in the output. Vot-
ing compromises take place at a higher level, where each choice
can result in many varied low-level actions. For purposes of dis-
tinction, we will call low-level actions3 actions and higher-level
actions4 behaviors5. Thus selecting a different behavior module

3such as move 1 unit at 2.1 radians
4such as go to location l3
5We rely on the behavior-based robotics notion of “behavior” as a

reactive module designed to achieve a particular goal. They are also
commonly referred to as goals or tasks. Their important property is
higher level of abstraction over actions.
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can have wildly different effects at the action level. We believe
this distinction was not made by the early researchers in action
selection because their experimental environments were entirely
discrete and grid-based, thus affording few action options to the
agent. For Tyrrell, there was little difference between compro-
mise actions and compromise behaviors.
We note that the “three-layer architectures” in robotics do ex-

plicitly make this distinction, where higher layers select between
multiple possible behaviors, and then at lower layers, multiple
active behaviors select actions [Gat, 1991; Bonasso et al., 1997].
When and where compromise behavior is included varies from
instance to instance in an ad hoc manner. Many modern hier-
archical action selection mechanisms that explicitly use voting-
base compromise tend to do so at the behavior level only [Pirja-
nian et al., 1998; Pirjanian, 2000; Bryson, 2000].

6.3 The Compromise Behavior Hypothesis
The experiments here and in previous work, with the insights
discussed above, lead us to propose the following Compromise
Behavior Hypothesis:

Compromise at the action level confers less overall
benefit to an agent than does compromise at the behav-
ior level. Compromise behavior is progressively more
useful as one moves upward in the level of abstraction
at which the decision is made, for the following rea-
sons:
1. In simple environments (e.g. two prescriptive
goals), optimal compromise actions are similar to
the possible non-optimal compromise actions as
well as the possible non-compromise actions. As
such, they offer limited benefit. In these environ-
ments there is no possibility of compromise at the
behavior level.

2. In complex environments (e.g. where multiple re-
sources are to be consumed in succession such
as the scenario depicted in figure 7) compro-
mise behavior can be very different from the ac-
tive non-compromise behaviors, endowing it with
the potential to be greatly superior to the non-
compromise.

3. In complex environments, optimal or even very
good non-optimal actions are prohibitively diffi-
cult to calculate.

In the complex environments, optimal compromise actions
may offer little benefit over actions derived from compromise be-
haviors for the same reason as in 1 above: the optimal action is
too similar to the non-optimal action. For example, in the figure
7 scenario, a behavior that decides to move the agent to l3 can
ignore the locations of a and b at l3 and just generate an action
to move to l3 in general. This non-optimal behavior-generated
action will be nearly as good as the optimal action generated by
considering the location and qualities of all the a and b, yet the
optimal action will come at an enormous computational cost. We
propose to begin testing this hypothesis with just this scenario.
We predict that the optimal action will be to move toward a loca-
tion between a and b in l3, but this optimal action will be essen-
tially just as good as a movement to any other part of l3.

6.4 Ethological Data Reinterpreted
If it is true that compromise actions are less helpful than compro-
mise behavior, why are so many examples drawn from ethology

used to demonstrate compromise actions in animals? It may be
that the interpretation of the animal data has been overzealous.
In each case there are other possibilities to explain the behavior
that do not involve the weighing of compromise actions, or even
involve the animal’s action selection mechanism at all.
For instance, in the two-prescriptive-goal examples with frogs

and crickets following a curved path between two prescriptive
goals, an alternative explanation might be that the multiple tar-
gets are being merged at the perceptual level, with the ear or au-
ditory system averaging the position of the two targets before any
action selection mechanism has an opportunity to consider its op-
tions. In this interpretation the behavior would be an accident of
morphology, not an attempt to maximize the creature’s utility.
Some examples of potential compromise behavior, such as

dogs combining a display of fear with one of anger [Lorenz,
1981], or the goose trembling when torn between a prescriptive
and a proscriptive goal, may be less an example of compromise
behavior, and more a superposition of the two behaviors. This
effect arises from the behaviors not sharing a common final path,
enabling them to both be expressed simultaneously. In the case of
the geese, the resulting behavior is probably one of the least ben-
eficial actions that could be selected, rather than approximating
optimality.
Admittedly, these re-interpretations are speculative, but they

may not be much more speculative than the idea that they are a
result of deliberate consideration of compromise candidates.

7 Conclusions and Future Work
In this paper we have analyzed the properties of action selection
mechanisms in a scenario that has been of interest to both ethol-
ogists and AI researchers in the past. In it we have shown that
optimal compromise actions in a proscriptive goal case are qual-
itatively different from what was predicted. They further afford
little benefit when compared to a minimally compromise-enabled
strategy. We proposed that compromise is not especially useful at
the action level, but is useful at the higher behavior level. Future
work will revolve around testing, validation or refutation of this
Compromise Behavior Hypothesis.
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Abstractÿÿ

Thisÿpaperÿpresentsÿaÿheuristicÿbasedÿonÿaÿ modelÿofÿ
(en)action .ÿ Theÿ underlyingÿ modelÿ ofÿ acti onÿ isÿ
rootedÿinÿresearchÿinÿneurosciencesÿandÿbasedÿonÿaÿ
conceptualÿ framework.ÿ Itÿ isÿ organizedÿ asÿ aÿ three -
poleÿ systemÿwithinÿ theÿ frameworkÿ ofÿ theÿ "He/She-
You-Iÿ formalism."ÿ Theÿ "He/Sheÿ Pole"ÿ dealsÿ withÿ
understanding,ÿ s imulationÿ andÿ anticipationÿ ofÿ
action;ÿ theÿ "Youÿ Pole"ÿ withÿ decision -makingÿ andÿ
takingÿ engagementÿwithinÿ action;ÿ andÿ theÿ "Iÿ Pole"ÿ
withÿ executingÿ actionÿ withinÿ aÿ particularÿ
environment.ÿÿ ÿ

ÿ
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1.ÿIntroductionÿandÿcontextÿ ÿ

Thisÿpaperÿp resentsÿaÿheuristicÿmodelÿof ÿ(en)action ÿ[Mellet-
d’Huart,ÿ 200 4]ÿ thatÿ standsÿ forÿ embedded ÿ andÿ embodied ÿ
action.ÿ "Action"ÿ encompassesÿ bothÿ outerÿ andÿ innerÿ
processesÿaÿh umanÿbeingÿengagesÿwhenÿacting.ÿTherefore,ÿaÿ
particularÿ formalismÿ isÿ prop osedÿ inÿorderÿ toÿ sup portÿ actionÿ
modeling.ÿOu rÿmodelÿofÿ (en)actionÿisÿaÿglob alÿandÿsystemicÿ
model.ÿ Theor yÿ supportingÿ thisÿ modelÿ comesÿ mainlyÿ fromÿ
Berthozÿ[1997,ÿ 2003],ÿMaturanaÿandÿVarelaÿ[1980].ÿBecauseÿ
theÿmodelÿ links ÿactionÿwithÿb odyÿactivityÿ inÿaÿcoherentÿwayÿ
withÿ neuro physiologyÿ ofÿ actionÿ andÿ biolog yÿ ofÿ cognition,ÿ
weÿ referÿ thisÿ m odelÿ ofÿ actionÿ toÿ theÿ theoryÿ ofÿ “ enaction”ÿ
[Varelaÿ etÿ al.,ÿ 1991;ÿ Varela,ÿ 199 4].ÿ Thereby,ÿ weÿ callÿ itÿ
modelÿofÿ(en)action.ÿ
Thisÿ modelÿ ofÿ (en)actionÿ wasÿ formerlyÿ developedÿ inÿ

orderÿ toÿ sup portÿ andÿ facilitateÿ theÿ designÿ ofÿ virtualÿ
environmentsÿ forÿ learning. ÿ Inÿ theÿ fieldÿ ofÿ virtualÿ reality,ÿ
Durlachÿ andÿ Mavorÿ [19 95]ÿ encouragedÿ theÿ settingÿ upÿ ofÿ
conceptualÿ modelsÿ basedÿ onÿ cog nitiveÿ sciencesÿ toÿ supportÿ
theÿdesignÿofÿapp licationÿdealingÿwithÿgames,ÿeducat ionÿandÿ
training.ÿ Winnÿ [2 003]ÿ proposedÿ thatÿ learningÿ inÿ artificialÿ
environmentsÿ couldÿ beÿ enhancedÿ ifÿ moreÿ attentionÿ wasÿ
givenÿ toÿ embo diment,ÿ embeddednessÿ andÿ dynamicÿ
adaptationÿ [Winn,ÿ200 2].ÿBeingÿdevelopedÿasÿaÿheuristic,ÿ itÿ
mightÿ haveÿ differentÿ applicationsÿ andÿ supp ortÿ actionÿ

modelingÿ forÿ softwareÿ applications.ÿ Inÿ thisÿ context,ÿ weÿ
presentÿthisÿmodelÿinÿthisÿpaper.ÿ ÿ

2.ÿAÿmodelÿofÿ(en)actionÿÿ
Theÿ modelÿ ofÿ ( en)actionÿ isÿ supp ortedÿ byÿ aÿ conceptualÿ
framework.ÿ Theÿ conceptualÿ frameworkÿ integratesÿ genericÿ
operators.ÿItÿisÿbase dÿon:ÿ(1)ÿaÿdynamicÿcycleÿofÿaction ;ÿ(2)ÿaÿ
"He/She-You-I"ÿStructure ;ÿ(3)ÿaÿsetÿofÿthreeÿbasic -processingÿ
operators,ÿactualization ,ÿpotentialization ,ÿandÿvirtualization .ÿ
Thisÿframeworkÿconstitutesÿaÿ formalÿsystemÿthatÿcanÿbeÿusedÿ
dynamically,ÿ iterativelyÿan dÿbeÿorganizedÿ inÿdifferentÿ levels.ÿ
Theÿ "He/She -You-Iÿ formalism"ÿ isÿ intendedÿ toÿ sup portÿ aÿ
modelÿofÿaction. ÿ

2.1.ÿAÿdynamicÿactionÿcycle ÿ

Theÿ He/She-You-Iÿ Structure ÿ isÿ sup portedÿ byÿ
neurophysiologicalÿ theories.ÿ Forÿ Berthozÿ [1997 ,ÿ 2003],ÿ
actionÿ canÿ beÿ discompos edÿ inÿ threeÿ differentÿ steps:ÿ
(a)ÿAnticipationÿ ofÿ possib leÿ actionÿ andÿ itsÿ foreseenÿ
consequencesÿonÿtheÿenvironment;ÿ(b) ÿDecision-makingÿandÿ
engagementÿofÿaction;ÿ (c) ÿExecutionÿo fÿtheÿchosenÿactionÿinÿ
theÿexternÿenvironmentÿofÿtheÿhumanÿbeingÿ ("realÿworld").ÿÿ
(a)ÿBeforeÿactingÿ inÿaÿparticularÿcontext,ÿaÿhumanÿbeingÿ

exploresÿ p ossibleÿ actionsÿ byÿ simulation.ÿ He/sheÿ antic ipatesÿ
expectedÿ conseq uencesÿ ofÿ action.ÿ Therefore,ÿ he/sheÿ usesÿ
modelsÿ thatÿ he/sheÿ canÿ applyÿ onÿ newÿ situations.ÿ Thoseÿ
modelsÿ resultÿ fromÿformersÿ actions.ÿDataÿ isÿabstractedÿ fromÿ
previousÿ experienceÿ andÿ conceptualized.ÿ Memoryÿ regis tersÿ
thoseÿdataÿandÿpro videsÿconceptualizedÿelementsÿinÿ orderÿtoÿ
supportÿ anticipationsÿ andÿ toÿ produceÿ predictionsÿ forÿ newÿ
situations.ÿ Thisÿ pr ocessÿ minimizesÿ contextualÿ ele mentsÿ andÿ
enhancesÿstructuralÿorÿunchanging ÿelements.ÿÿ
(b)ÿAÿhumanÿb eingÿhasÿtoÿpreserveÿhis/herÿe xistenceÿasÿaÿ

livingÿ being.ÿ Ther efore,ÿ he/sheÿ controlsÿ andÿ evaluat esÿ bothÿ
his/herÿ internalÿ andÿ emotionalÿ states,ÿ andÿ risks,ÿwhichÿ existÿ
inÿ his/herÿ environment .ÿ Previousÿ exp eriencesÿ constituteÿ
his/herÿ frameÿ o fÿ reference.ÿ Di fferentÿ levelsÿ ofÿ innerÿ statesÿ
canÿ beÿ distinguish ed,ÿ rangedÿ fromÿ visceralÿ internalÿ stateÿ t oÿ
high-levelÿ mentalÿ states.ÿ Thisÿ stageÿ ofÿ actionÿ isÿ
characterizedÿbyÿevaluatingÿtheÿcurrentÿrisk sÿbyÿscanningÿtheÿ
environmentÿ an dÿ searching ÿ forÿ significantÿ details.ÿ Thereb y,ÿ
decision-makingÿ occursÿ toÿ beÿ mostlyÿ irrationalÿ andÿ anÿ
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ÿ

accurateÿ anticipationÿ canÿ beÿ rejectedÿ becauseÿ ofÿ anÿ innerÿ
feelingÿofÿbeingÿinsecure.ÿ ÿ
(c)ÿ Executingÿ anÿ a ctionÿ involvesÿ toÿ engageÿ b ody-

movements.ÿItÿoftenÿaimsÿonÿinducingÿintentionalÿchangesÿinÿ
theÿ environment,ÿ orÿ onÿ protectingÿ andÿ maintainingÿ safeÿ
his/herÿ body.ÿ Movingÿ bo dyÿ meansÿ toÿ dealÿ withÿ inertia,ÿ
gravity,ÿ equilibrium,ÿ evaluatingÿ distancesÿ andÿ forcesÿ toÿ beÿ
engaged.ÿ Thisÿ isÿ basedÿ onÿ imitation,ÿ experienceÿ andÿ
practice.ÿTherefore,ÿoneÿhasÿtoÿdevelopÿinternalÿmarkersÿandÿ
externalÿmarkersÿ(mainlyÿvisualÿcues).ÿ ÿ

2.2.ÿAÿ"He/She-You-Iÿformalism"ÿ

Allÿ componentsÿ andÿ asp ectsÿ ofÿ theÿ humanÿ life ÿ areÿ linkedÿ
togetherÿ andÿ rootedÿ inÿ b iologicalÿ foundations.ÿThereb y,ÿweÿ
joinÿ Maturanaÿ andÿ Varelaÿ [198 0]ÿ whenÿ theyÿ approachÿ
biologyÿ ofÿ cognitionÿ throughÿ embodiment.ÿ Followingÿ theirÿ
claims,ÿ weÿ considerÿ thatÿ languageÿ hasÿ biologicalÿ rootsÿ
[Maturanaÿ etÿ al. ,ÿ 1995]ÿ andÿ enclosesÿ basicÿ unive rsalÿ
structures.ÿ Ourÿ heu risticÿ modelÿ isÿ organizedÿ followingÿ theÿ
grammaticalÿ distinctionÿ ofÿ threeÿ pr onouns:ÿ "I",ÿ "You",ÿ andÿ
"He/She."ÿTheÿHe/She-You-Iÿforma lismÿsupportsÿaÿthreefoldÿ
approachÿ ofÿ theÿ humanÿ being.ÿ Itÿ articulatesÿ action,ÿ
embodiment,ÿ mind,ÿ environment,ÿ andÿ contextualÿ f actors.ÿ
Theÿ underlyingÿ assumptionÿ isÿ thatÿ humanÿ activityÿ canÿ beÿ
moreÿ easilyÿ modelizedÿ ifÿ threeÿ mainÿ functionsÿ areÿ
distinguished.ÿ Th oseÿ functionsÿ areÿ internalÿ andÿ co -existÿ
whicheverÿactivityÿisÿengaged.ÿ ÿ

"You" Pole
PotentialisationPotentialisation

"He/She"
Pole

VirtualisationVirtualisation

"I" Poleÿ
ActualisationActualisation

3.ÿRealizing

1.ÿAnticipation

2.ÿMakingÿ

decision

ÿ
Figureÿ 1ÿ :ÿ Conceptualÿ framework:ÿ Theÿ " He/She-You-I"ÿ

forma lismÿ

(a)ÿ Theÿ "He/Sheÿ Pole" ÿ supportsÿ anticipationÿ andÿ
simulationÿofÿactionÿandÿ itsÿexpectedÿconseq uences.ÿ Itÿdealsÿ
withÿ abstraction,ÿ causation,ÿ generalization,ÿ andÿ
conceptualization.ÿ Itÿ providesÿ meansÿ forÿ observingÿ otherÿ
persons'ÿactionsÿinÿorderÿtoÿb etterÿunderstandÿhowÿtoÿact ÿonÿ
theÿ world.ÿ Asÿ neuro -physiologistsÿ explain,ÿ he/sheÿ mayÿ
unconsciouslyÿorÿcons ciouslyÿimitateÿotherÿpers ons.ÿItÿrefersÿ
toÿcognition,ÿfromÿacquiringÿcausationÿtoÿabstractÿre asoning.ÿ
Thereby,ÿ itsÿ mainÿ processÿ isÿ " virtualisation ."ÿ Theÿ "He/Sheÿ
pole"ÿ timeÿ ifÿ hierarchica lÿ andÿ chrono logicalÿ inÿ orderÿ toÿ
supportÿcausation.ÿEventsÿareÿorganizedÿfromÿpastÿtoÿf uture.ÿ
Butÿ oneÿ isÿ freeÿ toÿ moveÿ andÿ toÿ exploreÿ past,ÿ presentÿ andÿ
future.ÿ Pastÿ experiencesÿ areÿ usedÿ toÿ simulatedÿ actionÿ andÿ

anticipateÿ possibleÿ conseq uencesÿ ofÿ action.ÿ Spaceÿ isÿ
approachedÿ asÿ aÿ Euclideanÿ space;ÿ itÿ isÿ fla tÿ andÿ canÿ beÿ
abstractlyÿ manipulated.ÿ Weÿ identify ÿ itsÿ mainÿ proc essÿ asÿ
“virtualization”.ÿ
(b)ÿTheÿ “You"ÿPoleÿ dealsÿ with ÿ decision-makingÿ andÿ isÿ

interestedÿ inÿ maintainingÿ theÿ organismÿ equilibriumÿ
[Maturana,ÿ 1980 ;ÿMaturanaÿ etÿal.,ÿ 1995].ÿTherefore,ÿ itÿwillÿ
takeÿ intoÿconsiderationÿemotion alÿ internalÿstates,ÿandÿdoÿnotÿ
referÿ toÿ rationalÿ considerations .ÿ Itÿ isÿ deeplyÿ rootedÿ inÿ th eÿ
internalÿ existenceÿ ofÿ theÿ organism.ÿ Itÿ focusesÿ onÿ internalÿ
states,ÿ survivalÿ issues,ÿwelfareÿ andÿ relationshipsÿwithÿ pairs.ÿ
Itÿ supportsÿ theÿengagementÿ thatÿwill ÿbeÿ requiredÿ toÿexecuteÿ
theÿ action.ÿ Thatÿ isÿ whereÿ emotioning ÿ [Maturanaÿ 1980] ÿ
occursÿ basedÿ onÿ inn erÿ states.ÿ Inÿ aÿ certainÿ way,ÿ theÿ "Youÿ
pole"ÿisÿ timeless.ÿItÿ isÿanchoredÿinÿnaturalÿandÿph ysiologicalÿ
cycles.ÿ Whatÿ o nceÿ wasÿ aÿ thr eatÿ mayÿ remindÿ on eÿ ofÿ theÿ
threatsÿforever.ÿItÿhasÿnothingÿtoÿdo ÿwithÿhistoricalÿtime,ÿbutÿ
ratherÿ withÿ p hysiologicalÿ cyclesÿ andÿ symbolicÿ functionsÿ ofÿ
eventsÿregardingÿ one'sÿownÿlife.ÿItÿ starts,ÿdevelopsÿandÿendsÿ
things;ÿ thenÿ restarts,ÿ re -developÿ andÿ re -endsÿ things,ÿ andÿ soÿ
on.ÿ Spaceÿ isÿ curve;ÿ bringingÿ backÿ toÿ starti ngÿ point.ÿ Theÿ
"Youÿpole"ÿ isÿmeshingÿemotionsÿwithÿspace -timeÿevents.ÿ Inÿ
thisÿ model,ÿ theÿ processÿ en gagedÿ byÿ decision-makingÿ isÿ
identifiedÿasÿ“potentialization. "ÿ
(c)ÿTheÿ “Iÿ Pole”ÿ focusesÿ onÿ executingÿ adeq uatelyÿ

targetedÿandÿforecastedÿac tionsÿinÿorderÿtoÿpr oduceÿexpectedÿ
changesÿ or ÿ effectsÿ inÿ theÿ environments.ÿ The ÿ "Iÿ Pole"ÿ
commandsÿ actingÿ inÿ theÿ ex ternalÿ environmentÿ ofÿ theÿ
organism.ÿ Itÿ organizesÿ body -movementÿ withinÿ space.ÿ
Thereforeÿ itÿ isÿ basedÿ onÿ theÿ develop mentÿ ofÿ sensory-motorÿ
skills.ÿ Byÿ observing ÿ andÿ imitating,ÿ he/sheÿ be comesÿ anÿ "I"ÿ
whoÿ canÿ actÿ b yÿ he/herself,ÿ developsÿ acti onsÿ andÿ makesÿ
realizations.ÿ Thisÿ threeÿ linguisticÿ formsÿ ofÿ subjects,ÿ
underliesÿtheÿ definitionÿofÿthreeÿdiff erentÿpolesÿonÿwhich ÿweÿ
foundÿ (en)action.ÿTh eÿ "Iÿpole"ÿ isÿ aboutÿ actualizing .ÿ Itÿ isÿanÿ
actorÿ position.ÿ Thanksÿ toÿ thisÿ po le,ÿ actionÿ mayÿ becomeÿ
actualÿ throughÿ theÿ mobilizationÿ sensitiveÿ andÿ effectriceÿ
surfacesÿ requiredÿ b yÿ executing.ÿ Theÿ organismÿ developsÿ
movementsÿ toÿachieveÿ itsÿgo als.ÿTheÿ"Iÿpole"ÿ timeÿ isÿ rootedÿ
inÿ present.ÿ Whatÿ occurs,ÿ occursÿ now,ÿ withinÿ aÿ temporalÿ
windowÿ forÿ possibleÿ actionsÿ onÿ theÿ wor ld.ÿ Spaceÿ isÿ
condensedÿ andÿ imitatedÿ toÿ here,ÿwithinÿ theÿ spatialÿwindowÿ
forÿ possibleÿ actionsÿ onÿ theÿworld.ÿ Space -timeÿ isÿ contractedÿ
onÿ hereÿ andÿ nowÿ inÿ aÿ p articularÿ context.ÿ Itsÿ dynamicsÿ isÿ
strength.ÿ The ÿ genericÿ operatorÿ ofÿ realizationÿ isÿ
“actualization ”.ÿ
Theÿ "He/She-You-Iÿ formalism"ÿ consistsÿ inÿ threeÿ

differentÿ pol esÿ basedÿ onÿ threeÿ differentÿ proc esses.ÿ Thoseÿ
threeÿdifferentÿpolesÿ co -existÿ andÿworkÿ togetherÿ toÿ produceÿ
embeddedÿ an dÿ embodiedÿ action.ÿ Thatÿ isÿ whatÿ weÿ callÿ
(en)action.ÿ Eachÿ p oleÿ isÿ correlatedÿ withÿ o neÿ ofÿ theÿ threeÿ
stepsÿofÿtheÿneurop hysiologicalÿactionÿmodel.ÿ ÿ

2.3.ÿActionÿcoordinationÿ ÿ

Aÿ verticalÿ or ganizationÿ ofÿ ourÿ modelÿ definesÿ theÿ
phenomenalÿ spaceÿ ofÿ livi ngÿ [Merleau-Ponty,ÿ 1971] ÿ forÿ anÿ
organismÿ onÿ his/herÿ environment.ÿ Itÿ takesÿ itsÿ placeÿ wit hinÿ
ourÿpolarÿ structureÿ (horizontalÿ componentÿ ofÿ theÿ structure).ÿ
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Vertically,ÿ itÿ takesÿ placeÿ from:ÿ (1) ÿphysiologicalÿ anchorage,ÿ
embodimentÿ andÿ biologicalÿ groundingÿ (downward),ÿ (2) ÿtoÿ
wholenessÿ aÿ consciousnessÿ (upward)ÿ [Damasio,ÿ 200 1,ÿ
2002ÿ;ÿ Delacour,ÿ 2001;ÿ Mazoyer,ÿ 2002].ÿ Itÿ linksÿ togetherÿ
perception,ÿ actionÿ andÿ ph enomenologicalÿ experienceÿ [Noeÿ
andÿO'Regan,ÿ 2000;ÿMyinÿandÿO'Regan,ÿ2002 ].ÿWithinÿthisÿ
frameworkÿ d ifferentÿ kindÿ ofÿ actionÿ mayÿ takeÿ placeÿ fromÿ
low-levelÿ movementsÿ toÿ highlyÿ complexÿ andÿ long -termÿ
activities.ÿ Intermediateÿ levelsÿ facilitateÿ theÿ considerationÿ ofÿ
coordinationÿactivitiesÿandÿgrowingÿp artÿtakenÿbyÿconceptualÿ
andÿ formalÿ activities.ÿ Thereby,ÿ althoughÿ itÿ remainsÿ asÿ aÿ
difficultÿ andÿ quiteÿ formalizedÿ asp ectÿ ofÿ theÿ enactiveÿ modelÿ
ofÿ action,ÿ itÿ opensÿ pers pectiveÿ toÿ bridgeÿ andÿ createÿ
passagewayÿ betweenÿ differentÿ theoriesÿ asÿ [Piaget,ÿ 197 4a,ÿ
1974b,ÿMaturanaÿ etÿal.,ÿ1995;ÿDamasio,ÿ2001,ÿ200 2].ÿItÿhasÿ
toÿ beÿ pointedÿ outÿ thatÿ thoseÿ differentÿ theoriesÿ establishÿ
verticalÿ andÿ pr ogressiveÿ o rganizationÿ inÿ differentÿ levelsÿ toÿ
explainÿ differentÿ formsÿ ofÿ engagementÿ inÿ simpleÿ bodyÿ
activityÿ Vsÿ conceptualÿ and ÿ complexÿ langu ageÿ activity.ÿ
Thereby,ÿ thisÿmodelÿ providesÿ basesÿ toÿ suppor tÿ researchÿ onÿ
mechanismsÿ enablingÿ toÿ p assÿ fromÿ oneÿ levelÿ toÿ anotherÿ
(coordination,ÿ becomingÿ aware ÿ of,ÿ conceptualization…).ÿ Itÿ
facilitatesÿ theÿ breakingÿ d ownÿ toÿ partsÿ andÿ theÿ reverseÿ
movementÿ toÿ makeÿ upÿ th eÿ wholeÿ again.ÿ Itÿ constitutesÿ aÿ
verticalÿ andÿ dynamicÿ structure.ÿ Anÿ organizationÿ withinÿ
differentÿ levelsÿofÿactionÿcoordinatingÿ (going ÿupward,ÿmoreÿ
andÿmoreÿcomplexÿactionsÿoccur)ÿisÿusedÿtoÿsupp ortÿchoicesÿ
aboutÿ coup lingÿ usersÿ andÿ virtualÿ environmentsÿ in ÿ designÿ
situations.ÿWithinÿ thisÿ pheno menalÿ spaceÿ ofÿ living,ÿweÿ ca nÿ
refineÿdistinctionsÿupÿtoÿsevenÿlevels.ÿ ÿ

Encreasingÿÿ

embodiment

(Biologicalÿ
rootsÿ)

Phenomenalÿ
spaceÿÿofÿliving

Increasingÿlevelÿ

ofÿcoordinationÿ

andÿcomplex ityÿ

of actionsÿ

Potentialization
Actualization

Virtualisation

Organism/

environmentÿ

recursiveÿ

dependenciesÿ

Perceptualÿ

environmentÿ

(Umwelt)

ÿ
Figureÿ 2ÿ –ÿ Verticalÿ structureÿ andÿ organism/environmentÿ
couplingÿÿ

ÿ

3.ÿChoosingÿwhatÿtoÿdoÿnext ÿ

P° A°

V°

P° A°

V°

P° A°

V°

Medium

Derivated Action

Acceptedÿ action

Inhibited action

Decision

making

Medium

Medium

ÿ
Figureÿ 3ÿ –ÿ Decision-makingÿ aboutÿ acting:ÿ threeÿ possibleÿ
outcomesÿ
Inÿ orderÿ toÿ chooseÿwhatÿ t oÿdoÿnext,ÿb othÿ theÿ"He/sheÿpole" ÿ
andÿ theÿ "Youÿ p ole"ÿ areÿ important.ÿ Whenÿ theÿ forme rÿ
providesÿ anticipationÿ ofÿ whatÿ canÿ beÿ doneÿ next,ÿ theÿ " Youÿ
pole"ÿ willÿ makeÿ decisionÿ ofÿ whichÿ anticipationÿ hasÿ toÿ beÿ
engagedÿ and/orÿ inhibited.ÿ Th eÿ purposeÿ ofÿ decision -makingÿ
isÿ toÿ selectÿ theÿ actualizedÿ outcomeÿ ofÿ action.ÿ Decision -
makingÿ isÿ theÿp urposeÿofÿ theÿ "Youÿpole."ÿThereby,ÿ itÿ treatsÿ
theÿ simulationsÿ ofÿ possibleÿ consequencesÿ ofÿ actionÿ thatÿ areÿ
producedÿ byÿ theÿ "He/Sheÿ pole."ÿ Traditionalÿ approachesÿ ofÿ
decisionÿ p resentÿ twoÿ typesÿ ofÿ outcomeÿ ofÿ decision:ÿ aÿ
simulatedÿ actionÿ isÿ accepted ÿ orÿ inhibited .ÿ Currentÿ
neurosciencesÿ app roachesÿ underlineÿ theÿ roleÿ ofÿ inhibitionÿ
[Berthoz,ÿ 1997 ,ÿ 2003ÿ;ÿ Houdeÿ etÿ al. ÿ 2002 ].ÿ Pre-motorÿ
theoriesÿasÿwellÿasÿmirror -neuronÿapproachesÿ [Kohlerÿ etÿal. ,ÿ
2002;ÿ Rizzolattiÿ andÿ Craighero,ÿ 200 4;ÿ Gallese,ÿ 2005]ÿ
enlightenÿ howÿ neurop hysiologicalÿ phenomenaÿ areÿ engagedÿ
whetherÿ actualizationÿ ofÿ actionÿ isÿ decidedÿ orÿ not.ÿ Theÿ
explanationÿ isÿ thatÿoftenÿactiveÿ inhibitionÿ isÿ requiredÿnotÿ toÿ
act.ÿ Acceptationÿ ofÿ action ÿ willÿ engageÿ theÿ executionÿ orÿ
actualization ÿ ofÿ actionÿ ("Iÿ pole")ÿ basedÿ onÿ anticipationsÿ
producedÿ byÿ theÿ "He/Sheÿ pole."ÿ Thisÿmobilizesÿ energyÿ andÿ
hasÿ toÿbeÿspatiallyÿadapted.ÿDifferently,ÿ inhibitionÿofÿaction ÿ
leadsÿ toÿ noÿ changesÿ inÿ th eÿ outerÿ world.ÿ Actualizati onÿ ofÿ
actionÿ mightÿ beÿ eitherÿ cancell edÿ orÿ postp oned.ÿ Anotherÿ
temporalÿlocalizationÿmayÿhaveÿtoÿbeÿfoundÿan dÿenergyÿmayÿ
haveÿtoÿb eÿrecoveredÿorÿaccumulated.ÿAsÿfa rÿasÿdiversionÿofÿ
action ÿ isÿ concerned,ÿ anÿ enlargementÿ ofÿ mentalÿ viewsÿ orÿ
mechanismsÿhasÿ toÿbeÿ found. ÿThereby,ÿweÿdistinguishÿ threeÿ
possib leÿ outcomesÿ forÿ decision-makingÿ asÿ shownÿ inÿ theÿ
previousÿfigure.ÿ ÿ
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4.ÿDiscussionÿandÿperspectivesÿ ÿ

Weÿpresentedÿth eÿoutlineÿofÿaÿheuristicÿModelÿofÿ( En)Actionÿ
andÿitsÿHe/She-You-Iÿforma lismÿ[Mellet-d'Huart,ÿ2004].ÿThisÿ
modelÿ mayÿ helpÿ toÿ renewÿ theÿ modelÿ ofÿ decision ÿ ofÿ
autonomou sÿagents.ÿItÿsuppo rtsÿanÿembodiedÿandÿembeddedÿ
approachÿ ofÿ actingÿ andÿ learning.ÿ Evenÿ ifÿ theÿ formerÿ
conceptualÿmodelÿofÿautonomousÿ agentÿactivityÿ(perception -
decision-actionÿ cycle)ÿmightÿ seemÿ toÿ beÿ cl oseÿ andÿ canÿ alsoÿ
beÿ cutÿ inÿ threeÿ steps,ÿ theÿ modelÿ ofÿ ( En)Actionÿ differsÿ
radicallyÿ fromÿ theÿ p revious. ÿ Inÿ oneÿ case,ÿ itÿ isÿ aÿ
computationalÿ modelÿ ( perception ÿ =ÿ inputÿ ofÿ information;ÿ
decision ÿ=ÿoperatingÿaÿtreatmentÿonÿdata;ÿ actionÿ=ÿoutputÿonÿ
environment).ÿ Inÿ anÿ enactiveÿ model,ÿ anticipation ÿ isÿ aÿ
complexÿ andÿ activeÿ processÿ basedÿ onÿ bodyÿ experienceÿ andÿ
formerÿ conceptualization;ÿ decisionÿ makingÿ consistsÿ inÿ
evaluatingÿ internalÿ p hysiologicalÿ andÿ emotionalÿ stateÿ Vsÿ
emotionalÿconnotationÿofÿexternalÿdata;ÿandÿ executingÿdealsÿ
withÿaÿcomplex ÿengagemen tÿofÿaÿfinalizedÿbodyÿactivityÿ thatÿ
aimsÿtoÿaÿchangeÿinÿaÿc ontextualÿenvironment.ÿEachÿofÿthoseÿ
threeÿstepsÿ involvesÿaÿcoor dinationÿofÿpercep tiveÿandÿmotorÿ
skills.ÿOnlyÿ theÿ focusÿ ofÿ thisÿ ac tivityÿ changesÿ dependingÿ ofÿ
whereÿweÿareÿwithinÿtheÿactionÿ cycle.ÿÿ
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Abstract 

This mini-review considers some important 
landmarks in the evolution of animals, asking to 
what extent specialised action selection 
mechanisms play a role in the functional 
architecture of different nervous system plans, 
and looking for ‘forced moves’ or ‘good tricks’ 
(Dennett, 1995) that could possibly transfer to 
the design of control systems for mobile robots. 
A key conclusion is that while cnidarians (e.g. 
jellyfish) appear to have discovered some good 
tricks for the design of behaviour-based control 
systems—lacking specialised selection 
mechanisms; the evolution of bilaterality in 
platyhelminthes (flatworms) may have forced the 
evolution of a central ganglion (or ‘archaic 
brain’) whose main function is to resolve 
conflicts between competing peripheral systems. 
Whilst vertebrate nervous systems contain many 
interesting substrates for selection it is likely that 
here too, the evolution of centralised selection 
structures such as the basal ganglia and medial 
reticular formation may have been a forced 
move due to the need to limit connection costs as 
brains increased in size. 

1 Introduction 

Action selection is the task of resolving conflicts between 
competing behavioral alternatives. This problem has 
received considerable attention in the growing adaptive 
behavior literature (see Maes, 1995; Prescott, Redgrave, 
& Gurney, 1999) much of which has built on earlier 
research in ethology (see e.g. McFarland, 1989) where it 
is also described as the task of ‘decision making’, 
‘behavior selection’, or ‘behavior switching’. Whichever 
label is used, it is useful to recognise at the outset that the 
problem of selecting actions is really part of a wider 
problem faced by any complete creature, that of 
behavioural integration— 
“the phenomenon so very characteristic of living organisms, and 

so very difficult to analyse: the fact that they behave as wholes 

rather than as the sum of their constituent parts. Their behaviour 

shows integration, […] a process unifying the actions of an 

organism into patterns that involve the whole individual.” 

(Barrington, 1967, p. 415) 
In discussing control systems for mobile robots, Brooks 
(1994) has emphasised a similar notion of behavioral 

coherence which he places at the centre of the problem of 
autonomous agent design. As robots have become more 
complex, they have naturally gained an increasing variety 
of actuator sub-systems, many of which can act in 
parallel.  Controlling robots therefore requires the co-
ordination, in space and time, of many interacting sub-
systems, and the allocation of appropriate resources 
between them. The problem for control system design is 
to satisfy these multiple constraints in a manner that 
maintains the global coherence of the robot’s behaviour. 
Given this context, Brooks raises the concern that 
research directed at the more specific problem of action 
selection may not lead to automatic progress in the design 
of systems with behavioral coherence. It may be the case, 
for instance, that proposed action selection mechanisms 
will not scale-up to the task of controlling more complex 
robots; or, that we may come to see effective action 
selection as a consequence of maintaining behavioral 
coherence, rather than as a key element involved in 
creating it. 

What concerns us here, of course, is the question 
of the decomposition of control, also known as the 
‘problem of architecture’. Will an effective robot 
controller have components whose role is recognisably to 
resolve conflicts between different action sub-systems? 
Or, is action selection better regarded as an emergent 
property—the consequence of many and diverse 
interactions between multiple sub-systems? (and, in this 
sense, not something to be considered in isolation from 
other aspects of control). If effective integration is 
emergent then research on the design of action selection 
mechanisms per se may lead to a dead-end. On the other 
hand, if action selection or other related aspects of 
behavioural integration, can be implemented in 
specialised system components, then some of the 
advantages of modularity may accrue to the whole design 
process. Specifically, it may be possible to 
add/delete/modify different action sub-systems with less 
concern for the possibility of adverse, system-wide 
consequences for the maintenance of behavioural 
coherence. 

How are we to decide answers to these 
questions?  Our strategy in this paper is to attempt a brief 
survey of some relevant characteristics in the design of 
natural control systems for complete creatures—animal 
nervous systems. Our focus will be on those aspects of the 
functional architecture of nervous systems that seem to 
play an important role in action selection, or, more 
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broadly, in behavioural integration. In particular, we will 
look for evidence of structures that are specialised to 
resolve conflicts and that seem to have this as their 
primary function. The absence of such structures would 
favour the view that action selection is most often the 
emergent consequence of the interaction of sub-system 
elements concerned with wider or different aspects of 
control. Such findings might encourage us to pursue 
similar, distributed solutions to the coordination of 
complex robot control systems. The presence of candidate 
structures, on the other hand, would favour the view that 
complex control architectures can have a natural 
decomposition into components concerned with the 
sensorimotor control of action, and those concerned with 
the selection of action. Such findings would suggest a 
similar strategy for the decomposition of robot control. To 
anticipate our argument somewhat, we will be making the 
case that nervous system evolution does show evidence of 
specialised action selection mechanisms in some complex 
natural control systems. 
  Our approach is also an evolutionary one in that 
we will specifically consider animal nervous systems at 
three different and important grades in the evolution of 
complex metazoans (multicellular animals). To place 
what follows in this evolutionary context, figure 1 shows 
a phylogeny of the major metazoan phyla illustrating 
some of the principle early events in the evolution of 
animal body plans and nervous systems.  

From the perspective of this paper, the first event 
of particular note is the evolution (node 2 in the figure) of 
neurons and nerve nets in animals of the phylum cnidaria. 
This phylum includes a host of relatively simple, but also 
very intriguing animals such as jellyfish, sea anemones, 
corals, and hydrozoa (e.g. Hydra). These differ from the 
most primitive metazoa (the sponges—Porifera), in that 
they possess a variety of different tissue types; generally 
possess a radial symmetry; may have simple sensory 
organs; and have nervous systems composed of networks 
of nerve cells. Fossil evidence suggests that cnidaria were 
present in the Precambrian era (i.e. more than 550 million 
years ago), and are therefore likely to have been the first 
animals to evolve nervous systems of any kind. There is 

still a great deal to be learned about the functional 
architecture of cnidarian nervous systems, however, 
existing research does provide a number of very 
interesting pointers. Some of this evidence is reviewed in 
section 2 below. 

The next event, node 3, separates the bilateral 
animals from the other metazoan phyla, and identifies the 
platyhelminthes (the flatworms) as the most primitive 
form of bilaterian. Flatworms possess central nervous 
systems organised around a ‘brain’. Animals of this sort 
are known to have been present in the Precambrian as 
demonstrated by the large number of trace fossils that 
have preserved the behaviour (e.g. foraging trails) though 
not the body forms of worm-like animals from that period. 
Simulation of these trace fossil patterns indicates a 
capacity for intelligent coordinated behaviours not unlike 
that demonstrated in some simple behaviour-based robots 
(Raup & Seilacher, 1969; Prescott & Ibbotson, 1997). 
Section 3 reviews a number of findings concerned the 
functional architecture of the nervous systems of living 
platyhelminthes. 

Node 4 in our figure marks the beginning of a 
further momentous phase—the evolution of the metazoan 
phyla who share the use of the Hox regulatory gene 
cluster as a determinant of body patterning and nervous 
system organisation.  Many diverse animal types are listed 
here that can be distinguished into two distinct groups, the 
protostomes and the deuterostomes, on the basis of early 
events in embryological development. It is interesting to 
note that the evolutionary line leading to the vertebrates 
(belonging to the phylum chordata), probably diverged at 
a very early stage from that leading to invertebrate groups 
with more ‘advanced’ nervous systems (insects, 
cephalopods, etc.)—the common ancestor of all these 
bilaterians being of only flatworm grade. Of the 
deuterostomes, in fact, vertebrates are the only animals 
with highly developed nervous systems, although the 
echinoderms—such as sea urchins, and starfish—with 
their pentameral (five-sided) symmetry present some 
interesting problems (and solutions) in control system 
design!  
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Figure 1.  Phylogeny of early metazoans (based on Raff, 1996).  Important evolutionary changes include 1. multicellularity, 2. Radial 

symmetry, different tissue types, nerve nets.  3. Bilateral symmetry, internal organs, central nervous systems, brains. 4. Hox gene 

expression in nervous system and body patterning. 
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Fossil evidence shows a remarkable explosion of 
animal forms during the Cambrian period (543–505 
million years ago) in which all of the more advanced 
protostome and deuterostome phyla were represented, 
having been almost entirely absent from the fossil record 
at the end of the Precambrian. This evidence suggests the 
very rapid evolution of complex nervous systems as part 
of the general evolution of new body plans (Gabor  
Miklos, Campbell, & Kankel, 1994). Until relatively 
recently there were no uncontroversial vertebrate fossils 
of earlier origin than the Ordovician period (~495 million 
years ago), implying that vertebrates appeared somewhat 
later than this general explosion of bilaterians. However, 
finds from Chengjiang in China (the Chinese ‘Burgess 
shale’) show the presence of fish-like creatures in the 
early Cambrian (Shu et al., 1999)—between twenty and 
fifty million years earlier than was previously thought.  In 
Prescott et al. (1999) we have reviewed evidence 
supporting the conservation, through evolution, of a basic 
vertebrate brain plan which may have been present in 
early jawless fish. Taken together, this evidence suggests 
that the first vertebrate nervous systems may be as ancient 
as any of those of the protostome bilaterian phyla. There 
is insufficient space to consider the many and varied 
forms of nervous system architecture seen in the 
protostome invertebrates. Instead, section 4 considers a 
number of aspects of the functional architecture of 
vertebrate brains that have implications for understanding 
how action selection occurs in vertebrates.  

Finally, in section 5, we summarise our review of 
the evolution of action selection mechanisms in animal 
nervous systems and look for implications that could 
inspire the design of control architectures for autonomous 
robots. What exactly do we hope to find? The hope is that 
our study of comparative neurobiology will find evidence 
of what Dennett (1995) calls ‘forced moves’ in 
evolutionary design space, that is, outcomes imposed by 
strong task constraints; or ‘good tricks’—robust and 
relatively general solutions to common problems, either of 
which could be usefully transferred into the design space 
for autonomous mobile beings. 

2 Cnidarian nervous systems 

Whilst the most primitive metazoans, the sponges, lack 
neurons and respond only to direct stimulation (usually 
with a very slow, spreading contraction), cnidarians have 
quite complex nervous systems, composed, principally, of 
distributed nerve nets, and show both internally generated 
rhythmic behaviour, and co-ordinated patterns of motor 
response to complex sensory stimuli.  

The basic cnidarian nerve net is a two-
dimensional network of neurons that has both a sensory 
and a motor capacity, and in which there is no distinction 
between axons and dendrites—nervous impulses therefore 
propagate in both directions between cells (Mackie, 
1990). According to Horridge (1968), in the most 
primitive nerve nets “the spatial pattern is irrelevant, the 
connectivity pattern has no restrictions. […] any fibre is 
equivalent to any other in either growth or transmission” 
(p. 26).  

The lack of intermediary forms of nervous 
system organisation between the aneural sponges and the 

cnidarian nerve net means that the evolutionary origin of 
nerve nets, and of nervous tissue in general, is shrouded in 
mystery. It seems likely, however, that neural conduction 
was preceded by more primitive forms of communication 
in which signals were propagated directly between 
neighbouring cells (indeed this form of non-neural 
communication exists alongside neural conduction in 
some cnidarians— Josephson, 1974). The evolution of the 
nerve net can then be understood as facilitating more 
rapid and more specific communication over longer 
distances, which would allow both quicker responses and 
increased functional diversification between different cell 
groups (Horridge, 1968; Mackie, 1990). Most of the 
neurophysiological features of more ‘advanced’ metazoan 
nervous systems are actually present at the cnidarian 
grade including multifunctional neurons, action potentials, 
synapses, and chemical neurotransmission. For 
Grimmelikhuijzen and Westfall (1995) the presence of 
such features shows cnidarians to be “near the main line” 
of evolution, and suggests that the study of their nervous 
systems will illuminate some of the properties of nervous 
systems ancestral to the higher metazoans. 

The nervous systems of extant cnidarians are, in 
fact, more sophisticated than the above characterisation of 
simple nerve nets indicates. For instance, Hydra, one of 
the more primitive living cnidarians, has a variety of 
different neuronal cell-types, and while most belong to 
diffuse networks, some are found in localised, well-
defined bundles that may have specific functional roles 
(Josephson & Mackie, 1965; Mackie, 1990). In other 
cnidarians, such as the hydrozoan jellyfish, parts of the 
nerve net are fused to form longitudinal or circular tracts 
that allow very fast signal conduction and can support fast 
attack, escape, or defense reactions. Many of the free-
living cnidarians also possess light-sensitive and gravity-
sensitive organs that allow behaviours such as orientation, 
sun compass navigation, and daily migration (see, e.g. 
Hamner, 1995); unfortunately the neural substrate that 
supports such behaviours remains poorly understood. 

What is known about the functional architecture 
of cnidarian nervous systems? Horridge (1956; 1968) 
describes the decomposition of the nervous system of the 
jellyfish Aurelia aurita into two distinct components: a 
network of bipolar neurons that controls the symmetrical, 
pulsed contraction of the bell and enables the animal to 
swim; and a second more diffuse network, consisting 
largely of small multipolar neurons, that is spread across 
the body, tentacles, and margins of the animal, and 
coordinates localized feeding movements. These two 
systems, which are illustrated in figure 2 for the larva of 
Aurelia aurita, have relatively few interconnections and 
show clear evidence of independent operation. A similar 
functional subdivision of the nerve net into two or more 
parts has also been noted in a variety of other cnidarians 
such as sea anemones. This behavioural decomposition of 
control, with physically distinct circuits for feeding and 
movement, clearly shows an interesting similarity to that 
proposed for behaviour-based robots (see, e.g. Brooks, 
1991).  

The question arises, however, are alternative 
decompositions of the nervous system possible? Meech 
(1989) describes a jellyfish, Aglantha digitale, in which a 
single nerve net can carry two different types of action 

38



potentials enabling either rapid escape swimming, or, 
slow rhythmic swimming for feeding. Similarly, the sea 
anemone Actinia, uses impulse patterns of different 
frequency to obtain distinct feeding and escape 
behaviours from a single nerve net (Mackie, 1990). Thus, 
there seems to be no strong requirement for a separate 
neural substrate for different classes of behaviour in these 
animals.  
 

  
Figure 2. Nervous system of the ephyra larva of Aurelia aurita, 

showing, in two arms of the bell, a) the swimming network 

controlling the circular, and radial muscles; b) the diffuse nerve-

net underlying feeding behaviour. A marginal ganglion is 

located at the base of each tentaculocyst. From Horridge (1956). 

with permission from the Company of Biologists Ltd. 

 
The lack of centralised nervous system components in 
cnidarians also leads to some interesting and elegant 
solutions to the problem of generating an integrated global 
response. For instance, consider the fast escape behaviour 
of a jellyfish which can be triggered by contact at any 
point on the periphery of the animal. Since jellyfish swim 
by the synchronous, simultaneous contraction of the entire 
perimeter of the bell, the lack of centralised signalling 
presents an interesting control problem for which Mackie 
(1990) describes two contrasting solutions. One solution, 
seen in Aglantha, uses a giant axon with very fast 
conductance so that a single spike can circumnavigate the 
periphery in just a few milliseconds. An alternative and 
more remarkable solution, seen in the much larger species 
Polyorchis, involves a ring of neurons that carries action 
potentials that change shape as they circle the bell. 
Successive muscles groups respond to these changing 
shapes by contracting at shorter and shorter latencies, thus 
ensuring a uniform and synchronised contraction of the 
whole perimeter. This elegant solution appears to depend 
solely on membrane-level properties of the neurons 
involved (Spencer et al. 1989). 

According to Horridge (1956) the two 
functionally distinct nerve nets of Aurelia aurita make 
contact with one another in neuron clusters termed the 
marginal ganglia. Each ganglion is part of the swimming 
network and is involved in the regular beat of the 
swimming contraction; it can also generate its own regular 
pulse if isolated from other parts of the network (thus 
showing an intrinsic rhythm generating capacity). Each 
ganglion is also in contact with the diffuse network that 
underlies the feeding response. Excitation in the diffuse 
network can inhibit the swimming rhythm or, in some 
cases, accelerate the rhythm. This evidence suggests the 
possibility of a hierarchical arrangement: pattern 
formation (the swimming beat) seems to be under the 

distributed control of multiple pace-maker systems, whilst 
the behaviour of this swimming network is under the 
modulatory control of the diffuse feeding network. If this 
is the case, then we could view this jellyfish nervous 
system as providing a natural example of a subsumption 
architecture (Brooks, 1986) composed of two distributed 
layers of control. 

Cnidarian nervous systems demonstrate the ability 
of relatively simple nerve networks to support multiple 
behavioural modes, in some cases, using the same neural 
structures to generate two quite different patterns of 
activity. Whilst a likely physical substrate (the marginal 
ganglia) has been identified for the interaction between 
feeding and swimming in some jellyfish species there is 
no suggestion that these structures or pathways are 
exclusively involved in action selection. Although 
behavioural decomposition of function seems to be a 
probable cnidarian trait, decomposition involving 
specialised selection structures seems less likely. On the 
contrary, cnidarian nervous systems seem rather good 
preparations in which to study behavioural integration as a 
global, emergent property of the control system 
architecture. 

3 Flatworm nervous systems 

The phylum platyhelminthes comprises the free-living 
turbellarians and the parasitic flukes and tapeworms. The 
focus here will be on the turbellarians as the consensus in 
modern zoology is that these animals provide a better 
indication of the ancestral characteristics of the phylum. 
In the evolution of bilateral animals a critical development 
was the appearance of a central nervous system organised 
around a massed concentration of nerve cells called the 
cephalic ganglion—the ‘archaic brain’. In flatworms we 
find the simplest living animals that possess this form of 
nervous system architecture (Reuter, 1989). 

Flatworms are bilaterally symmetric having 
distinct anterior and posterior ends, and dorsal (upper) and 
ventral (lower) surfaces. Sensory systems are distributed 
symmetrically between the left and right sides of the 
body, but together with the nervous system often show a 
concentration, termed cephalization, towards the anterior 
end of the body. The free-living turbellarians range in size 
from a few millimetres to tens of centimetres. They are 
found in aquatic environments or moist terrestrial 
environments where most pursue a predatory or 
scavenging life-style requiring a repertoire of reasonably 
complex behaviours. Turbellarian nervous systems appear 
in a bewildering variety of different configurations, none 
of which can necessarily be considered primitive (Reuter, 
1989). Typically, there are three to five pairs of major 
nerve cords connecting with the cephalic ganglion. These 
cords are interlinked by circular commissures (bands of 
nerve fibres), which themselves make connections with 
networks (plexuses) of nerves underlying muscular and/or 
epithelial tissue. The cell bodies of sensory neurons are 
found near the periphery while those of motor neurons 
and interneurons are distributed throughout the nerve 
cords and the brain. The concentration of nerve cells into 
cords, fibres, and ganglia distinguishes this type of central 
nervous system from the nerve nets of the cnidaria. 
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Our discussion of the functional architecture of 
the flatworm nervous system follows the research of 
Gruber and Ewer (Gruber & Ewer, 1962) and of 
Koopowitz and co-workers (reviewed in Koopowitz & 
Keenan, 1982) which has focused on the role of the brain 
in marine polyclad turbellaria.  

 

  
Figure 3. Nervous system of the turbellarian Planocera 

gilchristi, showing the brain (Br), pharynx (Ph), and major nerve 

cords (1V-VII). The finest granularity of nerve fibres is only 

shown in the central areas around the pharynx. From Gruber and 

Ewer (1962) with permission from the Company of Biologists 

Ltd. 

 
Gruber and Ewer studied the effect of brain removal on 
the behaviour of the polyclad Planocera gilchristi, whose 
nervous system is pictured in figure 3. Planocera usually 
moves by swimming or crawling along the substrate. 
Swimming involves the generation of a transverse wave 
that moves backwards along the length of the body, while 
crawling involves a regular alternating extension of the 
two sides of the body. Following brain removal, Gruber 
and Ewer reported that components of both normal 
swimming and normal crawling were present in 
decerebrate animals but that these were never integrated 
into the normal sequences—the overall movement of the 
animal was irregular and uncoordinated. Similarly, 
decerebrate animals lacked a normal rapid righting 
response when placed in an inverted position, although 
they could eventually right themselves by making 
writhing and twisting movements. These animals also 
failed to display the normal retraction response to 
mechanical stimulation, again responding with an 
uncoordinated writhing. 
Gruber and Ewer also describe the effects of 
decerebration on the feeding behaviour of Planocera. This 
behaviour was the subject of further detailed investigation 
by Koopowitz who went on to examine decerebrate 
feeding in another marine polyclad—Notoplana. The 
behaviour of Notoplana will be described here as it is 
typical of the general pattern of results obtained with 
these animals.  

In the intact polyclad worm presentation of a 
food item near to its posterior margin will cause it to 
extend a nearby portion of that margin and use this to take 
hold of the food.  The animal will then rotate the anterior 
part of its body on that side, until the anterior margin 
comes into contact with the food. The posterior margin 
subsequently loosens its grip allowing the anterior edge to 
manipulate the food into the mouth. This sequence of 
behaviour is shown in figure 4a. When fed with large food 

items (dead shrimps) the animal becomes satiated after a 
few food presentations and the feeding response ceases. 

 
Figure 4. Feeding behaviour of the polyclad Notoplana. A. In 

the intact animal contact with an item food at the posterior 

margin causes a whole body response in which the animal turns 

and grabs the food with its anterior edge before passing it to the 

central, ventrally located mouth.  B. In the decerebrate animal, a 

‘local feeding response’ causes food to be passed directly to the 

mouth. From Koopowitz and Keenan (1982) with permission 

from Elsevier Science. 

 
In the decerebrate animal, in contrast, the body turn to 
bring the anterior margin into contact with the food is 
never observed. Instead, the animal performs a ‘local 
feeding response’ in which it gradually moves the food 
directly to its mouth via the underside of its body (figure 
4b). In addition to the lack of a coordinated ‘whole body’ 
feeding response the decerebrate animals show no satiety 
and will continue passing food items towards the mouth 
even once the gut is completely full. Control experiments 
in which the brain remains intact but the main posterior 
nerves on one side of the body are severed, show feeding 
behaviour characteristic of the normal animal on the intact 
side, and that characteristic of the decerebrate on the cut 
side. 

Overall, these experiments on decerebrate 
polyclad behaviour demonstrate the role of the brain in 
regulating local reflexive actions whose neural substrate is 
located in the periphery of the animal.  In the case of 
crawling and swimming, the brain orders the temporal 
sequence of local activity in different marginal areas of 
body.  In the case of feeding, the brain holds the ‘local 
feeding response’ under inhibitory control whilst enabling 
actions involved in the ‘whole body’ feeding response. 

The centralized coordination of behaviour seen 
in the polyclad stands in interesting contrast to the 
distributed nature of control noted in the cnidaria. What 
evolutionary pressures may have brought about such a 
significant change in the functional organization of 
nervous systems? Koopowitz and Keenan (1982) contrast 
two possible explanations for the evolution of the first 
brains. The first possibility is that the brain is one of 
several consequences of the process of cephalization—the 
aggregation of sensory systems in the anterior portion of 
the animal. According to this explanation, the co-
ordination of peripheral mechanisms becomes focused in 
the brain in order to place it closer to the principle sources 
of afferent stimulation. This view also makes the primary 
role of the archaic brain one of response initiation. The 
alternative view, favoured by Koopowitz and Keenan, is 
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based on the observation that although all polyclads have 
brains, only a few show significant cephalization.  
Instead, the origin of the brain could be attributable to a 
more fundamental change in the body plan of the 
organism—the evolution of bilateral symmetry: 

“We consider that the development of bilateral symmetry, 

rather than cephalization, was the prime feature that necessitated 

the evolution of the brain. Bilateral symmetry required that the 

righthand side know what was happening on the left, and vice 

versa. In effect, with the advent of bilateral symmetry, the 

evolution of the brain was necessary for the coordination of 

disparate peripherally-based reflexes. This was of prime 

importance in preventing the two sides from engaging in 

contradictory activities.”  (Koopowitz and Keenan, 1982, p. 78) 

From the perspective of this paper, this interesting 
proposal might be paraphrased as the hypothesis that the 
brain first evolved as a centralised mechanism for action 
selection.  

Koopowitz and co-workers also describe further 
experiments in which half of the polyclad brain is excised, 
and the severed cephalic nerve cords allowed to regrow, 
re-establishing appropriate functional connections with 
the remaining half-brain. In other experiments the brain of 
one animal is transferred in its entirety into another’s 
body and once again re-exerts many of its original 
behavioural controls over the periphery. Finally, brain-
control returns even if the brain is re-inserted upside-
down or rotated 180° (try doing this with a robot’s CPU!). 
This robustness of function is particularly remarkable 
given that the brain is clearly much more than a relay 
station between the two halves the animal, but instead 
plays an integrative role in selecting appropriate patterns 
of peripheral motor acts.  

4 Vertebrate nervous systems 

The evolution of the vertebrate nervous system is a 
critical unsolved problem in evolutionary neurobiology. 
Vertebrates belong to the phylum chordata whose 
members all possess, at some stage in their development, 
a single, hollow nerve cord, called the neural tube, which 
runs most of the length of the longitudinal body axis. 
Unfortunately, all living protochordates (that is, animals 
of the chordate phylum that are not vertebrates) have 
relatively simple nervous systems, and only one species, 
Branchiostoma (previously known as Amphioxus), has a 
nervous system that could resemble a transitional stage 
between ancestral chordate and vertebrate. Branchiostoma 
shows elaborations at the anterior end of the neural tube 
that may be homologous to some regions of the vertebrate 
brain (Lacalli, 1996); however the ‘brain’ of 
Branchiostoma is tiny, it sensory systems primitive, and 
its behaviour very simplified compared with that of living 
vertebrates. In the modern fauna, the most primitive 
vertebrate characteristics are found amongst the jawless 
fish (Agnatha). Examination of these animals has shown 
the same gross morphological divisions of the nervous 
system—spinal cord, hindbrain, midbrain, and 
forebrain—as are present in other vertebrate classes. 
Indeed, impressions of these structures have also been 
found in the fossilized endocasts (casts from the inside of 
fossil skulls) of ancient agnathans. This evidence suggests 
that a basic ‘ground plan’ for the nervous system is shared 

by all living vertebrate classes, and possibly by all 
ancestral vertebrates (see Prescott et al, 1999). 

The substrate for action selection in a control 
architecture as complex as the vertebrate nervous system 
is likely to involve many different mechanisms and 
structures. The following brief review is by no means 
exhaustive but considers a few promising candidates. 
Beyond the mechanism identified here, selection as the 
emergent consequence of interactions between circuits 
with wider functional roles may also play an important 
role. 

Conflict resolution for clean escape 

One of the requirements for effective action selection is 
timely, sometimes very rapid, decision making. 
Transmission and response times in neural tissue are not 
negligible so for urgent tasks it is important to ensure that 
time is not lost resolving conflicts with competing 
behaviours. Indeed, there is evidence to suggest, that for 
tasks such as defensive escape, special circuitry may have 
evolved in the vertebrate nervous system to provide a very 
fast override of the competition. The giant Mauthner cells 
(M-cells) found in the brain-stem of most fish and some 
amphibians provide an example of this function. M-cells 
are known to be involved in the ‘C-start’ escape 
maneuver—the primary behaviour used by many species 
of fish to avoid hazards such as predation. Eaton, Hofve, 
and Fetcho (1995) have argued that the principle role of 
the M-cell in the brainstem escape circuit may not be to 
initiate the C-start but to suppress competing behaviours. 
This conclusion is supported by evidence that removal of 
the M-cells does not disable the C-start or have a marked 
effect on the strength or latency of the response. Instead, 
the fast conduction of the Mauthner giant axon (one of the 
largest in the vertebrates) may be crucial in ensuring that 
contradictory signals, that could otherwise result in fatal 
errors, do not influence motor output mechanisms. 
Conservation of brain-stem organization across the 
vertebrate classes suggests that homologous mechanisms 
may play a similar role in the escape behaviours of other 
vertebrates. 

Fixed priority mechanisms 

Many studies of the role of the vertebrate brain in 
behavioural integration suggest that the resolution of 
conflict problems between the different levels of the 
neuraxis (spinal cord, hind-brain, mid-brain, etc.) may be 
determined by fixed-priority, vertical links. For instance, 
in (Prescott et al., 1999) we have reviewed evidence that 
the vertebrate defense system can be viewed as a set of 
dissociable layers in which higher levels can suppress or 
modulate the outputs of lower levels (using mechanisms 
somewhat similar to the inhibition and suppression 
operators employed in the subsumption architecture). 
Fixed-priority mechanisms cannot, however, capture the 
versatility of behaviour switching observed between the 
different behaviour systems (defense, feeding, 
reproduction, etc.) found in adult vertebrates. Since 
dominance relationships between behaviour systems can 
fluctuate dramatically with changing circumstances more 
flexible forms of selection are required than can be 
determined by hard-wiring. 
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Reciprocal inhibition 

A specific form of neural connectivity, often associated 
with action selection, is mutual or reciprocal inhibition 
(RI). In networks with recurrent reciprocal inhibition two 
or more sub-systems are connected such that each one has 
an inhibitory link to every other. Such circuits make 
effective action selection mechanisms since the most 
strongly activated sub-system will receive less total 
inhibition than any of the others; and the recurrent 
connectivity of the system results in positive feedback that 
rapidly maximises the activity of this ‘winner’ relative to 
all the other ‘losing’ sub-systems. RI connectivity has 
been identified in many different areas of the vertebrate 
brain (Windhorst, 1996) and could play a role in conflict 
resolution at multiple levels of the nervous system 
(Gallistel, 1980). One likely locus for selection via RI is 
the superior colliculus in which within-nucleus long-
range inhibitory and short-range excitatory connections 
may co-operate to select a single target for visual 
orienting out of several available candidates.  This 
possibility is discussed in our companion paper 
(Chambers, Gurney, & Prescott, this volume).   

Centralised selection mechanisms 

Snaith and Holland (1990) have contrasted a distributed 
action selection based on RI with a system that employs a 
specialized, central switching device. They note that to 
arbitrate between n competitors, an RI system with full 
connectivity requires n(n-1) connections, while adding a 
new competitor requires a further 2n connections. In 
contrast, a system using a central switch requires only 2 
connections per competitor (to and from the switch) 
resulting in 2n connections in all. Adding a further unit 
requires only 2 additional connections. On this 
comparison, a central switching device clearly provides a 
significant advantage in terms of economy of connections 
costs. Ringo (1991) has pointed out that geometrical 
factors place important limits on the degree of network 
interconnectivity within the brain. In particular, larger 
brains cannot support the same degree of connectivity as 
smaller ones—significant increases in brain size (as have 
been seen in vertebrate evolution) must inevitably be 
accompanied by decreased connectivity between non-
neighbouring brain areas. Since functional units in 
different parts of the brain will often be in competition for 
the same motor resources, the requirement of lower 
connectivity with increased brain-size therefore strongly 
favours selection architectures with lower connectional 
costs.  

We have proposed (Prescott et al., 1999; 
Redgrave, Prescott, & Gurney, 1999) that a group of 
functionally related structures in the vertebrate fore- and 
mid- brain, called the basal ganglia, appear to be suitably 
connected and configured to serve as an array of 
specialized central switching devices that could provide 
effective conflict resolution with economical 
interconnectivity. We have developed a number of 
computational and robotic models of the basal ganglia 
from this perspective (see Prescott et al, in press; Gurney, 
Prescott, Wickens, & Redgrave, 2004, for reviews), 
including one described in our companion paper 
(Chambers et al., this volume) that specifically considers 
the interaction between basal ganglia selection 

mechanisms and more localised selection circuits in the 
superior colliculus.  

Studies of infants rats in whom the basal ganglia 
are not yet developed (see, e.g. Berridge, 1994), and in 
animals in which the forebrain has been removed, indicate 
that, below the basal ganglia, there is a brainstem 
substrate for selection that, at the very least, can provide 
appropriate behaviour switching while the adult 
architecture is developing or when it is damaged or 
incapacitated. One likely locus for this mechanism is in 
the medial core of the brainstem reticular formation (RF).  
Our group is also involved in investigating computational 
models of selection in this structure (Humphries, Gurney, 
& Prescott, In press) the latest of which is described in a 
second companion paper (Humphries, Gurney, & 
Prescott, this volume).  

Both the basal ganglia and the RF medial core lie 
in central positions along the main neuraxis (see figure 5). 
They have been described collectively as forming the 
brain’s ‘centrencephalic core’, and identified by a number 
of neurobiologists as playing a key role in the integration 
of behaviour (see Prescott et al., 1999 for review). In the 
intact adult brain, it is likely that both systems co-operate, 
in some unknown manner, to determine what form of 
behaviour is expressed at a given time. 

 

 
Figure 5. Systems for action selection in the vertebrate brain: A 

saggital slice through the rat brain illustrating the locations of 

medial core of the reticular formation (RF), the basal ganglia 

(Striatum, Pal—Pallidum, SNr—Substantia Nigra, STN—

subthalamic nucleus), and the superior colliculus (SC). 

6 Conclusions: ‘forced moves’ and ‘good 

tricks’ in the evolution of action selection 

We have provided a brief review of the neural substrate of 
action selection in a number of living animal groups. Our 
review has been limited to discussing neural circuits 
although there is good evidence that other mechanisms, 
such as the endocrine system, can play an important role 
in action selection (see, e.g. Barrington, 1967; Brooks, 
1994). Despite these limitations, we believe that a number 
of conclusions can be drawn from the findings we have 
surveyed. 

First, the investigation of cnidarian nervous 
systems shows that many forms of behavioural integration 
can be achieved in complex multi-celled animals in the 
relative absence of centralised nervous system structures. 
The elegance of these natural solutions is only just 
beginning to be matched by those developed for 
distributed robot control systems. We suspect that the 
study of cnidarian nervous systems and behaviour could 
provide some ‘good tricks’ for the design of future 
‘minimalist’ mobile robots.  
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Second, our review of flatworm nervous systems 
suggests that the evolution of centralised selection 
mechanisms in the archaic brain may have been a ‘forced 
move’ required to maintain behavioural coherence in a 
bilaterally-organised animal. It seems likely that the 
design of artificial control systems could benefit from the 
use of similar centralised conflict resolution systems 
because of the advantages that this form of modularity can 
confer (see Prescott et al., 1999; Bryson, 2000). 

Finally, our review of the neural substrate of 
action selection in vertebrates has identified a number of 
candidate mechanisms that may be instantiated in their 
neural circuitry. This evidence suggests the existence of 
multiple substrates for action selection in the vertebrate 
nervous system. A key proposal is that vertebrates exploit 
specialized selection circuitry found in groups of 
centralised brain structures—the medial core of the 
reticular formation and the basal ganglia. It seems 
possible that the connectional economy of this centralised 
design, which can act to resolve competitions between 
functional sub-systems distributed widely in the brain, 
may be one the reasons that the vertebrate nervous system 
has scaled successfully with the evolution of animals of 
larger brain and body size. The design of control systems 
for robots with multiple actuator sub-systems should 
benefit from a better understanding of how these different 
elements of the vertebrate nervous system co-operate to 
maintain behavioural coherence. 
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Abstract
We consider the possibility that positive feedback
loops are exploited by the brain in determining
which action to perform at any given moment. We
emphasise the need for, and requirements of, a
controller that can exploit the potential benefits,
and overcome the inherent pitfalls of using posi-
tive feedback for selection. We present the ver-
tebrate basal ganglia as one possible solution to
this control problem, and focus on basal ganglia in-
volvement in the oculomotor system of the primate
brain, presenting it as an example of how positive
feedback and competitive dynamics are used syn-
ergistically to bring about changes in gaze. Finally
we strengthen the case for involvement of positive
feedback mechanisms in reflexive gaze control by
demonstrating that a computational model of the
oculomotor system is able to reproduce eye move-
ment abnormalities present in sufferers of Parkin-
son’s disease - a disease that affects the basal gan-
glia, and consequently the control of positive feed-
back.

1 Introduction
Humans make approximately 3 eye movements every second.
Some of these are made deliberately, for instance when read-
ing, while others are made in response to external events. In
a complex environment there are apt to be a countless num-
ber of objects vying for attention. How then does the brain
determines which of these is worthy of further scrutiny, and
how does it ensure that the eyes are guided to that object ac-
curately, without interference from competing targets?
The answer to these questions may lie in the discovery

of anatomical links between the oculomotor system and the
basal ganglia (BG), a set of deep brain nuclei that are impli-
cated in decision making [Hikosaka et al., 2000; Redgrave
et al., 1999]. The work reported here seeks to explore the
nature of this link through the use of computational models.
In particular, we focus on an explanation for the neural ac-
tivity recorded in reactive saccade tasks, and how this relates
to certain reaction time phenomena observed in Parkinson’s
Disease (PD) patients.

Figure 1: Brain areas forming the reactive oculomotor sys-
tem. SC - superior colliculus; SG - saccadic generator; TH -
thalamus; FEF - frontal eye fields; BG - basal ganglia. Solid
and dashed lines denote excitatory and inhibitory projections
respectively.

1.1 Oculomotor abnormalities in Parkinson’s
disease

PD is a degenerative disease characterised by the death
of midbrain neurons that produce the neuro-modulator
dopamine (DA). The input nucleus of the BG, the striatum, is
a major target of these DA cells, and consequently their death
causes a loss of modulatory control over the BG. PD patients
show a number of characteristic abnormalities in saccadic
control. These include hypometric saccades (undershooting
the target), decreased saccadic velocity, and failure to gener-
ate saccades (akinesia) (see [Kennard and Lueck, 1989] for
review). Interestingly, in some experimental paradigms, PD
patients also show a ’paradoxical’ reduction in response time
(RT; the length of time between target onset and saccade initi-
ation). The design and results of one such experiment [Briand
et al., 1999] are shown in figure 2. The experiment demon-
strates a small RT advantage for PD (of ⇠10 ms), and a re-
duction in saccade amplitude (⇠5%; see [Briand et al., 2001],
for an experiment that yields a more significant result). Be-
cause PD is a disease that almost exclusively affects the BG,
we hope that by attempting to explain the result of Briand et
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Figure 2: The experimental paradigm used by Briand et al., [1999] to test reactive saccades in PD patients. Subjects fixate a
central stimulus for 800 ms. This is extinguished, and 187 ms later one of two possible target stimuli is illuminated to which
the subject makes a saccade. RTs are measured from the time of target onset to the time of saccade onset. Gain ratio is the ratio
of final eye displacement to actual displacement required to centre the gaze on the target.

Figure 3: A model of the SC based on Arai et al.[1994]. Solid
and dashed lines denote excitatory and inhibitory projections
respectively. Double-lines denote topographic projections.
See text for description.

al., we will gain further insight into the role of the BG within
the oculomotor system and, more generally, as the neural sub-
strate for decision making.

1.2 The oculomotor system
The superior colliculus and saccadic generator
Retinal ganglion cells project directly to the superior collicu-
lus (SC; [Schiller and Malpeli, 1977]), a multi-layered, mid-
brain structure, that preserves the spatial organisation of its
retinal input. Figure 3 shows the basic connectivity of the SC
as implemented in the model of Arai et al. [1994] (hereafter
referred to as the Arai model) which we have incorporated
into our own large-scale model (discussed in methods sec-
tion). The superficial layer of the SC relays its phasic retinal
input to deeper motor layers, which in turn, send excitatory

Figure 4: A typical VM response. Bars marked F and T de-
note the presence of the fixation and target stimuli respec-
tively. Middle trace shows mean response of a group of VM
cells recorded from the SC motor layer of a monkey. Bottom
trace denotes position of eye.

projections to a set of brainstem nuclei, collectively known as
the saccadic generator (SG) circuits, which provide closed-
loop control of the eye muscles [Sparks, 2002].
The inner workings of the SG are beyond the scope of this

paper, however, one important detail of SG operation is key to
understanding later discussions. Models of the SG invariably
incorporate a class of cell known as an omni-pause-neuron
(OPN), that are thought to actively inhibit the neurons which
drive changes in eye position. In a recent SG model proposed
by Gancarz et al. [1998] (hereafter referred to as the Gancarz
model), the saccade command that the SG receives from the
SC and FEF, is responsible for inhibiting the OPNs, so that
saccades will only be initiated if the saccade command is of
sufficient magnitude, and as such the OPNs provide a thresh-
old for action (as indicated by the step icon in figure 3).

The frontal eye field
Another important source of input to the SC comes from the
frontal eye field (FEF), an area of the frontal lobes impli-
cated in saccade generation. The FEF receive (among other
sources) a strong input from the posterior cortices that com-
prise the ’where’ pathway of visual processing. The nature of
the processing that takes place in the posterior cortices is not
important for our purposes (as alluded to by the direct con-
nection between the retina and the FEF in figure 1), other than
to say, that it preserves a retinotopic organisation, and that it
displays tonic activation when a visual stimulus is present on
the retina. In addition to projecting to the SC, the FEF also
project directly to the SG so that a subject with a SC lesion is
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still able to generate saccades.

The visuo-motor response
Electrophysiological studies with primates have revealed that
neurons in the SC and FEF display very similar patterns of
activity during oculomotor tasks. One common class - the vi-
suomotor (VM) response - is observed when a stimulus sud-
denly appears in peripheral vision and subsequently forms
the target of a saccade. VM cells display a bimodal activity
profile, in which the first peak (visual) is a phasic response
locked to the time of stimulus onset, and the second peak
(motor) is a phasic response that coincides with the time of
saccade onset (Figure 4; [Munoz and Wurtz, 1995]). In their
landmark study, Hanes & Schall [1996] demonstrated that
saccadic RT is determined by the rate at which FEF motor
activity grows towards a threshold firing rate, consistent with
psychological models of decision making [Ratcliff, 1978].

Positive Feedback in the Oculomotor System
Given that the motor component of the VM response is criti-
cal in determining RT, it is interesting to consider what causes
it. Arai et al. [1994] suggest that the build up is generated by
local excitatory loops within the SC motor layers and trig-
gered by the BG (Figure 3). The substantia nigra pars retic-
ulata (SNr) - one of the output nuclei of the BG - provides
strong tonic inhibition to the SCmotor layer, but this is known
to pause just prior to saccade initiation [Hikosaka et al.,
2000]. The Arai model shows that this disinhibition can cause
residual visual activity in the SC motor layers to be amplified
by local (SC-SC) positive feedback. Inspection of figure 1
reveals that the oculomotor system contains at least two addi-
tional positive feedback loops (PFBLs): SC-TH-FEF-SC, and
FEF-TH-FEF (TH = thalamus) [Sommer and Wurtz, 2004;
Haber and McFarland, 2001]. The pause in BG output can af-
fect activity in all three, as in addition to targeting the SC, the
SNr also projects to TH. It is therefore likely that the buildup
of motor activity observed in the SC and FEF is in fact pro-
duced by the combined effect of all three PFBLs.
Both the FEF and TH project back to the BG [Hikosaka et

al., 2000; Harting et al., 2001] with retinotopic projections, so
that activity in FEF, TH and SC, is both affected by, and able
to affect BG output. The striatum - a BG input nucleus - sends
an inhibitory projection to the SNr (Figure 5), so that activa-
tion of striatal neurons can cause a pause in SNr firing. Like
much of the oculomotor system, the BG have a retinotopic
organisation, and recent evidence suggests that the projection
from SNr to SC preserves this mapping [Basso and Wurtz,
2002] so that localised input to the BG may be able to cause
localised disinhibition in the SC, meaning that the BG out-
put determines not just when, but also where saccade-related
activity is able to buildup within the SC motor-map.

1.3 Competition in the oculomotor system
In addition to the retinal and FEF input shown in figure 1, the
SC also receives excitatory input from several visual, audi-
tory, and somatosensory areas of cortex, so that saccades can
be triggered by processed visual features, localised noises, or
physical contact with the body [Stein, 1993]. Clearly, for an
animal operating in a complex environment, there will be mo-
ments when the SC’s multi-modal inputs are sending conflict-

ing commands. Under the scheme described so far, it would
seem that visual input to the BG leads to the inevitable dis-
inhibition of the SC motor layer, and a saccade towards the
stimulus causing it. Clearly this cannot be the case, some-
where in the oculomotor circuit, a decision is being taken as
to which location should be attended to, be it the currently
fixated point or any other.
Reciprocal inhibition (RI) is a form of neural connectiv-

ity that is often associated with action selection, and found
throughout the vertebrate brain [Windhorst, 1996]. RI gives
rise to winner-take-all (WTA) dynamics, as the most active
neural population is able to silence its competitors. If all
coordinates in the oculomotor system are to compete with
each other via RI, then each part of the retinotopic map in
a nucleus, must be connected to every other part. While
there is evidence for RI connectivity in the oculomotor cor-
tex, BG, and SC [Windhorst, 1996; Munoz and Istvan, 1998;
Meredith and Ramoa, 1998], it is unlikely that this is suffi-
ciently long-range to enable competition between all coordi-
nates.
Gurney et al. [2001] suggest that the BGmay contain a type

of feed-forward selection circuit that differs from RI. Figure 5
shows their computational model (hereafter referred to as the
Gurney model), and provides a description of how intrinsic
BG processing achieves signal selection. The extent to which
a channel is selected is determined by the difference between
its own activity and the sum of all channel activity. The calcu-
lation takes place in SNr, where diffuse excitatory input from
the sub-thalamic nucleus (STN) effectively provides the sum
of channel activity, and focused inhibitory input from D1 stri-
atal cells provides a measure of individual channel activity.
The diffuse STN projection allows inter-channel commu-

nication, so that input to a given BG channel acts to raise the
level of inhibition outputted from all other channels. Thus,
the growth rate of motor activity in a BG controlled PFBL,
will depend not only on the sensory input driving it, but also
on the activity in other BG controlled loops. So that for in-
stance, in the experiment used by Briand et al. [1999], activity
in a loop corresponding to the fixation coordinate, will affect
activity in a loop corresponding to the target coordinate.
The Gurney model identifies a control pathway through

the BG that modulates STN activity to keep selection opti-
mal. The control pathway incorporates the D2 striatal neu-
rons, as opposed to the D1 population involved in selection.
DA makes D1 cells more excitable, while making D2 cells
less so. Consequently, a disruption in the level of tonic DA
received by the striatum, affects the balance between the se-
lection and control pathways. The Gurney model predicts that
low DA levels (as present in PD) will cause sub-optimal se-
lection, with incomplete disinhibition of the winning channel.
This prediction, when combined with the likely role of

BG disinhibition in generating oculomotor buildup activity,
suggests that the RT differences between controls and PD
patients might result from abnormal competitive dynamics
within the oculomotor system. Before considering how this
might work using our large-scale model of the oculomotor
system, we first familiarise the reader with the properties of
positive feedback under inhibitory control.
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Figure 5: The intrinsic BGmodel of Gurney et al.[2001b], as-
sumes that duplicate salience input is sent to the sub-thalamic
nucleus (STN) and striatum, which is further sub-divided in
two groups of cells classified by the type of dopamine (DA)
receptor they express (D1 and D2). The globus pallidus inter-
nal segment (GPi) and substantia nigra pars reticulata (SNr)
- which together form the output nuclei of the BG - send in-
hibitory projections back to thalamus and to motor nuclei in
the brainstem (e.g., the SC). Spontaneous, tonic activity in
the STN guarantees that this output is active by default, so
that all motor systems are blocked. Gurney et al., identify
two separate functional pathways within the BG. The selec-
tion pathway is responsible for disinhibiting salient actions:
salience input to a channel activates D1, which then inhibits
GPi/SNr thus silencing inhibitory output in the channel. The
diffuse projection from STN to GPi/SNr means that all chan-
nels receive an increased excitatory drive. This is offset in
the most active channel by the inhibitory input from D1, but
goes unchecked in less active channels thus acting to block
unwanted actions. The control pathway defined by Gurney et
al., incorporates the globus pallidus external segment (GPe),
and provides capacity-scaling by ensuring that STN activ-
ity does not become excessively high when multiple chan-
nels have non-zero salience, thus assuring full disinhibition of
the winning channel irrespective of the number of competing
channels. Because the striatal input to the control and selec-
tion pathways utilise different DA receptors, changes in tonic
DA levels affect them differentially. Consequently, when DA
is reduced to PD-like levels, the balance between the two
pathways is disturbed resulting in residual inhibition on the
selected channel (inset).

Figure 6: a) A simple behavioural control system incorpo-
rating positive feedback. b) The effect of varying the closed
loop gain G. dashed line: G=2; solid line: G=1; dash-dot
line: G=0.5; dotted line: G=0. c) The effect of varying the
level of loop inhibition �. dashed line: � = 0; solid line:
� ⌧ �c; dash-dot line: � < �c; dotted line: � � �c. See
text for details.

1.4 What is positive feedback good for?
The block diagram shown in figure 6a represents a simple
behavioural system. Blocks f , b and m, represent neural
populations, which for the purpose of this discussion can be
thought of as leaky intergrators [Arbib, 2003] (see methods
section), with an output limited to a minimum firing rate of
zero, and a maximum of ymax. A salience signal c represent-
ing the sensory and/or motivational drive for an action, is fed
into a closed loop formed by blocks f and b, the output of
which is passed to blockm, which provides the motor signal
ym, that drives the action. Blockm also receives an inhibitory
signal ✓ (assumed constant), which acts as a threshold to en-
sure that no action is produced until the output of the closed
loop yf exceeds a critical value.
This architecture is loosely based on the oculomotor sys-

tem (as shown in figure 1), with the single loop formed by
f and b representing the combined effect of the SC-SC, SC-
TH-FEF-SC, and FEF-TH-FEF loops, and ✓ representing the
threshold effect of the omni-pause neurons in the saccadic
generator circuit. Accordingly, the signal � represents the
inhibitory infleunce of the BG on these loops, the effect of
which we shall consider shortly.
We first consider the effect of the gains wfb, and wbf ,

which represent the synaptic weights of the projection from
f to b and from b to f respectively. The closed loop gain G,
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of the sub-system formed by f and b is given by

G = wfbwbf (1)
Figure 6b shows the response of the system in figure 6a, to

a step change in salience of�c, for different values ofG. For
G > 1, yf is unstable and grows exponentially before satu-
rating at ymax, so that action is guaranteed provided the se-
lection threshold ✓ is less than ymax. In this situation activity
in the loop is self-sustaining, so that even when the salience
signal returns to zero, the output of f remains saturated. For
G = 1, yf is marginally stable and increases linearly, also
reaching saturation. ForG < 1, yf is stable and has an equiv-
alent open-loop gain of 1/(1 � G), so that the final value of
ym is not guaranteed to reach saturation, but instead depends
on the size of the salience signal c. Under these conditions,
the output of f tracks the salience signal, returning to zero
when the salience signal does so.
This simple circuit demonstrates a potential benefit that

positive feedback can add to a selection system, namely the
ability to raise a salience signal to the threshold for action, re-
gardless of the size of that signal. Unchecked, this amplifica-
tion will cause even the weakest of salience signals to trigger
its corresponding behaviour, so that a system like this will
seldom be at rest. This may upon first consideration sound
rather inefficient, however, ethological models suggest such a
scheme underlies animal behaviour. As Roeder [1975] points
out:

animals are usually ’doing something’ during most
of their waking hours, especially when in good
health and under optimal conditions.

One potential benefit that arises from this tendency to act,
is that problems are dealt with before they become unman-
ageable. For instance, in the absence of any other deficits,
a mildly hungry animal will set about finding, and consum-
ing food, thus ensuring that its hunger is sated before its en-
ergy levels become dangerously low. Accordingly, McFar-
land [1971] has shown that a hypothetical model of action
selection incorporating positive feedback, is able to account
for animal feeding patterns. By guaranteeing that motor sig-
nals reach saturation, positive feedback acts to decouple the
magnitude of a response from the magnitude of the salience
driving it, so that, continuing the example, an animal actively
pursuing food, will do so in much the same way regardless of
how hungry it actually is.
We now consider the effect of the inhibitory input �. Fig-

ure 6c shows the response of the system, to a step change
in salience of �c, with the weights wfb = wbf = 1 (and
hence G = 1), for different values of �. When the inhibitory
input to the loop is greater or equal to the salience signal
i.e., � � �c, the positive feedback is effectively disabled
because the input to b is zero or less. Consequently, the sys-
tem behaves like a first order system, with its output settling
at the level of its input. Under these circumstances, action
is not guaranteed and will depend upon the magnitude of the
salience signal c. For � < �c the feedback becomes active
as soon as yf exceeds �, causing a linear increase in yf with
a rate determined by the difference�c� �, thus guaranteing
that ym reaches ymax, and overcomes the selection threshold.

The inhibitory input also provides a means of overcoming the
self-sustaining property of the loop, causing activity to de-
cays linearly at a rate, again determined by �c � �, when
the salience signal returns to zero. From this it is clear that �
acts as both a threshold for activation of the PFBL, and a rate
controller for the evolution of activity in the loop.
Having explored the properties of a single PFBL under in-

hibitory control, we now present our oculomotor model (as
pictured in figure 1), which in essence has a system of loops
like those in figure 6, each one corresponding to a different
spatial coordinate. A key difference is that for the oculomo-
tor model, each loop’s � input is determined by activity in
that and all other loops, and also by the level of simulated
DA.

2 Methods
Space limits preclude a full description of the model we de-
veloped, so we instead direct the reader to the papers from
which the various sub-models were derived, and highlight any
modifications made to those models by us.
The FEF and TH, were both modelled as a 20⇥20 element

array of leaky integrators [Arbib, 2003], each of which was
governed by the following equation:

⌧ ȧ = u� a (2)
where a represents cell activation, u the total post-synaptic

current generated by afferent input to the cell, and ⌧ repre-
sents a decay constant that depends on cell membrane prop-
erties. A piecewise linear output function was used, so that
a neuron’s output y, is proportional to its activation a, and
has a maximum and minimum firing rate of ymax and ymin

respectively.
The BG, SC and SG models of Gurney, Arai and Gancarz,

each use a variation on this neural representation, with the
main differences being the inclusion of reversal potentials,
and the use of different output functions (e.g., sigmoidal).
The SC’s layers were modelled as 20⇥20 element arrays as

described by Arai et al.but the logarithmic mapping of visual
space they used, was abandoned in favour of a simpler linear
mapping. Consequently it was possible to tune the intrinsic
SC weights by hand, avoiding the use of the training scheme
implemented by Arai. Despite this, the motor layer weights
followed the same general pattern as those used in the Arai
model, namely the Mexican-hat profile, with short range ex-
citatory and long range inhibitory connections. In addition
to the visual and motor layers specified by Arai et al., we
added an extra layer intended to reproduce only a motor burst
at the time of saccade initiation, as opposed to the full VM
activity Arai’s model is intended to recreate. We refer to the
layer specified by Arai and ourselves as the build-up and burst
layers respectively, these being terms readily used to describe
activity seen in the SC motor layer [Munoz andWurtz, 1995].
The connectivity of the burst layer was identical to that of the
build-up layer, except that rather than receiving shunting in-
hibition from the BG, it receives additive inhibition.
The SG model was recreated exactly as specified by Gan-

craz, and the output of this model was used to drive a lumped
model of the oculomotor plant, which was represented as a
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second order dynamic system. The SG circuit contains two
separate sub-systems for the control of horizontal and verti-
cal movements. The FEF, and the burst and motor layers of
the SC, send excitatory projections to both of these, with the
weights from a given element being proportional to its hori-
zontal and vertical position in the 20⇥ 20 array.
The BG model was implemented as a 20 ⇥ 20 element ar-

ray, and so had 400 channels as opposed to the 6 channel
model used by Gurney et al. This necessitated a change in
the STN, GPe and SNr layers of the model, which had to be
more coarsely coded than the striatal layers (consistent with
anatomy; [Oorschot, 1996]) in order that a winning channel
be able to significantly influence activity in loosing channels.
Consequently the projections from the 20 ⇥ 20 element D1,
D2, FEF and TH layers had to be mapped onto the 10 ⇥ 10
layers that we used for the STN, GPe and SNr. Similarly pro-
jections from the 10⇥10 element SNr layer had to be mapped
onto the 20 ⇥ 20 element TH and SC layers. We therefore
devised a scheme for specifying weights between layers of
different dimensions. This consisted of first normalising the
coordinates of the array elements in the source and target lay-
ers (as specified by row and column indices). To calculate
the weight between an element in the source layer and one
in target layer, we calculated the Euclidean distance between
their normalised coordinates, and entered it into the following
formula to calculate the weight w, between the two cells:

w = ke�
d2
2� (3)

where d is the normalised distance between source and tar-
get elements, and � is a constant determining receptive field
size. This gives rise to a gaussian mapping between the two
layers, with cells occupying the same relative positions in
their respective layers having a connecting weight equal to k,
and with weights dropping off to 0 as the relative separation
of cells increases.
We simulated the VDU display used by Briand et al. [1999]

by generating a 20⇥ 20 input array, with the fixation and tar-
get stimuli represented by values of 0.5, and all other loca-
tions represented by 0. This array provided tonic input to the
FEF representing the Y cell retinal signal relayed by posterior
cortices. A simplified model of retinal processing was used to
reproduce the X cell phasic signal that the SC receives. This
was constructed from two 20 ⇥ 20 array elements of leaky
integrators, each of which received input from the VDU sim-
ulation. The two layers had different time constants (1 and
5 ms), and the slower inhibited the faster, so that following
a step increase in input, the output of the fast layer increased
briefly, before being suppressed by the slower layer.
The whole model was solved in discrete-time with a time-

step of 1ms, and using a zero-order-hold approximation. The
weights connecting the various components of the model
were tuned by hand to reproduce activity patterns consistent
with those recorded from healthy primates performing a re-
flexive saccade. Following Gurney et al. [2001] we then pro-
duced a PD-like state by reducing the level of simulated DA.

Figure 7: Results from two simulation runs. See text for de-
tails.
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3 Results
Model activity is shown in figure 7, for two simulation runs,
one with normal dopamine levels, and one with 1/4 of that
value, these representing controls and PD patients respec-
tively. The plots show the output of several (but not all)
model layers. For those layers with a grid representation, the
traces given correspond to the activity in the cells aligned with
the fixation and target stimulus prior to saccade generation.
Numbers in parentheses refer to points of interest marked on
the plots.

3.1 Normal operation
For the control case, the onset of the fixation stimulus causes
phasic activation of the retina which enters the system of PF-
BLs via the superficial SC. At the same time, tonic visual
activity enters the system via the FEF. This combination pro-
vides salience input to the foveal channel of the BG, and with
no competing activity, the BG select this as the winning chan-
nel as indicated by the reduction, and increase in SNr activ-
ity in the fixation and target channels respectively. Although
the system of loops in the oculomotor model are not strictly
equivalent to the simple system described in figure 6a (largely
due to cross-channel communication and the use of shunting
inhibition), the system behaves in a similar way to a single
PFBL with a gain of less than 1. Consequently, activity in
FEF, TH, and the SC build-up layer settles on a value below
saturation. When the fixation stimulus is extinguished this
activity begins to decay (8).
The onset of the target produces the same phasic and tonic

drive to the target channel of the system. However because
the BG still have the foveal channel selected, SNr input to
TH and SC is elevated causing TH and SC build-up activity
to return to 0 and near-zero activation after the phasic retinal
input has decayed. By silencing the TH layer, BG output dis-
ables both the SC-TH-FEF-SC and FEF-TH-FEF loops, and
significantly reduces activity in the SC-SC loop. Despite this,
the FEF continues to provide tonic drive to the target channel
of the BG, causing BG disinhibition to eventually switch to
the target channel. This reduction in inhibition allows activity
in the SC build-up layer to rise again, causing reactivation of
TH, and hence the reactivation of positive feedback between
layers. The system enters a brief period during which it be-
haves like a single PFBL of gain greater than 1. Target chan-
nel activity continues to increase in FEF, TH and SC build-up
until, it reaches reaches a sufficient level to overcome the ad-
ditive SNr inhibition to the SC burst layer. This provides a
boost to FEF and SC build-up drive to the SG, that is suffi-
cient to overcome OPN activity, and hence trigger a saccade,
whereupon activity in the target channel begins to decay, on
account of negative feedback from the SG to the motor layers
of SC, and because visual drive to the target channel is lost as
the eye begins to move.

3.2 Comparison of normal and pathological
operation

In the PD-like case, activity proceeds in much the same way
with the following differences. Low DA causes abnormal D1
and D2 activations (4 & 5) that result in extra inhibition on the

selected fixation channel (6). This acts to reduce steady-state
fixation activity in the in FEF and TH (7). Loop activity still
persists when the fixation stimulus is extinguished, but its de-
cay rate is higher than in controls (8) on account of the extra
inhibition in the channel. Because fixation activity is lower
in PD just prior to target onset, they have less inhibition in
the target channel than controls do (9). Consequently, target
activity in TH is not reduced to zero as in controls, meaning
that positive feedback persists. This leads to a stronger target
response in PD (10 & 11), which causes faster selection in
the BG (as indicated by SNr channels crossing (12)). Conse-
quently, the build-up of the motor burst occurs earlier in PD,
triggering a saccade with a shorter latency than controls (3).
However PDs incomplete disinhibition (15) prevents a burst
of standard amplitude (14). The magnitude of the vector sent
to the SG is therefore less than normal, and as the Gancarz
model is sensitive to the size of the signal driving it, the re-
sulting saccade has a reduced velocity (2), and is hypometric
(1).

4 Discussion
We have shown how the BG may resolve the competition that
takes place between a fixated stimulus and a suddenly ap-
pearing peripheral stimulus, and shown how abnormal BG
function can affect this process. Future work will seek to
reproduce the results of oculomotor experiments that more
directly test the notion that the BG are involved in decision
making. For instance, Ratcliff et al. [2003], have shown that
the growth rate of SC motor activity is inversely proportional
to task difficulty, an idea that is consistent with the diffusion
model [Ratcliff, 1978], a psychological model of decision
making. The diffusion model has at its heart, the idea that
decisions are reached by accumulating evidence in favour of
a decision until some critical threshold is reached. The model
assumes that the rate of evidence accumulation depends on
the quality of sensory information extracted from the environ-
ment, but the fact that a human subject can adjust their speed
accuracy trade-off in response to verbal commands, suggests
that the rate of growth in the oculomotor system is not deter-
mined by stimulus properties alone. We have shown that the
rate of growth in a PFBL is related to the difference between
excitatory and inhibitory input to that loop (Figure 6). By
delaying the evolution of positive feedback activity, the BG
may therefore be able to provide an animal with more time to
gather sensory evidence, allowing a trade-off between speed
and accuracy.
The oculomotor striatum receives significant input from

frontal cortices known to encode current behavioural goals,
and neurons found in the striatum, display a high degree of
plasticity. This and related findings, have led to the sugges-
tion that the BGmay actually embody a type of reinforcement
learning controller, with good outcomes acting to increase
the likelihood that preceding actions are repeated [Suri and
Schultz, 1999]. This raises the interesting possibility, that
learning determines the level of BG disinhibition, and thus
optimises the RT of an animal to a given situation (includ-
ing an infinite RT, i.e., witholding a response). Future work
will therefore aim to test the possibility that the BG control
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of PFBLs can be thought of as a physical instantiation of an
adaptive diffusion model.
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Abstract

The basal ganglia (BG) coordinate response selec-
tion processes by facilitating adaptive frontal mo-
tor commands while suppressing others. In pre-
vious work, a neural network model of the BG
accounted for response selection deficits associ-
ated with BG dopamine depletion in Parkinson’s
disease. Novel predictions from this model have
been subsequently confirmed in Parkinson patients
and in healthy participants taking low doses of
dopamine medications. Nevertheless, one clear
limitation of the model is in its omission of the
subthalamic nucleus (STN), a key BG structure
that participates in both motor and cognitive pro-
cesses. Here I include the STN and show that
by modulating when a response is executed, it re-
duces premature responding and therefore has sub-
stantial effects on which response is ultimately se-
lected, particularly when there are multiple com-
peting responses. The model accurately captures
the dynamics of activity in various BG areas dur-
ing response selection. Simulated dopamine deple-
tion results in emergent oscillatory activity in BG
structures, which has been linked with Parkinson’s
tremor. Finally, the model accounts for the benefi-
cial effects of STN lesions on these oscillations, but
suggests that this benefit may come at the expense
of impaired decision making.

1 Introduction
How the brain supports response selection, or decision mak-
ing, is a challenge for both artificial intelligence and neuro-
science communities. Based on a wealth of data, the basal
ganglia (BG) are thought to play a principle role in these pro-
cesses. The BG are closely interconnected with motor cor-
tex, and are thought to modulate the execution of motor com-
mands. Interestingly, circuits linking the BG with more cog-
nitive areas of frontal cortex (e.g., prefrontal) are strikingly
similar to those observed in the motor domain [Alexander et
al., 1986], raising the possibility that the BG participate in
cognitive decision making in an analogous fashion to their
role in motor control [Middleton and Strick, 2002].

The standard model proposes that two pathways in the BG
system independently act to selectively facilitate the execu-
tion of the most appropriate cortical motor command, while
suppressing competing commands [Albin et al., 1989; Mink,
1996]. The general aspects of this model have been success-
fully leveraged to explain various motor deficits observed in
patients with BG dysfunction. Recently, several researchers
have pointed out that the simple aspects of this model are
inadequate, and that a more advanced dynamic conceptu-
alization of BG function is required [Gurney et al., 2001;
Bar-Gad et al., 2003]. In particular, one key question is that
if the BG participate in response selection, then how do they
learn which response has the highest value?

1.1 A Model of Reinforcement Learning and
Decision Making in PD

Previous computational modeling of the basal ganglia /
dopamine system provided an explicit formulation that ties
together various cognitive deficits in Parkinson’s disease (PD)
[Frank, 2005]. This model simulated the effects of tonic and
phasic effects of dopamine on systems-level activity in the
direct and indirect pathways of the basal ganglia, which are
thought to independently facilitate or suppress cortical motor
commands. More specifically, two main projection pathways
from the striatum go through different BG output structures
on the way to thalamus and up to cortex (Figure 1a). Activity
in the direct pathway sends a “Go” signal to facilitate the exe-
cution of a response considered in cortex, whereas activity in
the indirect pathway sends a “NoGo” signal to suppress com-
peting responses. Dopamine modulates the relative balance
of these pathways by exciting Go cells while inhibiting NoGo
cells. This effect is dynamic, such that transient increases in
DA leads to more Go and less NoGo, and vice versa for de-
creases [Frank, 2005].

The aim of the computational simulations was to explore
the role of these BG dynamics in cognitive reinforcement
learning, and how this is impaired in PD [Frank, 2005].
Specifically, the model (figure 1b) addressed how phasic
changes in DA during error feedback are critical for modu-
lating Go/NoGo representations in the BG that facilitate or
suppress the execution of motor commands. The main as-
sumption is that during positive and negative feedback (e.g.,
correct or incorrect), bursts and dips of DA occur that drive
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Figure 1: a) The striato-cortical loops, including the direct (“Go”)
and indirect (“NoGo”) pathways of the basal ganglia. The Go cells
disinhibit the thalamus via GPi, thereby facilitating the execution
of an action represented in cortex. The NoGo cells have an oppos-
ing effect by increasing inhibition of the thalamus, suppressing ac-
tions from getting executed. Dopamine from the SNc projects to
the dorsal striatum, causing excitation of Go cells via D1 receptors,
and inhibition of NoGo via D2 receptors. GPi: internal segment
of globus pallidus; GPe: external segment of globus pallidus; SNc:
substantia nigra pars compacta; STN: subthalamic nucleus. b) The
Frank (2005) neural network model of this circuit (squares represent
units, with height reflecting neural activity). The Premotor Cortex
selects an Output response via direct projections from the sensory
Input, and is modulated by the BG projections from Thalamus. Go
units are in the left half of the Striatum layer; NoGo in the right
half, with separate columns for the two responses (R1 and R2). In
the case shown, striatum Go is stronger than NoGo for R1, inhibit-
ing GPi, disinhibiting Thalamus, and facilitating R1 execution in
cortex. A tonic level of dopamine is shown in SNc; a burst or dip
ensues in a subsequent error feedback phase (not shown), driving
Go/NoGo learning. The contributions of the STN were omitted from
this model, but are explored later.

learning about the response. This assumption was moti-
vated by a large amount of evidence for bursts and dips of
DA during rewards or their absence in monkeys [Schultz,
2002] which have also been inferred to occur in humans for
positive and negative feedback [Holroyd and Coles, 2002;
Frank et al., in press]. These phasic changes in DA modu-
late neuronal excitability, and may therefore act to reinforce
the efficacy of recently active synapses, leading to the learn-
ing of rewarding behaviors. In the model, “correct” responses
are followed by transient increases in simulated DA that en-
hance synaptically driven activity in the direct/Go pathway,
while concurrently suppressing the indirect/NoGo pathway.
This drives Go learning, and enables the model to facilitate
responses that on average result in positive feedback. Con-
versely, after incorrect responses phasic dips in DA release
the NoGo pathway from suppression, increasing its activ-
ity and driving NoGo learning. Without ever having access
to a supervised training signal as to which response should
have been selected, over the course of training intact net-
works nevertheless learned how to respond in complex prob-
abilistic classification tasks, similarly to healthy participants.
When 75% of units in the SNc DA layer of the model were
lesioned to simulate the approximate amount of damage in
PD patients, the model was impaired similarly to patients.

The details of the BG model are described in Frank (2005).
In brief, the premotor cortex represents and “considers” two
possible responses (R1 and R2) for each input stimulus. The

BG system modulates which one of these responses is facil-
itated and which is suppressed by signaling Go or NoGo to
each of the responses. The four columns of units in the stria-
tum represent, from left to right, Go-R1, Go-R2, NoGo-R1
and NoGo-R2. Go and NoGo representations for each re-
sponse compete at the level of GPi, such that stronger Go
representations lead to disinhibition of the corresponding col-
umn of the thalamus, which in turn amplifies and facilitates
the execution of that response in premotor cortex. Concur-
rently, the alternative response is suppressed.

Striatal Go/NoGo representations are learned via phasic
changes in simulated dopamine firing in the SNc layer during
positive and negative reinforcement. After correct responses,
increases in DA firing excite Go units for the just-selected re-
sponse, while suppressing NoGo units, via simulated D1 and
D2 receptors. Conversely, decreases in DA after incorrect re-
sponses results in increased NoGo activity for that response.
This DA modulation of Go/NoGo activity drives learning as
described above.

1.2 Modeling Dopaminergic Medication Effects on
Cognitive Function in PD

The same model was used to explain certain negative ef-
fects of dopaminergic medication on cognition in PD [Frank,
2005]. While medication improves cognitive performance in
some tasks, it actually tends to impair performance in prob-
abilistic reversal learning [Cools et al., 2001]. In order to
simulate medication effects, it was hypothesized that med-
ication increases the tonic level of DA, but that this inter-
feres with the natural biological system’s ability to dynam-
ically regulate phasic DA changes. Specifically, phasic DA
dips during negative feedback may be partially blocked by
DA agonists that continue to bind to receptors. When this
was simulated in the model, selective deficits were observed
during probabilistic reversal, despite equivalent performance
in the acquisition phase [Frank, 2005], mirroring the results
found in medicated patients. Because increased tonic levels
of DA suppressed the indirect/NoGo pathway, networks were
unable to learn “NoGo” to override the prepotent response
learned in the acquisition stage. This account is consistent
with similar reversal deficits observed in healthy participants
administered an acute dose of bromocriptine, a D2 agonist
[Mehta et al., 2000].

1.3 Empirical Tests of the Model
Recently, we have tested various aspects of the hypothesized
roles of the basal ganglia / dopamine system across both
multiple cognitive processes. First, we demonstrated sup-
port for a central prediction of our model regarding dopamine
involvement in “Go” and “NoGo” cognitive reinforcement
learning [Frank et al., 2004; Frank, 2005]. We tested Parkin-
son patients on and off medication, along with healthy senior
control participants. We predicted that decreased levels of
dopamine in Parkinson’s disease would lead to spared NoGo
learning, but impaired Go learning (which depends on DA
bursts). We further predicted that dopaminergic medication
should alleviate the Go learning deficit, but would block the
effects of dopamine dips needed to support NoGo learning.
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Figure 2: a) Example stimulus pairs (Hiragana characters) used
in the cognitive probabilistic learning task, designed to minimize
verbal encoding. One pair is presented per trial, and the partici-
pant makes a forced choice. The frequency of positive feedback for
each choice is shown. b) Novel test pair performance in Parkin-
son patients on and off medication (Frank, Seeberger & O’Reilly,
2004), where choosing A depends on having learned from positive
feedback, while avoiding B depends on having learned from nega-
tive feedback. c) This pattern of results was predicted by the Frank
(2005) model. The figure shows Go - NoGo associations for stim-
ulus A, and NoGo - Go associations for stimulus B, recorded from
the model’s striatum after having been trained on the same task used
with patients. Error bars reflect standard error across 25 runs of the
model with random initial weights.

Results were consistent with these predictions (Figure 2). In
a probabilistic learning task, all patients and aged-matched
controls learned to make choices that were more likely to re-
sult in positive rather than negative reinforcement. The differ-
ence was in their strategy: patients taking their regular dose
of dopaminergic medication implicitly learned more about
the positive outcomes of their decisions (i.e., they were better
at Go learning), whereas those who had abstained from tak-
ing medication implicitly learned to avoid negative outcomes
(better NoGo learning). Age-matched controls did not dif-
fer in their tendency to learn more from the positive/negative
outcomes of their decisions. We have also found the same
pattern in young healthy participants administered dopamine
D2 receptors agonists and antagonists [Frank and O’Reilly,
submitted]. Again, dopamine increases improved Go learning
and impaired NoGo learning, while decreases had the oppo-
site effect. Further, the same effects extended to a higher level
attentional task that required paying attention to task-relevant
(i.e., positively valenced) information while ignoring distract-
ing (negative) information. Finally, this model accurately pre-
dicted the pattern of event-related potentials recorded from
healthy participants that were biased to learn more from either
positive or negative reinforcement [Frank et al., in press].

2 Integrating Contributions of the
Subthalamic Nucleus in the Model

Despite its success in capturing dopamine-driven individual
differences in learning and attentional processes, the above
model falls short in its ability to provide insight into BG dy-
namics that depend on the subthalamic nucleus (STN). The
model was designed to simulate how the BG can learn to se-
lectively facilitate (Go) one response while selectively sup-
pressing (NoGo) another. Because the projections from the
STN to BG nuclei (GPe and GPi) are diffuse [Mink, 1996;
Parent and Hazrati, 1995], it may not be well suited to pro-

vide selective (focused) modulation of specific responses, and
was therefore omitted from the model. Instead the model
simulated the focused projections from striatum to GPi and
GPe, as well as the focused projections from GPe to GPi, to
demonstrate how direct and indirect pathways may compete
with one another at the level of each response, but may act
in parallel to facilitate and suppress alternative responses (see
Frank (2005) for details and discussion).

Nevertheless, there is substantial evidence that the STN is
critically involved in both motor control and cognitive pro-
cesses [Bergman et al., 1994; Boraud et al., 2002; Baunez et
al., 2001; Karachi et al., 2004; Witt et al., 2004]. Further,
other computational models of action selection also implicate
a key role of the STN [Gurney et al., 2001; Rubchinsky et al.,
2003; Brown et al., 2004]. The present model explored the
contributions of the STN within the computational framework
of the previous model of cognitive reinforcement learning and
decision making [Frank, 2005]. By virtue of its diffuse con-
nectivity to BG nuclei, I argue that the STN may support more
of a global modulatory signal on facilitation and suppression
of all responses, rather than modulating the execution of any
particular response. The simulations described below reveal
that this global modulatory signal could not be replaced by a
simple response threshold parameter, because its effects are
dynamic as response selection processes evolve, and its ef-
ficacy depends on excitatory input from motor cortex. Fur-
ther, simulated dopamine depletion in the augmented model
results in emergent oscillations in the STN and BG output
structures, which have been documented empirically and are
thought to be associated the source of Parkinson’s tremor. Fi-
nally, I show that the STN may be critical for action selection
processes to prevent premature responding, so that all poten-
tial responses are considered before facilitating the most ap-
propriate one.

The STN was included in the model in accordance with
known constraints on its connectivity in BG circuitry, as de-
picted in Figure 3. First, the STN forms part of the “hy-
perdirect” pathway, so-named because cortical activity tar-
gets the STN, which directly excites GPi, bypassing the stria-
tum altogether [Nambu et al., 2000]. Thus initial activation
of the STN by cortex leads to an initial excitatory drive on
the already tonically active GPi, effectively making the latter
structure more inhibitory on the thalamus, and therefore less
likely to facilitate a response. Further, the STN gets increas-
ingly excited with increasing cortical activity. Thus, if several
competing responses are activated, the STN sends a stronger
“Global NoGo” signal which allows the BG system to fully
consider all possible options before sending a Go signal to
facilitate the most adaptive one.

Second, the STN and GPe are reciprocally connected in a
negative feedback loop, with the STN exciting the GPe and
the GPe inhibiting the STN [Parent and Hazrati, 1995]. As
noted above, the connections from STN to GPe are diffuse,
and therefore are not likely to be involved in suppressing a
specific response. Of the STN neurons that project to GPe,
the vast majority also project to GPi [Sato et al., 2000]. In
the model, each STN neuron receives projections from two
randomly selected GPe neurons. This was motivated by data
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showing that multiple GPe neurons converge on a single STN
neuron [Karachi et al., 2004]. In contrast, each GPe neuron
receives from a single randomly selected STN neuron.

2.1 BG Firing Patterns During Response Selection
The firing patterns of simulated BG structures during re-
sponse selection are shown in Figure 3b. Upon presentation
of a stimulus input, competing responses are simultaneously
but weakly activated in motor cortex. Concurrently, response-
specific NoGo signals from striatum cause GPe activity to
decrease. The combined effects of initial cortical activity and
decreases in GPe activity produce an initial STN surge at ap-
proximately 20 cycles of network settling. This STN activity
is excitatory on GPi cells, preventing them from getting inhib-
ited by early striatal Go signals that would otherwise facilitate
response execution. However, STN activity also excites GPe
neurons, which in turn inhibit the initial STN activity surge.
At this point, a striatal Go signal for a particular response can
then inhibit the corresponding GPi column, resulting in thala-
mic disinhibition and subsequent selection of that response in
motor cortex. Because activity values are displayed in terms
of average activity across each layer, the selection of a single
motor response together with suppression of other responses
results in a net decrease in average motor cortex activity. Fi-
nally, in some trials, a late striatal NoGo signal causes GPe
inhibition and a second surge in STN activity.

The above description of STN dynamics is consistent with
data from physiological recordings showing an early dis-
charge in STN cells during response selection / initiation
[Wichmann et al., 1994], and with similar patterns evoked by
cortical activity [Magill et al., 2004]. Moreover, this model is
an explicit implementation of existing theoretical constructs
regarding the role of the STN in initial response suppression
[Maurice et al., 1998; Nambu et al., 2002], followed by a
direct pathway response facilitation, and then finally an in-
direct pathway response termination. An obvious question is
whether this model also accounts for patterns of activity in the
dopamine-depleted state, for which there is abundant data.

2.2 Dopamine Depletion is Associated with
Subthalamic and Pallidal Oscillations

Dopaminergic depletion in Parkinson’s disease is associated
with changes in the firing patterns and activity levels in var-
ious BG nuclei [Mink, 1996; Boraud et al., 2002]. Low-
ered dopamine levels result in excessive striatal NoGo (in-
direct pathway) activity as described earlier, which causes
concomitant decreases in GPe and increases in GPi activ-
ity [Boraud et al., 2002]. Parkinsonism is also associ-
ated with increased STN activity, thought to arise from re-
duced GABAergic GPe input [Miller and Delong, 1987;
Delong, 1990]. DA depletion has also been reliably asso-
ciated with low-rate oscillatory bursting activity in both STN
and GPe, which is correlated with the development of Parkin-
son’s tremor [Bergman et al., 1994; 1998; Levy et al., 2000;
Raz et al., 2000]. Finally, experimental STN lesions have
been shown to eliminate GPe oscillations [Ni et al., 2000]
and reverse PD symptoms [Bergman et al., 1990].

Interestingly, when Parkinson’s disease was simulated in
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Figure 3: a) The subthalamic nucleus is incorporated into a scaled-
up model that includes four competing responses (R1-R4). The
STN receives excitatory projections from motor cortex in the “hy-
perdirect pathway” and excites both GPi and GPe; GPe provides
inhibitory feedback on STN activity. b) Average layer activity lev-
els in a single trial across network settling cycles. Initially, multi-
ple simultaneously active motor cortex responses excite STN, which
sends a “Global NoGo” signal and prevents premature responding.
Sustained GPe activity subsequently inhibits STN, turning off this
Global NoGo signal and allowing striatal Go signals to facilitate a
response. Decreases in overall motor cortex activity are due to inhi-
bition of the three alternative responses. Finally, striatal NoGo sig-
nals inhibit GPe, causing a second STN surge, as is observed phys-
iologically, and is thought to terminate the executed response. c)
Dopamine depletion leads to emergent network oscillations in STN,
GPi and GPe, which have been associated with Parkinson’s tremor.
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Figure 4: Average unit activity during response selection processes
as a function of network settling cycles. Data are averaged across
units within each area, and across 100 trials. a) Intact network. Dy-
namics are similar to those in Figure 3b, but transitions are less
clearcut, since they occur at somewhat different latencies across
multiple trials. b) Simulated Parkinsonism (DA depletion) led to
increased overall GPi and STN activity, decreased GPe activity, and
oscillations in both STN and GPe. c) STN lesions in DA-depleted
networks eliminated the oscillations observed in GPe, and improved
motor execution, as has been observed in experimental animals.

the model, all of these effects of simulated Parkinson’s dis-
ease emerged naturally (Figure 4b). First, lesioning dopamine
units in the SNc led to increased striatal NoGo activity, as
described previously [Frank, 2005]. Second, this led to in-
creased overall STN and GPi activity, and decreased GPe ac-
tivity, consistent with empirical recordings. Third, and per-
haps most interesting, DA depletion led to emergent network
oscillations between the STN and GPe layers, which have
been linked to Parkinson’s tremor as described above. Similar
oscillations have been previously described in a conductance
model of BG function [Terman et al., 2002], but these did not
depend on DA depletion. Further, these oscillations damp-
ened as the model selected a response, which is consistent
with recent observations that visually guided movements sup-
press STN oscillations in PD [Amirnovin et al., 2004], and
with the fact that tremor is usually seen in the resting state.
Finally, an STN “lesion” resulted in normalized GPi activity
and eliminated GPE oscillations resulting from DA depletion
(Figure 4c). This same pattern of results has been observed
as a consequence of STN lesions in the dopamine-depleted
animal [Ni et al., 2000].

If STN lesions improve Parkinson symptoms, it is natu-
ral to consider what deleterious effects they might have. In
other words, what is the essential computational function of
the STN in action selection? Some evidence comes from
the animal literature showing that STN lesions impair re-
sponse selection processes, and leads to premature respond-
ing when having to suppress competing responses [Baunez et
al., 2001]. This leaves open the possibility that the Global
NoGo signal provided by the STN is adaptive and allows
the animal (or the model) sufficient time to consider all pos-
sible responses before selecting the most adaptive of them.
This hypothesis is further supported by observations that STN
stimulation decreases premature responding in rat [Desbon-
net et al., 2004]. The question is whether a formal simulation
of STN involvement in BG dynamics can account for these
data in a response selection paradigm.
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Figure 5: a) Response selection paradigm. Four cues are indepen-
dently associated with one of four possible responses. Responses R1
and R3 are reinforced on 80% of trials in the presence of cues A and
C, respectively. R2 and R4 are reinforced in 70% of trials to cues
B and D. The test phase measures the network’s ability to choose
the 80% over the 70% response when presented with cues A and B
or C and D together. b) Both intact networks and those with STN
lesions successfully learned to choose the appropriate response for
each training cue. STN lesions selectively impaired selection among
two competing responses, due to premature responding before being
able to integrate over all possible responses.

2.3 The STN and Action Selection

To address this question, a reinforcement learning paradigm
was simulated in which the network is presented with one
of four cues, each represented by a column of units in the
input layer. The network’s task is to select one of four pos-
sible responses for each cue (Figure 5a). “Feedback” is then
provided to the network by either increasing or decreasing
dopamine levels. The network learns based on the difference
in Go/NoGo activity levels in the response selection and feed-
back phase, as detailed in Frank (2005) and in the appendix.

The stimulus-response mappings are probabilistic, such
that some mappings are associated with an 80% chance of
dopamine bursts (and 20% dips), whereas others are associ-
ated with 70% bursts / 30% dips. All networks were trained
with 20 epochs consisting of 10 trials of each stimulus cue.

To determine whether the STN is beneficial for selecting
among multiple competing responses, a test phase was ad-
ministered. Two cues were presented, one of which had been
associated with 80% positive reinforcement for one of the re-
sponses, while the other had been associated with 70% posi-
tive reinforcement for an alternative response. Although the
models had not been trained with these stimulus combina-
tions, they should be able to select the response that was most
likely to result in positive reinforcement. However, premature
responding could result in selection of the 70% reinforced re-
sponse, if its corresponding striatal Go signal happened to get
active (due to process noise) prior to that of the 80% response.
It was hypothesized that in precisely this kind of situation an
initial Global NoGo signal from STN may be useful.

Simulations results were consistent with this depiction
(Figure 5b). While there was no difference between net-
works in their ability to select the most adaptive response
for each cue, models with STN lesions were impaired at
choosing among two positively associated responses. This
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result is consistent with the notion that the STN is criti-
cal for preventing premature responding, as networks with-
out the STN were equally likely to choose the 70% re-
sponse as the 80% response. This result is also consistent
with mathematical models of optimal decision making [Bo-
gacz et al., submitted], which suggest that agents first in-
tegrate over processing noise before making a response —
the present model would suggest that the STN play an im-
portant role in this speed-accuracy tradeoff. Finally, this re-
sult may explain the tendency for STN lesions to worsen,
and STN stimulation to improve, premature responding in
choice selection paradigms in rats [Baunez et al., 2001;
Desbonnet et al., 2004].

3 Conclusion
How do the present simulation results provide insight into the
somewhat tongue-in-cheek title of this paper – that is, when
should one use or not use their subthalamic nucleus? A pre-
liminary answer to this question may be that the STN is useful
in situations that would lead to “jumping the gun” on decision
making processes, by preventing premature choices. How-
ever, when excessive hesitancy is experienced, the present
model would suggest turning off your STN. Future compu-
tational work may help us better understand both the thera-
peutic and deleterious effects of STN stimulation on motor
and cognitive processes in Parkinson’s disease.

A Appendix
A.1 Implementational Details
The model is implemented using the Leabra framework
[O’Reilly and Munakata, 2000; O’Reilly, 2001]. Leabra
uses point neurons with excitatory, inhibitory, and leak con-
ductances contributing to an integrated membrane potential,
which is then thresholded and transformed via an x/(x + 1)
sigmoidal function to produce a rate code output communi-
cated to other units (discrete spiking can also be used, but
produces noisier results). Each layer uses a k-winners-take-
all (kWTA) function that computes an inhibitory conductance
that keeps roughly the k most active units above firing thresh-
old and keeps the rest below threshold. Units learn based on
via changes in dopamine (unsupervised), as detailed below.

The membrane potential Vm is updated as a function of
ionic conductances g with reversal (driving) potentials E as
follows:

∆Vm(t) = τ
∑

c

gc(t)gc(Ec − Vm(t)) (1)

with 3 channels (c) corresponding to: e excitatory input; l
leak current; and i inhibitory input. Following electrophysi-
ological convention, the overall conductance is decomposed
into a time-varying component gc(t) computed as a function
of the dynamic state of the network, and a constant gc that
controls the relative influence of the different conductances.
The equilibrium potential can be written in a simplified form
by setting the excitatory driving potential (Ee) to 1 and the
leak and inhibitory driving potentials (El and Ei) of 0:

V∞

m =
gege

gege + glgl + gigi
(2)

which shows that the neuron is computing a balance between
excitation and the opposing forces of leak and inhibition. This
equilibrium form of the equation can be understood in terms
of a Bayesian decision making framework [O’Reilly and Mu-
nakata, 2000].

The excitatory net input/conductance ge(t) or ηj is com-
puted as the proportion of open excitatory channels as a func-
tion of sending activations times the weight values:

ηj = ge(t) = ⟨xiwij⟩ =
1

n

∑

i

xiwij (3)

The inhibitory conductance is computed via the kWTA func-
tion described in the next section, and leak is a constant.

Activation communicated to other cells (yj) is a thresh-
olded (Θ) sigmoidal function of the membrane potential with
gain parameter γ:

yj(t) =
1

(

1 + 1
γ[Vm(t)−Θ]+

) (4)

where [x]+ is a threshold function that returns 0 if x < 0
and x if X > 0. Note that if it returns 0, we assume
yj(t) = 0, to avoid dividing by 0. As it is, this function has
a very sharp threshold, which interferes with graded learning
learning mechanisms (e.g., gradient descent). To produce a
less discontinuous deterministic function with a softer thresh-
old, the function is convolved with a Gaussian noise kernel
(µ = 0, σ = .005), which reflects the intrinsic processing
noise of biological neurons:

y∗

j (x) =

∫

∞

−∞

1√
2πσ

e−z2/(2σ2)yj(z − x)dz (5)

where x represents the [Vm(t) − Θ]+ value, and y∗

j (x) is the
noise-convolved activation for that value.

A.2 Inhibition Within and Between Layers
Inhibition between layers (i.e for GABAergic projections
between BG layers) is achieved via simple unit inhibition,
where the inhibitory current gi for the unit is determined from
the net input of the sending unit.

For within layer inhibition, Leabra uses a kWTA (k-
Winners-Take-All) function to achieve inhibitory competition
among units within each layer (area). The kWTA function
computes a uniform level of inhibitory current for all units
in the layer, such that the k + 1th most excited unit within
a layer is generally below its firing threshold, while the kth
is typically above threshold. Activation dynamics similar
to those produced by the kWTA function have been shown
to result from simulated inhibitory interneurons that project
both feedforward and feedback inhibition [O’Reilly and Mu-
nakata, 2000]. Thus, although the kWTA function is some-
what biologically implausible in its implementation (e.g., re-
quiring global information about activation states and using
sorting mechanisms), it provides a computationally effective
approximation to biologically plausible inhibitory dynamics.

kWTA is computed via a uniform level of inhibitory cur-
rent for all units in the layer as follows:

gi = gΘ
k+1 + q(gΘ

k − gΘ
k+1) (6)
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where 0 < q < 1 (.25 default used here) is a parameter for
setting the inhibition between the upper bound of gΘ

k and the
lower bound of gΘ

k+1. These boundary inhibition values are
computed as a function of the level of inhibition necessary to
keep a unit right at threshold:

gΘ
i =

g∗e ḡe(Ee − Θ) + glḡl(El − Θ)

Θ − Ei
(7)

where g∗

e is the excitatory net input without the bias weight
contribution — this allows the bias weights to override the
kWTA constraint.

In the kWTA function used here, gΘ
k and gΘ

k+1 are set to the
threshold inhibition value for the kth and k+1th most excited
units, respectively. Thus, the inhibition is placed exactly to
allow k units to be above threshold, and the remainder below
threshold.

A.3 Learning
Synaptic connection weights were trained using a reinforce-
ment learning version of Leabra. The learning algorithm in-
volves two phases, and is more biologically plausible than
standard error backpropagation. In the minus phase, the net-
work settles into activity states based on input stimuli and its
synaptic weights, ultimately “choosing” a response. In the
plus phase, the network resettles in the same manner, with
the only difference being a change in simulated dopamine:
an increase of SNc unit firing from 0.5 to 1.0 for correct re-
sponses, and a decrease to zero SNc firing for incorrect re-
sponses. Connection weights are then adjusted to learn on
the difference between pre and postsynaptic activation prod-
uct across the minus and plus phases [O’Reilly, 1996].
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Abstract
The behavioral repertoire of decerebrate and neona-
tal animals suggests that a relatively self-contained
neural substrate of action selection may exist in the
brainstem. Here we develop the hypothesis that the
principal component of the substrate is the medial
ponto-medullary reticular formation. Our quanti-
tative structural model of this region, which pro-
poses a macroscopic organisation at the level of
inter-connected neural clusters, is extended to in-
corporate sensory input. Evidence is reviewed in
support of the proposal that both input and out-
put configurations of this region follow this or-
ganisation. To investigate how this biologically-
constrained model may be configured to support
action selection, a computational neural-population
model of the medial reticular formation is outlined,
and alternate configurations are assessed in simu-
lation. We conclude that the configuration which
most effectively supports action selection is likely
to be one which represents compatible sub-actions
at the cluster level; thus, co-activation of a set of
these clusters would lead to the co-ordinated be-
havioral response observed in the animal.

1 Introduction
It is a safe assumption that action selection by animals is
achieved through some neural process. Recent proposals for
the neural substrate of the vertebrate action selection sys-
tem have focussed on the basal ganglia - a set of fore- and
mid-brain nuclei whose input, output, and inter-connections
seem to be consistent with a central (as opposed to distrib-
uted) resource switching device [Mink and Thach, 1993;
Redgrave et al., 1999; Prescott et al., 1999]. Animals
which lack a functioning basal ganglia are not completely im-
paired, though their behavioral repertoire is undeniably lim-
ited. Thus, the basal ganglia may form a critical, but not nec-
essary, part of the action selection neural substrate.

Decerebrate animals, those from which the entire brain an-
terior to the superior colliculus - including the basal ganglia
- has been removed, and altricial (helpless at birth) neonates,
for which the basal ganglia circuitry is not complete, are ca-
pable of expressing spontaneous behaviors and co-ordinated

and appropriate responses to stimuli. The chronic decere-
brate rat can, for example, spontaneously locomote, orient
correctly to sounds, groom, perform co-ordinated feeding
actions, and discriminate food types [Berntson and Micco,
1976; Grill and Kaplan, 2002]. Such animals clearly have
some form of intact system for simple action selection, which
enables them to respond to stimuli with appropriate actions
that are more complex than simple spinal-level reflexes, and
which enables them to sequence behaviors, as in the holding,
gnawing, and chewing required for eating solid food.

Of the potential candidate structures left intact in the brain-
stem of decerebrate animals, we propose that the medial
ponto-medullary reticular formation (RF) is the most likely
substrate of a generalised simple action selection mechanism.
Brainstem structures outside the RF are either motor relays
(the cranial nerve nuclei), sensory relays (trigeminal nucleus),
or cerebellar relays. The multitude of structures within the
RF participate in REM sleep control, global neuromodulation
(for example, the serotonergic raphe nuclei), oculomotor con-
trol, and, again, cerebellar relays. It is the medial core of the
RF which lacks a clear functional role, and which seemingly
has the circuitry necessary to perform some form of action
selection. We are not proposing that the medial RF subsumes
the basal ganglia’s action selection role, but rather that the RF
is capable of performing limited action selection in the basal
ganglia’s absence.

In a landmark paper, Warren McCulloch proposed that the
medial RF was the substrate for the selection of an organism’s
global behavioral state, which was set by the RF’s connec-
tions with the mid- and fore-brain [Kilmer et al., 1969]. The
paper also described a computational model which demon-
strated that the known anatomy of the medial RF could sup-
port selection-like functions. We have previously demon-
strated that an altered, optimised version of this model can
support action selection in a simple robotic foraging task
[Humphries et al., a]. However, due to its age, inevitably
the model contains incorrect assumptions about, and omits
important features of, the RF (in particular the predominance
of posterior projections to the spine over anterior projections
to the mid- and fore-brain). In accordance with our proposal,
and consistent with the dominance of spinal projections, later
authors have argued that the medial RF is involved solely
in motor control [Siegel, 1979]. Here we demonstrate that
the medial RF can support action selection-like properties in
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a simple dynamic model which explicitly addresses motor
function.

2 The structural model
A review of the medial RF’s anatomy led us to propose a
quantitative structural model which described its neuronal or-
ganisation [Humphries et al., b]. We identified two main
neuron types. The projection neurons extend a bifurcating
axon, predominantly caudally to the spinal cord and rostrally
toward the midbrain, and make excitatory contacts on their
targets via extensive collateralisation along the main axon.
The inter-neurons project their axon almost entirely within
the RF, predominantly along the medio-lateral axis, and make
inhibitory contacts with their targets. These neurons are
arranged into clusters comprising a set of projection and inter-
neurons, each cluster delimited by the initial collateral from
the projection neurons’ axons - which occurs roughly 200µm
from the initial bifurcation. This proposed cluster model of
medial RF structure is explained further in Figure 1.

The quantitative structural model is as follows. Every one
of the Nc clusters in the model has n neurons; the total num-
ber of neurons T within the model is thus T = Nc£n. Within
each cluster a certain proportion Ω of neurons are deemed to
be the projection neurons, the remainder are deemed to be
inter-neurons. From the data reviewed in [Humphries et al.,
b], we set bounds 0.7 ∑ Ω < 0.9. Three parameters define the
stochastic connectivity between neurons. For each projection
neuron, the probability of forming a connection c between it-
self and another cluster is P (c). Data from [Grantyn et al.,
1987] suggests a spatially uniform model for which we as-
sign P (c) = 0.25 for all clusters. (An alternative, a distance-
dependent distribution typical of many neural structures, was
explored in [Humphries et al., b]; here we do not consider
that distribution to simplify our discussions).

If a connection is made then P (p) is the probability that the
projection neuron forms a connection p with a given neuron
in that cluster. Finally, P (l) denotes the probability of con-
nection l between an inter-neuron and any other neuron in its
cluster. All models are homogeneous with respect to intra-
cluster connectivity, so that the probabilities P (l), P (p) are
independent of particular clusters and neurons within clus-
ters. When we construct a particular instantiation of the struc-
tural model, the above parameters are used to define directed
edges in a connectivity graph, where each vertex (node) of
the graph is labeled as being either a projection or an inter-
neuron.

To this existing model, we must add definitions for sen-
sory input. Two parameters are added to the structural model
to define the proportion of neurons that receive sensory in-
put: a proportion of projection neurons Ωs and a proportion
of interneurons ∏s are defined as receiving sensory afferents
within each cluster - these proportions are the same for every
cluster. Given the extent and morphology of their dendritic
trees, it it likely that the projection neurons within a cluster
will receive synaptic input from the majority of sensory affer-
ents contacting that cluster. In addition, projection neurons
which do not respond to some form of sensory stimulation
are rare [Schulz et al., 1983]. Thus we set Ωs = 1 throughout.

Figure 1: Schematic summary of the vertebrate reticular for-
mation’s anatomical organisation. Directional arrows apply
to all panels. (a) Sagittal section of cat brain, showing rela-
tive size and location of reticular formation (RF) and medial
core. Abbreviations: CPu - caudate-putamen (striatum); IC -
inferior colliculus; SC - superior colliculus; SN - substantia
nigra. (b) Sagittal section through the brainstem; the dendritic
trees (grey lines) of the projection neurons (one cell body
shown - open circle) extend throughout the medial RF along
the dorso-ventral axis but extend little along the rostro-caudal
axis. These dendritic trees contact axon collaterals of both as-
cending sensory systems (black dashed line) and far-reaching
axons of the projection neurons (the axon of the depicted cell
body is shown by the solid black line); ST is the spinothala-
mic tract. (c) The cluster model of RF organisation. The me-
dial RF is comprised of stacked clusters (3 shown) containing
medium-to-large projection neurons (open circles) and small-
to-medium inter-neurons (filled circles); cluster limits (grey
ovals) are defined by the initial collaterals from the projection
neuron axons. Their radial dendritic fields allow sampling
of ascending and descending input from both other clusters
(solid black lines) and sensory systems (dashed black line).
The interneurons project predominantly within their parent
cluster.
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Patterning of sensory inputs to the inter-neurons is unknown,
but a similar argument, based on their dendritic morphol-
ogy, would suggest that proportionally fewer inter-neurons
than projection neurons would receive input from the same
sensory afferent to their cluster. Some medium-sized cells,
which could potentially be inter-neurons, do receive spinal
input [Eccles et al., 1976], and thus some form of sensory
input to inter-neurons cannot be entirely ruled out. We must
thus allow ∏s to vary over the interval [0, 0.5] in a full explo-
ration of the model. The result of these additions is that each
node in the connectivity graph now has assigned to it a flag
indicating the presence or absence of sensory input, which is
used in the dynamic model.

3 The macroscopic dynamic model
To capture the global dynamic properties of a neural sys-
tem, the use of so-called macroscopic models is often adopted
[Latham et al., 2000; Monteiro et al., 2002]. In this approach
the activity of neural populations is captured as a simplified
set of ordinary differential equations (ODEs) which may re-
veal qualitatively similar dynamics to more complete models
with individual neural elements. Here, we establish a macro-
scopic model of the medial RF cluster model. The macro-
scopic model we propose is a reduction to the level of cluster
dynamics, based on the assumption that individual unit dy-
namics are standard leaky-integrators [Gurney et al., 2001].
An additional assumption, following the structural model, is
that all projection neurons are excitatory and all inter-neurons
inhibitory. For cluster k, its normalised, average projection
neuron output ck is given by

ø
dck(t)

dt
= °ck(t) + F

≥
w̄e

NcX

j=1

Ajk cj(t)

+ w̄ibkik(t) + Ωsuk(t)
¥
, (1)

where ø is a time constant dictating the decay rate of the
neural activity, F (x) is the output function, w̄e, w̄i, are the
mean excitatory and inhibitory weights, cj(t) is the average
projection neuron output from cluster j, and uk(t) is input
to the current cluster. The average inter-neuron output ik of
cluster k is given by

ø
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dt
= °ik(t) + F

µ
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NcX

j=1

Cjk cj(t)

+ w̄idk

≥
ik(t)° ik(t)
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¥
+ ∏suk(t)

∂
, (2)

where n° = n(1°Ω) is the number of inter-neurons per clus-
ter - the bracketed term containing this parameter describes
the contribution of the inter-neuron population to itself. Vari-
ables Ajk, bk, Cjk, dk are scalars determined from the proper-
ties of the underlying structural model (section 2): Ajk, Cjk

are the mean number of contacts from afferent cluster j to,
respectively, the projection and inter-neurons; bk, dk are the
mean number of contacts from inter-neurons in current clus-
ter k to, respectively, the projection and inter-neurons in that
cluster.

We use a piece-wise linear output function given by

F (x) =

8
<

:

0, if x < ≤;
m(x° ≤), if ≤ ∑ x ∑ 1/m + ≤
1, if x > 1/m + ≤

(3)

where m is slope, and ≤ the threshold of the output function.
Throughout, we set m = 1 and ≤ = 0.

4 The medial RF as an action selection system
We briefly discuss how the input and output configurations
are constrained by the biological data, then move on to a con-
sideration of how the combined structural and dynamic mod-
els may give rise to an action selection system.

4.1 Input configuration
Sensory inputs originate from ascending spinal systems, such
as the spinothalamic tract depicted in Figure 1, and from
brainstem relay nuclei, such as the dorsal cochlear nucleus
which conveys auditory information. Axons of spinal origin
and of some brainstem relay nuclei - for example, the sen-
sory trigeminal nucleus - collateralise in a similar manner to
the projection neurons’ axons, sending branches perpendicu-
lar to the main axon trunk into the clusters, with each branch
contacting only one cluster. The organisation of input from
the other brainstem relay nuclei is unknown, but we assume
it forms part of the main fiber bundles traversing the brain-
stem, and is therefore likely to collateralise in the same way.

The multi-modal sensory responses of projection neurons
are evidence that multiple sensory input systems contact the
same neuron [Scheibel, 1984]. Neighboring pairs of projec-
tion neurons have correlated activity in the waking animal,
which is evidence for a common afferent input, but distal pro-
jection neuron pairs do not [Siegel et al., 1981]. Thus, both
the anatomical organisation and neural activity characteris-
tics are consistent with each cluster having a unique pattern
of multi-modal sensory input (and, conversely, are consistent
with the assumption that such a macro-scale object - the clus-
ter - exists as an organisational element in the RF).

We thus interpret the single input variable uk to be a nor-
malised scalar summation of all sensory input to cluster k.
The majority of sensory inputs are assumed to be excitatory,
as firing rate increases are generally reported following the
presentation of stimuli. However, inhibitory responses have
been reported following both visceral and somatic stimula-
tion [Langhorst et al., 1996], which may reflect either direct
inhibitory input, or indirect inhibition via afferent drive of the
inhibitory inter-neurons. Thus, we are not able to state de-
finitively that sensory input is entirely excitatory, and must
therefore consider uk over the interval [-1,1] in a full explo-
ration of the model - to simplify the discussions below, here
we consider uk only over the interval [0,1].

4.2 Output configuration
The projection neurons’ targets in the cranial nerve nuclei
and the spine are assumed to express the action selected by
the medial RF system. Many projection neurons have cor-
related activity with multiple movements, and the activity
of near-neighbor projection neurons often does not correlate
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with the same movement or set of movements [Siegel and
Tomaszewski, 1983]. Thus, the correlated activity between
near-neighbor projection neurons in waking animals [Siegel
et al., 1981] would lead to the simultaneous recruitment of
multiple muscle groups and movement types. We therefore
propose that sufficient activation of a cluster’s projection neu-
rons would lead to a co-ordinated behavioral response.

Consistent with this proposal, micro-stimulation studies of
the medial medullary RF have demonstrated both multiple
movement and multiple muscle responses following the in-
jection of short trains of low-amplitude current pulses [Drew
and Rossignol, 1990]. The same micro-stimulation applied to
the lateral medullary RF did not consistently result in move-
ment, further evidence that the medial RF is the substrate of
action selection in the brainstem.

4.3 Potential configurations as an action selection
system

Here we explore how the anatomical organisation of the me-
dial RF, as defined by structural model, and constrained by the
input and output patterns just described, could be configured
to act as the action selection system of the brainstem. As po-
tential configurations are discussed, the properties of each are
demonstrated by an example simulation of the macroscopic
dynamic model. A structural model containing just Nc = 3
clusters, each nominally with n = 100 neurons, was con-
structed, with the parameter set: P (l) = P (p) = 0.1, as arbi-
trarily chosen neuron pairs are likely to have low connection
probabilities [Schuz, 1995]; Ω = 0.8, as this is the middle
of the range of projection neuron proportions; and ∏s = 0,
so that we need only consider effects of sensory inputs to the
projection neurons - however, note that increasing ∏s to its
maximum value (∏s = 0.5) did not alter the relative values of
the output reported below.

The macroscopic dynamic model connection matrices
A,b,C,d for the particular structural model used here are
given in Appendix A. We set w̄e = 0.2 - the values for w̄i

are discussed below - and ø = 0.005. Each example simu-
lation has the same continuous (i.e. u(t) = u) input pattern,
u = [0.4 0.3 0.2]. The ODE system described by equations
(1) and (2) was solved numerically using the variable-step
Runge-Kutta solver in MatLab (MathWorks), with initial con-
ditions ck(0) = ik(0) = 0, and the cluster outputs recorded
after equilibrium was reached.

Single-action configuration
Where all clusters are significantly connected to all other
clusters - that is, the combined output targets of the projec-
tion neurons of a cluster covers a roughly equal sampling of
all other clusters (as created by the spatially-uniform collat-
eral model) - then a winner-takes all (WTA) type circuit could
potentially result, as shown in Figure 2a. In such a circuit, the
outputs of each cluster are taken to activate a complete action.

For this to be the case, it is self-evident that the projec-
tion neuron component of the cluster must receive greater in-
put from its corresponding inter-neuron component than from
the combined input of the inter-cluster connections, as oth-
erwise the net effect of any sensory input would be excita-
tory in a symmetrical network. One possibility is that inter-

Figure 2: Potential configurations of the medial RF cluster
architecture as an action selection mechanism. The different
line types identify neuron populations and connections orig-
inating from the same cluster. Cluster-specific total sensory
input (Sn) targets only the cluster’s projection neuron compo-
nent (in these examples), whose outputs drive some form of
coherent behavioral response to that particular combination
of sensory input. (a) A spatially-uniform distribution of inter-
cluster connections may result in a winner-takes-all (WTA)
type architecture, in which each cluster’s projection neurons
drives a complete action (An), and target other cluster’s inter-
neurons (In) in roughly equal proportion. Note that, to form
a WTA circuit, the relative weighting of the within-cluster
inter-neuron connections (inhibitory, open circles) must be
greater than the projection neurons connections to other clus-
ters (excitatory, arrows). (b) Specific wiring configurations
may promote mutual excitation as well as inhibition, creating
a circuit in which the sensory activation of a single sub-action
(SAn) may recruit other compatible (or essential) sub-actions
to be co-expressed via the inter-cluster connections between
projection neurons. The combination of sub-action activa-
tions creates the coherent behavioral response observed in the
animal.
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cluster connections to inter-neurons have a higher weight than
inter-cluster connections to projection neurons in the same
target cluster. However, without detailed anatomical data
on, for example, bouton counts from a single axon, there is
no a priori reason to believe this to be true. The alterna-
tive is that the connection from the cluster’s inter-neurons
to its projection neurons has a relatively high weight com-
pared to the inter-cluster connection weight, and thus affer-
ent drive from a cluster will result in a net inhibitory effect.
Synapse counts from projection neuron dendritic trees sug-
gest that this may be the case: roughly 45% of the synapses
on a projection neuron are GABAergic [Jones et al., 1991] -
and, therefore, inhibitory - and inter-neurons are the primary
(perhaps only) source of GABAergic input, yet the proportion
of inter-neurons to projection neurons is much smaller than
this value. Thus, an inter-neuron input to a projection neu-
ron would have a disproportionately larger effect than a given
projection neuron input, as it forms more synapses. There-
fore, we believe there is a case for adopting the strict relation
w̄e < w̄i in the macroscopic dynamic model: a simple ap-
proximation to the percentage synapse distribution is to de-
termine the total number of excitatory Ne and inhibitory Ni

connections in a structural model and set w̄i = °w̄e£Ne/Ni,
thereby setting the total absolute weight for excitatory and
inhibitory units to be equal. For the models described here,
w̄i = °0.2£ 1176/573 = °0.41.

Simulation of a macroscopic model with such an architec-
ture shows that the cluster structure can implement soft selec-
tion (Figure 3b) - that is, simultaneous selection of more than
one action. Some thresholding of output would be required to
implement hard selection - a true WTA algorithm - a thresh-
old possibly set by the amount of cluster output required to
sufficiently activate their targets neurons in the cranial nerve
nuclei and spine. The outputs for this simulation are, roughly,
just the ratio of the corresponding inputs, which reduces the
medial RF architecture to a simple relay system. Removing
the inter-cluster connections to the projection neurons, by set-
ting all Ajk = 0, leaves only the inter-cluster projections to
inter-neurons and, thus, would seem more able to implement
a WTA algorithm. However, simulation of this altered model
shows that it does not implements a WTA algorithm either -
the output of the clusters are little different from their input
values (Figure 3c).

The existence of abundant long-range connections between
projection neurons is not in doubt, and thus such an architec-
ture cannot exist in the medial RF. Moreover, the presence
or absence of the long-range connections appears to have lit-
tle impact on the medial RF’s ability to act as a selection
mechanism if each cluster is assumed to represent a single
action. Therefore, we are left to consider what purpose the
long-range inter-cluster projection neuron connections have.

Sub-action configuration
It is useful to remember that the spatially-uniform model is
just a statistical average - it is possible that some cluster-to-
cluster projections preferentially target the inter-neuron pop-
ulations, while others preferentially target the projection neu-
rons. Thus, the output of a single cluster may simultaneously
inhibit and excite different target clusters. The output of a

Figure 3: Example simulation results for configurations of a
three cluster model. (a) Input values u to each cluster. (b-d)
Cluster outputs: (b) a single-action configuration, with inter-
cluster connections between projection neurons, does not act
as a winner-takes-all (WTA) algorithm, but merely acts as
an amplified relay of the inputs; (c) a single-action configu-
ration, without inter-cluster connections between projection
neurons, does not implement a WTA algorithm either; (d) a
sub-action configuration, in which activation of cluster 1 (c1)
results in concurrent recruitment of cluster 3, and inhibition
of cluster 2.

65



cluster in this scenario is taken to activate a sub-action, that
is, a component part of a coherent behavior. Excitation of
a target cluster corresponds to recruitment of a compatible,
perhaps essential, sub-action; conversely, inhibition of a tar-
get cluster corresponds to the prevention of an incompatible,
perhaps dangerous, sub-action. An example of this configu-
ration in the same three cluster model is shown in Figure 2b.
To generate this configuration, we take the previous A and C
matrices - the mean numbers of inter-cluster connections to
projection and inter-neurons, respectively - and set the appro-
priate connections to zero (see Appendix A). In simulation,
the resulting cluster outputs (Figure 3d) show that the outputs
of both clusters 1 and 3 have exceeded the value of their in-
puts, and both have considerably greater output than cluster
2 (which has a much reduced output compared to its input).
Thus, in this configuration, the output pattern means that sub-
actions 1 and 3 are activated, and sub-action 2 is not.

Having demonstrated that the sub-action configuration
works in principle, we turn now to a preliminary assessment
of its robustness over a range of inputs. The configuration
depicted in Figure 2b supports just two actions, one signalled
by the sufficient output of both clusters 1 and 3, and the other
by the sufficient output of cluster 2. In this initial assessment,
we deem sufficient output to mean that the outputs of the re-
quired clusters exceeds those of all the other clusters - that is,
the selection of a sub-action is based solely on the ordering
of the output values. Thus, given any set of inputs u, we may
define two correct output states:

1. if the outputs are ordered such that (c1 > c2)^(c3 > c2)
then action 1 is correctly selected if and only if the input
relationship is (u1 ∏ u2) _ (u3 ∏ u2),

2. if outputs are ordered such that (c2 > c3) ^ (c2 > c1)
then action 2 is correctly selected if and only if the input
relationship is (u2 ∏ u1) ^ (u2 ∏ u3),

where ^ means propositional conjunction and _ means
propositional disjunction. All other alternatives are deemed
to be incorrect selections (the example in Figure 3d fulfills
output state 1, and is, therefore, a correct selection). We note
that these are hard definitions of correct selection, in partic-
ular that both sub-actions that comprise action 1 must be se-
lected together at all times (other interpretations, such as the
correct selection of individual sub-actions, given appropriate
inputs, will be considered in future work).

To assess the robustness of sub-action selection we simu-
lated the model just described, varying each element of input
vector u over the interval [0,1] in steps of 0.05, making a
total of 1331 simulations. For each input vector, the output
vector c was assessed to determine whether it signaled cor-
rect or incorrect selection, as defined above. We find that the
majority of input vectors (75%) result in correct selection, as
shown in the state space plots of Figure 4, and thus the sub-
action selection is robust over a wide-range of inputs. The
incorrect selections occurred for the input vectors for which
either all the elements were roughly equal, or at least element
u2 and one other was, with the third element being close to
zero. Thus, this simple model of a configuration of the me-
dial RF’s anatomy lacks a mechanism for resolving selection
competitions between closely-matched inputs.
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Figure 4: Output states of the sub-action configuration. (a)
Correct selections. These occurred following the majority of
inputs. (b) Incorrect selections. These occurred around the
input values for which u2 was roughly equal to either or both
of u1 and u3 - where only one was roughly equal, the other
of that pair was closer to zero.

5 Discussion
In this paper, we have extended our quantitative structural
model of medial RF to incorporate sensory input, reviewed
evidence which suggests an organisation of both inputs and
outputs at a macroscopic organisational level we have previ-
ously dubbed the “cluster”, and discussed how, given these
biological constraints, the medial RF may be configured as
the brainstem’s action selection system. The example simu-
lations demonstrate that a sub-action configuration, in which
strongly activated clusters recruit clusters representing com-
patible sub-actions, provides a functional role for the abun-
dant excitatory inter-cluster connections between projection
neurons, as opposed to the single-action configuration, for
which no role for those same connections was evident. In ad-
dition, the sub-action configuration was able to select appro-
priate actions over a wide range of input vectors. However,
the simple model explored here was unable to appropriately
resolve selection competitions between closely matched in-
puts. This may not be a fault of the model: it may be the case
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that the isolated medial RF is actually unable to resolve such
competition. Thus, it may be a contributing factor to the evo-
lution of more complex action selection systems such as the
basal ganglia.

To extend the work described here, we have two main
threads. First, the addition of further features of the medial
RF to the structural model and its dynamic instantiation may
provide mechanisms which are able to resolve competitions
between closely matched inputs. The existence of synapses
for neuro-modulators, particularly serotonin, noradrenaline,
and acetylcholine [Jones, 1995], means that neural activity
within the medial RF could be up- or down-regulated accord-
ing to local concentrations of these neurochemicals. Specif-
ically, dependent on the neuro-modulator synapse type, in-
put to this region could be locally enhanced or attenuated,
providing a direct method for differentiating the responses
to closely matched inputs. Second, to determine how the
medial RF structure may support the relatively complex ac-
tions observed in the decerebrate animal, we will optimise
the model’s structure using a genetic algorithm in an embod-
ied robotic task, following a methodology we have previously
developed [Humphries et al., a]. Our model of the basal gan-
glia [Gurney et al., 2001] will also be optimised using the
same task, so that we will be able to assess the relative merits
of the two putative action selection substrates.

The sub-action configuration is given substantial support
by data from a progressive decerebration study in which the
grooming behavior of rats was assessed following a series of
lesions descending from the midbrain to the junction between
the pons and medulla [Berridge, 1989]. The intact brainstem
is sufficient to support the entire sequence of actions which
comprises the grooming syntax. Component actions of the
grooming syntax, corresponding to what we’ve here called
sub-actions, are disabled in an incremental fashion with de-
scending decerebration, and thus we know that: (a) there is no
single locus for the action of grooming in the brainstem and
(b) there is not a widely-distributed representation of each
grooming sub-action in the brainstem - for if there was, then
descending decerebration should result in partial degradation
of all components of the syntax, as their neural networks are
damaged: instead, each component was either performed or
entirely absent. Thus, there is good evidence for the existence
of discrete, localised sub-action representations in the brain-
stem, corresponding to the structural and dynamical proper-
ties discussed for our medial RF model.
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A Model descriptions
The structural values for the particular instantiation of the
structural model explored in simulation are:

A =

" 0 1.61 1.57
2.15 0 2.09
2.03 2.49 0

#
b =

" 1.7
2.14
2.03

#

C =

" 0 1.5 1.5
1.7 0 2.5
1.85 2.05 0

#
d =

" 1.8
1.55
2.1

#
.

For the sub-action configuration, A and C are altered to
match the connection pattern shown in Figure 2b, thus

A =

" 0 0 1.57
2.15 0 0
2.03 0 0

#
C =

" 0 1.5 0
1.7 0 2.5
0 2.05 0

#
.
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Abstract

It is thought that one role of the basal ganglia is to
constitute the neural substrate of action selection.
We propose here a modification of the action selec-
tion model of the basal ganglia of (Gurney et al.,
2001a,b) so as to improve its dynamical features.
The dynamic behaviour of this new model is as-
sessed by using the theoretical tool of contraction
analysis. We simulate the model in the standard test
defined in (Gurney et al., 2001b) and also show that
it performs perfect selection when presented a thou-
sand successive random entries. From a biomimet-
ical point of view, our model takes into account a
usually neglected projection from GPe to the stria-
tum, which enhances its efficiency.
Keywords: contraction analysis, action selection,
basal ganglia, computational model

1 Introduction
The basal ganglia are a set of interconnected subcortical nu-
clei, involved in numerous processes, from motor functions
to cognitive ones (Mink, 1996; Middleton and Strick, 1994).
Their role is interpreted as a generic selection circuit, and they
thus have been proposed to constitute the neural substrate of
action selection (Mink, 1996; Krotopov and Etlinger, 1999;
Redgrave et al., 1999).
The basal ganglia are included in cortico-basal ganglia-

thalamo-cortical loops, five main loops have been identified
in primates (Alexander et al., 1986, 1990; Kimura and Gray-
biel, 1995): motor, oculomotor, prefrontal (two of them) and
limbic loops. Within each of these loops, the basal ganglia
circuitry is organised in interacting channels, among which
selection occurs. The output nuclei of the basal ganglia are
tonically active and inhibitory, and thus maintain their targets
under sustained inhibition. Selection occurs via disinhibition
(Chevalier and Deniau, 1990): the removal of the inhibition
exerted by one channel on its specific target circuit allows
the activation of that circuit. Concerning action selection, the
basal ganglia channels are thought to be associated to basic

∗The support of the BIBA project funded by the European Com-
munity, grant IST-2001-32115 is acknowledged.

competing actions. Given sensory and motivational inputs,
the basal ganglia are thus supposed to arbitrate among these
actions and to allow the activation of the winner by disinhibit-
ing the corresponding motor circuits.
Numerous computational models of the BG have been pro-

posed in the past (Gillies and Arbruthnott, 2000, for a review)
in order to explain the operation of this disinhibition process,
the most recent and complete model –in terms of anatom-
ically identified connections accounted– is the GPR model
proposed by Gurney et al. (2001a,b). Beyond its generic se-
lection properties, explored in (Gurney et al., 2001b), the ef-
ficiency of the GPR as an action selection device has been
tested in both robotic and simulated animats solving various
tasks, involving execution of behavioural sequences, survival
and navigation (Montes-Gonzalez et al., 2000; Girard et al.,
2003, 2005).
The properties of the GPR were analytically studied at

equilibrium, however the stability of this equilibrium (and
thus the possibility to reach it) was not assessed. We propose
to use contraction analysis (Lohmiller and Slotine, 1998) –a
theoretical tool to study the dynamic behaviour of non-linear
systems– in order to build a new model of the basal ganglia
whose stability can be formally established. By using recent
data (Parent et al., 2000) concerning the projections of a basal
ganglia nucleus (the external part of the globus pallidus), we
improve the quality of its selection with regards to GPR and
then test this improvement in simulation. Finally, we discuss
the remaining biomimetic limitations of the proposed model.

2 Nonlinear Contraction Analysis
Basically, a nonlinear time-varying dynamic system will be
called contracting if initial conditions or temporary distur-
bances are forgotten exponentially fast, i.e., if trajectories of
the perturbed system return to their nominal behaviour with
an exponential convergence rate. This is an extension of the
well-known stability analysis for linear systems with the great
advantage that relatively simple conditions can still be given
for this stability-like property to be verified, and furthermore
that this property is preserved through basic system combina-
tions. We also want to stress that assuming that a system is
contracting, we only have to find a particular stable trajectory
to be sure that the system will eventually tend to this trajec-
tory. It is thus a way to analyse the dynamic behaviour of a
model without linearised approximation.
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2.1 The basic brick
In this section, we summarise the variational formulation
of contraction analysis of (Lohmiller and Slotine, 1998), to
which the reader is referred for more details. It is a way
to prove the contraction of a whole system by analysing the
properties of its Jacobian only. This can be seen as the basic
brick of the theory, as in next sections we will often study the
contraction of small components of the system and then de-
duce the global contraction of the system using combination
rules (see section 2.2).
Consider a n-dimensional time-varying system of the

form:
ẋ(t) = f(x(t), t) (1)

where x ∈ Rn and t ∈ R+ and f is n × 1 non-linear vec-
tor function which is assumed to be real and smooth in the
sense that all required derivatives exist and are continuous.
This equation may also represent the closed-loop dynamic of
a neural network model of a brain structure.
We now restate the main result of contraction analysis, see

(Lohmiller and Slotine, 1998) for details and proof.

Theorem 1 Consider the continuous-time system (1). If
there exists a uniformly positive definite metric

M(x, t) = Θ(x, t)T
Θ(x, t)

such that the generalised Jacobian

F = (Θ̇ + ΘJ)Θ−1

is uniformly negative definite, then all the all system trajec-
tories converge exponentially to a single trajectory with con-
vergence rate |λmax|, where λmax is the largest eigenvalue of
the symmetric part of F. The system is said to be contracting.

Remark. In many cases, if the system is not properly de-
fined, the expected metric may be hard to find. Most often, it
is possible to fall into a standard combination of contracting
systems just by rearranging the order of variables considered
whereas the original definition of the system did not stress
contraction properties.

2.2 Combination of contracting systems
We now present standard results on combination of contract-
ing systems which will help us in showing that our model is
contracting by analysing first contraction of each nucleus on
one side and then their relative combination.

Hierarchies
The most useful combination is the hierarchical one. Con-
sider a virtual dynamic of the form

d

dt

(

δz1

δz2

)

=

(

F11 0

F21 F22

) (

δz1

δz2

)

The first equation does not depend on the second, so that ex-
ponential convergence of the whole system can be guaranteed
(Lohmiller and Slotine, 1998). The results can be applied re-
cursively to combinations of arbitrary size.

Feedback Combination
Consider two contracting systems and an arbitrary feedback
connection between them (Slotine, 2003). The overall virtual
dynamics can be written

d

dt

(

δz1

δz2

)

= F

(

δz1

δz2

)

Compute the symmetric part of F, in the form

1

2
( F + F

T ) =

(

F1s Gs

GT
s F2s

)

where by hypothesis the matrices Fis are uniformly negative
definite. Then F is uniformly negative definite if and only if
F2s < GT

s F
−1
1s Gs , a standard result from matrix algebra

(Horn and Johnson, 1985). Thus, a sufficient condition for
contraction of the overall system is that

σ2(Gs) < λ(F1) λ(F2) uniformly ∀x, ∀t ≥ 0

where λ(Fi) is the contraction rate of Fi and σ(Gs) is the
largest singular value ofGs. Again, the results can be applied
recursively to combinations of arbitrary size.

Contraction analysis on convex regions
Consider a contracting system ẋ = f(x, t) maintained in
a convex region Ω (i.e. a region Ω in which any shortest
connecting line (geodesic)

∫

x2

x1
∥δx∥ between two arbitrary

points x1 and x2 inΩ is completely contained inΩ). Then all
trajectories inΩ converge exponentially to a single trajectory
(Lohmiller and Slotine, 2000). Furthermore, the contraction
rate can only be sped up by the convex constraint.

2.3 Our basic contracting system : the leaky
integrator

In our model of basal ganglia, we will use leaky integrator
models of neurons. The following equations describe the be-
haviour of our neurons where τ is a time constant a(t) is the
activation, y(t) is the output, I(t) represents the input of the
neuron, and f is a continuous function which maintains the
output in an interval.

{

τ ȧ(t) = − a(t) + I(t)
y = f(a)

This kind of neuron is basically contracting since its Jaco-
bian is − 1

τ and the interval defined by the transfer function is
a particular convex region.
In the rest of this paper, we will use the family of functions

fε,max:
{

0 if x ≤ ε
x − ε if ε ≤ x ≤ max + ε
max else

(2)

3 Model description
The basic architecture of our model is very similar to the GPR
(fig 1). We use the same leaky-integrator model of neurons as
building blocks, each BG channel in each nucleus being rep-
resented by one such neuron. The input of the system is a

70



D2 Striatum GPe

Disinhibition
of channel 2
for action

Dopamine

Dopamine

Salience
of Channel 2

D1 Striatum

STN

GPi/SNr

Figure 1: Basal ganglia model. Nuclei are represented by
boxes, each circle in these nuclei represents an artificial
leaky-integrator neuron. On this diagram, three channels are
competing for selection, represented by the three neurons in
each nucleus. The second channel is represented by grey
shading. For clarity, the projections from the second channel
neurons only are represented, they are identical for the other
channels. White arrowheads represent excitations and black
arrowheads, inhibitions. D1 and D2: neurons of the striatum
with two respective types of dopamine receptors; STN: sub-
thalamic nucleus; GPe: external segment of the globus pal-
lidus; GPi/SNr: internal segment of the globus pallidus and
substantia nigra pars reticulata.

vector of saliences, representing the propensity of each be-
haviour to be selected. Each behaviour in competition is as-
sociated to a specific channel and can be executed if and only
if its level of inhibition decreases below a fixed threshold θ.
An important difference between the GPR and our model is

the nuclei targeted by the external part of the globus pallidus
(GPe) and the nature of these projections. The GPe projects to
the subthalamic nucleus (STN), the internal part of the globus
pallidus (GPi) and the substantia nigra pars reticulata (SNr),
but also to the striatum. Our model includes the striatum pro-
jections, which have been documented (Staines et al., 1981;
Kita et al., 1999) but excluded from previous models. More-
over, the striatal terminals target the dendritic trees, while pal-
lidal, nigral and subthalamic terminals form perineuronal nets
around the soma of the targeted neurons (Sato et al., 2000).
This specific organisation allows GPe neurons to influence
large sets of neurons in GPi, SNr and STN (Parent et al.,
2000), thus the sum of the activity of all GPe channels influ-
ences the activity of STN and GPi/SNr neurons (eqn. 5 and
7), while there is a simple channel-to-channel projection to
the striatum (eqn. 3 and 4).
The striatum is one of the two input nuclei of the BG,

mainly composed of GABAergic (inhibitory) medium spiny
neurons. As in the GPR model, we distinguish the neurons
with D1 and D2 dopamine receptors and modulate the input
generated in the dendritic tree by λ, which here encompasses
salience and GPe projections. Lateral inhibitions are also im-
plemented, but their weightsw

LatD1 andw
LatD2 is kept within

the limits set the contraction analysis (see section 4.1). The

input to each neuron i of the D1 and D2 sub parts of the stria-
tum is therefore defined as follows (N being the number of
channels):

ID1
i = (1 + λ)(Si − wD1

GP e
yGPe

i ) − w
LatD1

N
∑

j=1
j≠i

ID1
j (3)

ID2
i = (1 − λ)(Si − wD2

GP e
yGPe

i ) − w
LatD2

N
∑

j=1
j≠i

ID2
j (4)

The up-state/down-state of the striatal medium spiny neu-
rons is modelled, as in (Gurney et al., 2001b), by activa-
tion thresholds ε

D1
and ε

D2
under which the neurons remain

silent.
The sub-thalamic nucleus (STN) is the second input of the

basal ganglia and receives also projections from the GPe. Its
glutamatergic neurons have an excitatory effect and project to
the GPe and GPi. The resulting input of the STN neuron is
given by:

ISTN
i = Si − wST N

GP e

N
∑

j=1

yGPe
j (5)

The tonic activity of the nucleus is modelled by a negative
threshold of the transfer function ε

STN
.

The GPe is inhibitory nucleus, similarly as in the GPR, it
receives channel-to-channel afferents from the striatum and a
diffuse excitation from the STN:

IGPe
i = − wGP e

D2
yD2

i + wGP e

ST N

N
∑

j=1

ySTN
j (6)

The GPi and SNr are the inhibitory output nuclei of the BG,
which keep their targets under inhibition unless a channel is
selected. They receive channel-to-channel projections from
the D1 striatum and diffuse projections from the STN and the
GPe:

IGPi
i = − wGP i

D1
yD1

i + wGP i

STN

N
∑

j=1

ySTN
i

− wGP i

GP e

N
∑

j=1

yGPe
j

(7)

This model keeps the basic off-centre on-surround select-
ing structure, duplicated in the D1-STN-GPi/SNr and D2-
STN-GPe sub-circuits, of the GPR. However, the channel
specific feedback from the GPe to the Striatum helps sharp-
ening the selection by favouring the channel with the highest
salience in D1 and D2. Moreover, the global GPe inhibition
on the GPi/SNr synergetically interacts with the STN excita-
tion in order to limit the amplitude of variation of the inhibi-
tion of the unselected channels.
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4 Mathematical results
We first analyse the contraction of the GPR model before
showing under which weighting constraints our model is con-
tracting and which sufficient salience input conditions allow
it to perform “perfect selection” (output inhibition of selected
channels equal to 0).

4.1 Contraction analysis of the GPR model
While it is difficult to refute contraction of a system as the
metric in which it is contracting is not given a priori, we can
study contraction in particular metrics for the sake of finding
a contra-examplewhich will demonstrate the non-contracting
behaviour of the system.
First, remark that lateral connections on striatum (D1 and

D2) make the model non-contracting in the identity metric
when the weight of inhibition w

Lat
≥ 1. Indeed, by comput-

ing directly the eigenvalues of the Jacobian

J =

⎛

⎜

⎜

⎜

⎝

− 1 − w
Lat

. . − w
Lat

− w
Lat

− 1 . . .
. . . . .
. . . . − w

Lat

− w
Lat

. . − w
Lat

− 1

⎞

⎟

⎟

⎟

⎠

we have λmax ≤ − 1+w
Lat
. Unsurprisingly, when w

Lat
= 1

the system has multiple points of stability and thus the model
is not contracting in any metric.
A typical example of multiple points of stability occurs

when two channels, say i and j, have the same highest
salience Smax for input. We then have a continuum of
possible stable points in D1 and D2 covering the segment
ai + aj = Smax with ai, aj ≥ 0, while all the other channels
being fully inhibited.
Such a situation occurs when reproducing the basic selec-

tion test proposed in (Gurney et al., 2001b). In this five-steps
test (fig. 2), no channels are excited during the first one, and
none of them is thus selected; then during the second one, the
salience of channel 1 is increased and this channel is conse-
quently selected; during the third one, channel 2 is provided a
larger salience than channel 1, channel 1 is thus inhibited and
channel 2 selected; in the fourth one, the salience of channel
1 is increased to a value equal to the salience of channel 2,
channel 1 is however not selected while channel 2 remains
selected; finally the salience of channel 1 is decreased to its
initial level. Such a drawback can only be solved by reducing
w

Lat
to a value strictly inferior to 1.

Second, suppose w
Lat

is set under 1 to avoid this specific
problem, it remains to show that the GPe/STN loop is con-
tracting. Using the feedback analysis with a scaling metric
that dilates the states space of the second system involved (a
key tool in the study of many feedbacks)

M =

(

I 0

0 αI

)

, α > 0

makes us compute the maximum singular value of Gs (see
section 2.2):

σ(Gs) = max(
α

2
,
1

2
(− αwST N

GP e
+

N

α
wGP e

ST N
))
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Figure 2: Simulation results (GPi/SNr inhibitory output) for
the first three channels of a 6-channels system, using the Gur-
ney et al. (2001b) test on the GPR model. During the period
900ms < t < 1200ms, channels 1 and 2 have the same input
saliences, and channel 2 only is selected. Dashed lines repre-
sent the input salience of the channel and solid lines represent
the output of the channel.
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which gives rise to the following condition onN :

N <
4

wGP e

ST N

(1 + wST N

GP e
)

Analysed in the scaling metric, the contraction of the GPR
is proven when N remains below this bound, which corre-
sponds to N < 6 with the parameters used in (Gurney et al.,
2001b). This does not strictly demonstrate that the GPR
model with lateral striatal inhibitons lower than 1 is not con-
tracting forN ≥ 6, as there might be another metric in which
the analysis would give a contraction result with a different
dependence on, or even an independence from,N . It however
suggests that, even if the result is not conclusive, the condi-
tions of contraction of the GPR model probably depend on
N , this is the main motivation for proposing a model whose
contraction is proven for less restrictive conditions.

4.2 Contraction of the model
The contraction of our model is demonstrated using the com-
bination properties of contracting systems.
First, we see that every nucleus is trivially contracting with

a rate 1
τ as no lateral connection is allowed except for the

Di’s which are contracting when w
LatDi

< 1 with rate 1
τ | −

1 + w
LatDi

| (see section 4.1). Dealing with thresholds of the
leaky-integrator transfer functions is transparent as it is just a
particular case of contraction analysis on convex regions (see
section 2.2).
Next, defining the system carefully leads to a hierarchical

system of trivially contracting systems except for the loops
between STN/GPe and D2/GPe. Thus, we only have to
master those loops thanks to the feedback combination anal-
ysis to guarantee contraction of the whole system.
STN/GPe
Thanks to our reformulation of the GPe to STN projections
(diffuse rather than channel-to-channel), this loop is now con-
tracting as it is a positive/negative feedback. In other word,
considering the metric

M1 =

(

wST N

GP e
I 0

0 wGP e

ST N
I

)

leads to the generalised Jacobian

F =

(

− I (wST N

GP e
wGP e

ST N
)

1
2 1

− (wSTN

GP e
wGP e

ST N
)

1
2 1 − I

)

and the feedback thus disappears as the symmetrical of F
is simply − I .
D2/GPe
The feedback is of the form negative/negative feedback and
thus we can just try to minimise the impact of the loop by
taking the average of each negative feedback. This is realised
by considering the metric

M2 =

(

wGP e

D2
I 0

0 wD2

GP e
I

)

which tells us that the system is contracting as long as
wGP e

D2
wD2

GP e
< − 1 + w

LatD2

The last equation is obtained by using feedback analysis, see
section 2.2 for more details.

4.3 Analytical results
As our model is contracting, we only have to find a particular
solution to be sure that the system will eventually reach this
solution. But, because this contracting system is autonomous
(time-invariant), we know that this solution is an equilibrium
(Slotine, 2003). Thus, it just remains to show that this equi-
librium performs the awaited selection.
Naturally, as for GPR, we can show that our model is or-

der preserving and that
∑n

j=0 ySTN
j is bounded. But more

interestingly, we can analytically study our model in the ideal
case when the stable state is one active neuron only, say i0,
in D2 and one inactive in GPe (necessarily the same i0). We
call this situation ideal case as the selection is completely
performed in the D2 − STN − GPe loop and the rest of the
model simply copies this selection.
Assuming that the salience input of the system leads to the

this particular behaviour, we can obtain the following equa-
tions by solving the system of linear equations defined in sec-
tion 3, using that a = I for all neurons at equilibrium.

N
∑

j=1

ySTN
j =

∑

ySTN

j
≠0(Sj + ε

STN
)

1 + act(N − 1)wGP e

ST N
wST N

GP e

Si0 ≥ ε
D2

+
wGP e

STN

wGP e

D2

N
∑

j=1

ySTN
j

Si ≤ ε
D2

+ w
LatD2(Si0 − ε

D2
)

+ wD2

GP e
wGP e

ST N

N
∑

j=1

ySTN
j i ̸= i0

where act is the number of neurons of the STN whose
activation is larger than ε

STN
. Remark that when (N −

1)wGP e

ST N
wST N

GP e
= 1,

∑n
j=0 ySTN

j computes essentially the
mean of the active saliences.
Those equations give a range of saliences input for which

the model reacts ideally, as its equilibrium corresponds to a
“perfect selection”, where the selected channel is completely
disinhibited. Outside this range, the behaviour is more awk-
ward as the whole system is involved in improving the partial
selection made by theD2 − STN − GPe loop. It might con-
tinue to perform “perfect selection”, perform a less precise
selection or behave differently, hence the simulation of sec-
tion 5.2 in a wide set of input conditions.

5 Simulation results
Similarly to the simulations made by Gurney et al. (2001b),
we used a 6-channel model. The parameters were set to
the values summarised in table 1. w

LatD1, w
LatD2, wGP e

D2

and wD2

GP e
were set to values compatible with the constraints

needed to ensure the contraction of the system (see 4.2). wD1

GP e

and wGP i

ST N
were set to values identical to wD2

GP e
and wGP e

ST N
re-

spectively, for the sake of symmetry, whereas it is not manda-
tory with regards to contraction. Finally we set wGP i

D1
to 1

rather than to 0.7 (as wGP e

D2
) in order to favour strong selec-

tive inhibitions over GPi and thus “perfect selections”.
The simulation was programmed in C++, using the simple

Euler approximation for integration, with a time step of 1ms.
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Table 1: Parameters of the simulations.

w
LatD1 0.4 wGP e

D2
0.7 τ 0.003s

w
LatD2 0.4 wGP i

D1
1 λ 0.2

wD1

GP e
1 wGP e

STN
0.35 ε

D1
200

wD2

GP e
1 wGP i

STN
0.35 ε

D2
200

wST N

GP e
0.35 ε

STN
-150

wGP i

GP e
0.08

5.1 Reproduction of GPR basic selection
properties

We reproduced the selection experiment of Gurney et al.
(2001b), were the system is submitted a sequence of five dif-
ferent salience vectors. As we bounded the activity of our
neurons between 0 and 1000, while Gurney et al. had an up-
per limit of 1, we multiplied by 1000 the input saliences for
this test. Each vector is submitted to the system during 0.3s
before switching to the next one in the sequence (fig. 3).
First, all saliences are null, and the system stabilises in a

situation where all channels are equally inhibited. Then, the
first channel receives a 400 input salience which results in
perfect disinhibition of this channel (yGPi

1 = 0) and increased
inhibition of the others. When the second channel salience is
set to 600, it becomes perfectly selected (yGPi

2 = 0) while
the first one is rapidly inhibited to a level identical to the
one of the four last channels. During the fourth step, the
salience of the first channel is increased to 600, channels 1
and 2 are therefore simultaneously selected. Finally, during
the last step of the test, the salience of channel 1 is reduced
to 400, which is then rapidly inhibited while the selection of
channel 2 is unaffected.
Our model passes this test in satisfactory manner, its re-

sults differ with the GPR in two ways. Firstly, it tends to
select channels in a sharper manner than the GPR, as it al-
ways reaches “perfect selection” (yGPi

i = 0). Secondly, the
global level of inhibition in the unselected channels is subject
to smaller variations, because of the regulatory effect of bal-
ance between the GPe global inhibition and the STN global
excitation over the GPi.

5.2 1000 random vectors test
In order to test the ability of the model to perform “perfect
selection” in a wide range of salience inputs and without any
influence of its initial state (a property implied by contraction
of the model), we fed a 6-channels system with a sequence
of 1000 randomly drawn salience vectors successively. The
saliences of each vectors are drawn uniformly in a 0 to 990
interval (discretisation step of 10), equal saliences are autho-
rised within the same vector. Each vector is presented dur-
ing 0.3s, at the end of this period, the “perfect selection” of
the channels with maximum salience is checked along with
the presence of perfectly selected channels corresponding to
other salience values. Then the next random vector is pre-
sented without resetting the system. This test was conducted
with our model and with a GPR model for which w

LatDi
was

set to 0.8.
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Figure 3: Simulation results (GPi/SNr inhibitory output) for
the first three channels of a 6-channels system, using the
Gurney et al. (2001b) test. Dashed lines represent the input
salience of the channel and solid lines represent the output of
the channel.
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The first result of the test is that for our model, the “perfect
selection” of the channels with maximum salience was not
completed in only two cases out of thousand. This occurs
when the maximum salience is too low to enable the activity
in the striatal neurons to rise above the striatum thresholds
ε

D1
= ε

D2
= 200 and is thus unable to elicit selection, an

expected result as these thresholds are thought to filter low
level saliences. Concerning the GPR, processing the same
1000-vectors sequence, “perfect selection” was not obtained
in 54.6% of the cases, which is quite natural as the GPR is
not designed to perform “perfect selection”. The inhibitory
output of the GPi/SNr of the GPR model is close 160 when
the input salience vector is null, in which case no channel
should be selected. We thus chose a value of the θ threshold
equal to that maximum. In that case, there is no selection in
29.3% of the cases. It seems that in this range of salience
input, our model selects winning channels more efficiently
than the GPR.
The second result of the test is that the model has a nice

property of contrast enhancement, as the maximum can be
sorted out from its competitors even if they are quite close,
generating a perfect selection of the former and a strong in-
hibition of the latter. Indeed, simultaneous selection of the
channel with maximum salience with one of its competitors
happens only in 7.2% of the cases. Moreover, this only hap-
pens when the maximal salience value is high (µ = 907.5,
σ = 71.3) and when the difference between the maximal
salience and the salience of the supplementary selected chan-
nel is low (45 selections with a difference of 10, 24 with a
difference of 20, 2 with 30 and 1 with 40). We may thus infer
that the limit of discrimination between two saliences of our
model is probably inferior to a few percents.

6 Discussion
We proposed a new computational model of the basal gan-
glia exploring how their intrinsic computations operate the
physiologically observed “selection by disinhibition” (Cheva-
lier and Deniau, 1990), which is thought to be a fundamental
neural substrate of action selection in vertebrates (Redgrave
et al., 1999). This model shares a lot of similarities with the
previously proposed GPR model (Gurney et al., 2001b), as
its selection ability relies on two off-centre on-surround sub-
circuits. However, it includes neglected connections from the
GPe to the Striatum. Moreover, it distinguishes global pro-
jections of the GPe to the STN, GPi and SNr on the one hand
and channel-to-channel ones to the Striatum on the other.
We theoretically studied the dynamic behaviour of the net-

work and proved its stability by showing that it is contract-
ing and has an equilibrium point, and thus always converges
exponentially fast to this equilibrium. The independence of
this contraction with regards to the number of channels re-
sults from the diffuse inhibitions from GPe to STN. We also
showed that in an ideal case, implying conditions on the
saliences values, this equilibrium corresponds to a perfect
selection (where the channel corresponding to the highest
salience is completely disinhibited and all others inhibited).
In order to test the selection efficiency of the model in a

wider range of input conditions, we reproduced the basic se-

lection test proposed by Gurney et al. (2001b) and, above all,
evaluated the quality of selection when it is given a sequence
of 1000 random salience vectors. In both cases, perfect se-
lection was obtained, except in the rare cases where all the
components of the salience vector are too low to elicit selec-
tion. Moreover, the selectivity of the model in the second test
was better than the GPR.
We modelled the projections from GPe to striatum as hav-

ing a channel-to-channel selectivity. However, in their study
of five pallido-striatal neurons in rats, Bevan et al. (1998)
showed that their primary target seems to be the GABAer-
gic interneurons. First, given the limited extend of this study,
we cannot exclude the possibility that GPe-striatum projec-
tions also concern striatum projection neurons. Second, the
GABAergic interneurons inhibit the striatum projection neu-
rons in a relatively diffuse manner, a regulatory effect that is
different from but not opposed to our selective and direct pro-
jections: it controls the activity of the whole striatum and can
thus affect the contrast of the selection. An alternate version
of our model derived from these results should be tested.
We omitted two extra types of documented connections.

First, the STN projects to the GPe, GPi and SNr but also to
the striatum (Parent et al., 2000). Intriguingly, the population
of STN neurons projecting to the striatum does not project to
the other targets, while the other neurons project to at least
two of the other target nuclei. We could not decipher the role
of this striatum-projecting population and did not include it
in the current model. Its unique targeting specificity suggests
it could be functionally distinct from the other STN neurons.
This possibility should be explored in future work. The other
missing connections concerns the fact that D1 striatal neu-
rons probably simultaneously project to the GPi/SNr and the
GPe (Wu et al., 2000), and the fact that lateral inhibition exist
in GPe and SNr (Park et al., 1982; Juraska et al., 1977; De-
niau et al., 1982). These additional projections were added
to the GPR in an improved implementation (Gurney et al.,
2004), where the lateral inhibitions of the striatum were also
removed. We should add these connections and proceed to
a similar test with our model, knowing that the D1-GPe pro-
jections would create a new D1-GPe loop and generate an
additional constraint on the weights to ensure contraction.
The GPe to striatum connections have the previously

evoked functional advantage of enhancing the quality of the
selection, by silencing the unselected striatal neurons. Inter-
estingly, the striatum is known for being a relatively silent nu-
cleus (Wilson, 1993), a property supposed to be induced by
the specific up/down state behaviour of the striatal neurons.
When using simple neuron models, like leaky-integrators, it
is usually difficult to reproduce this with a threshold in the
transfer function only: when many channels have a strong
saliences input, all the corresponding striatal neurons tend to
be activated. Our model suggests that in such a case, the GPe-
striatum projections may contribute to silencing the striatum.
Finally, the basal ganglia are part of cortico-basal ganglia-

thalamo-cortical loops and the quality of selection of the GPR
model was improved by the addition of the thalamo-cortical
components (Humphries and Gurney, 2002). We plan to ex-
tend our model in a similar manner while trying to preserve
its contraction properties.
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Abstract
This paper builds on our existing, biologically
constrained, model of the basal ganglia, which
was originally constructed under the premise that
these subcortical structures perform action selec-
tion. Here we show how this same model, when
used in conjunction with a connectionist model of
processing in the Stroop task, can provide an im-
proved account of human performance on that task.
Our model accounts for a wide variety of phenom-
enon, and provides a framework for connecting
Stroop processing with the neuroanatomical basis
of action selection. This work validates modelling
the basal ganglia as the vertebrate solution to the
action selection problem and demonstrates the im-
portance of action selection issues to understand-
ing performance on cognitive tasks. Proposals are
made concerning the desirable properties a selec-
tion mechanism must possess.

1 The basal ganglia as a vertebrate solution to
the selection problem
‘A selection problem arises whenever two or more
competing systems seek simultaneous access to a
restricted system.’ [Redgrave et al., 1999]

It has been proposed that the basal ganglia is the vertebrate
solution to the selection problem [Redgrave et al., 1999].
In other words, that it resolves the competition between dif-
ferent neural command centres requesting behavioural con-
trol. This need for selection is most clear, and has been most
thoroughly empirically explored, in terms of motor expres-
sion, but it is expected that similar functional architecture,
and comparable functional requirements, underly selection in
different domains.
The basal ganglia has external and internal connectivity

that makes it suitable for performing the role of a selection
mechanism. It receives inputs from virtually the entire cere-
bral cortex, limbic system structures such as the hippocampus
and the amygdala, and, notably, the anterior cingulate cortex
[Masterman and Cummings, 1997; Redgrave et al., 1999].

∗This work was supported in part by EPSRC grant
EP/C516303/1 to Kevin Gurney.

The main input nucleus of the basal ganglia is the stria-
tum, which provides the first processing of incoming signals
from cortex. The projection neurons of the striatum (medium
spiny neurons) are by default quiescent (in a down-state), and
do not do not respond to low levels of input. Only after a sub-
stantial and coordinated excitatory input do they move to an
up-state, in which they produce significant output which may
subsequently be affected by smaller changes in input [Wil-
son, 1995].
Outputs from the basal ganglia project back to the cortex,

via the thalamus, and to premotor areas of the brainstem. The
output nucleus of the Basal ganglia is the globus pallidus, in-
ternal segment (GPi). Neurons here are are tonically active,
inhibiting their target structures from enacting behaviour. Ac-
tions are enabled by the selective release of that inhibition.
It is posited that signals from cortex indicate the ’salience’
— i.e. the importance and urgency — of possible actions to
the basal ganglia [Redgrave et al., 1999]. Sufficiently large
saliences result in the selective disinhibition of channels as-
sociated with that action, and thus the release of the action
[Chevalier and Deniau, 1990].

1.1 Modelling confirms that the basal ganglia can
perform action selection

We have constructed a neuronal network model of the basal
ganglia, constrained by the known anatomy and physiology,
and based on the selection hypothesis [Gurney et al., 2001a;
2001b]. Analysis and simulation of this model [Gurney et al.,
2001b] shows that the basal ganglia display the properties of a
good selection mechanism [Redgrave et al., 1999]: the high-
est salience rapidly promotes appropriate channel selection;
once selection has been made competitors do not distort that
selection; however, significant changes in the salience inputs
result in rapid and clean channel switching.
Embedding this model into its anatomical context pro-

vided by cortex and thalamic circuits, improves the selection
behaviour and gives a more complete understanding of the
functional role the different nuclei involved may be playing
[Humphries and Gurney, 2002]. Further, using these mod-
els in robot controllers shows that the selection behaviour is
of sufficient efficiency and sophistication to be behaviourally
adequate in realistic environments [Girard et al., 2003;
Montes-Gonzalez et al., 2000].
The simulation work presented below uses the basal gan-

77



glia model exactly as presented elsewhere [Gurney et al.,
2001b; Humphries and Gurney, 2002]. We focus on the ben-
efits of using this biologically plausible mechanism, which
has been demonstrated to possess ethologically realistic se-
lection properties. The internal structure of the basal ganglia
model is only discussed as far as is necessary to illustrate why
it works as it does in the context of the current work.

1.2 Using the basal ganglia model in a cognitive
task

This paper is concerned with a different extension of the
model— into the domain of cognitive selection and perfor-
mance, as measured by reaction times. In particular we con-
sider a celebrated cognitive task that involves a selection
conflict — the Stroop Task [Stroop, 1935] — and take as
our starting point the most successful computational model
of performance on this task to date [Cohen et al., 1990]
which we extend by integration with our existing model
of basal ganglia function [Gurney et al., 2001a; 2001b;
Humphries and Gurney, 2002].
The purposes of this extension are threefold. Firstly, it al-

lows an additional test of the basal ganglia model of action
selection. The model was constructed using the known func-
tional neuroanatomy and guided by the selection hypothesis.
It was not explicitly designed to simulate reaction times, nor
was it constrained by human cognitive performance. How-
ever, any action selection mechanism should also be able
to act as a response selection mechanism in cognitive tasks.
Therefore the performance of the model in this domain is a
good test of its validity. Secondly, some aspects of human
Stroop performance remain inadequately addresses by exist-
ing models, leaving the possibility open that a model con-
taining new elements may improve the possible account and
shed light on why previous models have not been so success-
ful. Additionally, making connection to the possible under-
lying neurobiology enriches the account possible of Stroop
processing. In particular, we anticipate that features of the
basal ganglia model such as allowing arbitrary numbers of
inputs and making provision for dopaminergic modulation
of signal processing will provide opportunities for future ex-
perimental and modelling investigations. Thirdly, integrating
cognitive and systems-neuroscience models sheds light on is-
sues of selection from both levels of analysis. We will attempt
to use our combined model to derive some general constraints
on models of selection.

2 Modelling the Stroop Task
2.1 The Stroop Task
J. Ridley Stroop’s famous task [Stroop, 1935] involves pre-
senting words written in coloured inks. Participants must
name the colour of the ink while trying to ignore the word,
which can spell out the name of a colour. When the word-
name is in contradiction to the ink-colour the task becomes
effortful, slowed and error-prone. This is the interference
effect, traditionally measured as the difference in reaction
time (RT) or errors between the control condition (when the
word-aspect of the stimuli is nominally neutral with respect
to colour) and the conflict condition (when the word-aspect of

the stimulus contradicts the color). There is a corresponding
facilitation effect; when the word and the colour aspect match
(the congruent condition) there is a speeding relative to the
control condition. These two effects are asymmetrical; facili-
tation is typically far smaller than interference. The converse
task— reading the word while ignoring the ink-colour — can
also be assessed. Word-reading is faster than colour-naming,
and is not affected by the colour-aspect of the stimulus (there
is no interference or facilitation).
Traditionally the Stroop task has been discussed in terms

of a conflict between automatic and controlled processes
[MacLeod, 1991], and much progress has been made in
using variations of the Stroop task to adumbrate the na-
ture of ’automatic’ processing [Besner and Stolz, 1999;
Besner et al., 1997; Dishon-Berkovits and Algom, 2000;
Durgin, 2000]. But it is also apparent that the Stroop task in-
volves a selection conflict and provides a thoroughly explored
experimental framework for investigating cognitive aspects of
selection.

2.2 A Model of the Stroop task

Figure 1: Architecture of the Cohen model

By far the most successful quantitative model of Stroop
processing is that of Cohen et al [1990]. This simple con-
nectionist model (hereafter ’The Cohen model’) involves the
translation of a localist input representation into a response
representation, via a feed-forward two-layer network trained
with backpropagation (Figure 1). The main features of this
network are:
1. Differential training of the network: responses to word
inputs are trained at ten times the frequency of responses
to colour inputs. This results in a stronger weighting of
signals representing this aspect of the stimulus.

2. Attentional sensitisation: the network implements atten-
tion as an additional input which off-sets a bias (in effect
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a default inhibition) on all hidden units. This interacts
with the sigmoidal output function of the units so that
moderately sized signals do not result in a commensu-
rate increase in output unless presented in combination
with attentional input. Signals in the word-processing
pathway, however, are large enough to partially over-
come the default inhibition without the aid of attentional
input.

3. Reaction times generated a by response mechanism that
works on evidence accumulation: the output units of the
network are taken to indicate, at each time point, the ev-
idence favouring each response. This evidence is com-
pared and accumulated until the total crosses a threshold
– when a response is said to have been made. It is this
feature feature of the model which is the concern of the
current work.

Selection in Cohen et al’s (1990) model of the Stroop Task
The response mechanism of Cohen et al’s [1990] model
is ignored in textbook treatments of the model [Ellis and
Humphreys, 1999; Sharkey and Sharkey, 1995] and even
overlooked in Cohen et al’s own analysis of the function of
the model [Cohen et al., 1990]. This reflects, we argue, a
regrettable, but not untypical, neglect of the action selection
problem in psychology. Reinforcing this view, we have re-
cently, shown that, contrary to the original account of Cohen
et al., it is the response mechanism, not the neuronal transfer
function, which generates the important differences in reac-
tion times between conditions [Stafford and Gurney, 2004;
Stafford, 2003], and it is the response mechanism which
explains the asymmetry in the magnitudes of the interfer-
ence and facilitation effects in the Cohen model (a mat-
ter about which there has been some debate [MacLeod
and MacDonald, 2000]). The response mechanism of the
model is isomorphic to the diffusion model [Ratcliff, 1978;
Ratcliff et al., 1999], which has been shown to be an analyt-
ically tractable form of several connectionist models of de-
cision, and an optimal decision algorithm for a two-choice
decision situation [Bogacz et al., submitted] where either
desired accuracy or time-to-decision is specified (obviously
these two mutually constrain each other). Further, potential
neurobiological correspondences to the evidence accumula-
tion processes of the diffusion model have been identified
[Gold and Shadlen, 2000]. Thus our investigation of evi-
dence accumulation as a mechanism of selection in this spe-
cific model may carry important lessons for theories of selec-
tion in general.
The response mechanism is also responsible for a major

mismatch between model performance and human perfor-
mance. A plausible alternative theory of Stroop processing
— and of automatic processing in general — is that more au-
tomatic processes are simply faster. This theory would sug-
gest that Stroop interference is due to the response evoked
by the word aspect of the stimulus arriving at some response
bottleneck earlier, creating slower selection of the opposite
response when it arrives there. The experimental refutation
of this theory involves presenting a coloured-ink patch next
to a colour-word. If presented simultaneously the normal
Stroop effect is found, but the spatial separation allows the

asynchronous presentation of the colour and the word; a stim-
ulus onset asynchrony (SOA) paradigm. If the colour ap-
pears sufficiently before the word then, according to the sim-
ple ‘horse-race’ theory, naming of the word should suffer in-
terference from the colour information (a ‘reverse Stroop ef-
fect’). This is not what happens experimentally [Glaser and
Glaser, 1982]. For word-naming, no amount of head-start
for colour-information is sufficient to create interference. For
colour-naming, the appearance of the word at any point up
to 300 ms after the appearance of the colour (close to the as-
ymptotic limit for reaction times) causes interference. Addi-
tionally, the appearance of the word before the colour always
causes interference, however long the subject is given to ac-
commodate to the presence of the word.
The Cohen et al model can simulate limited features of the

Stroop SOA paradigm. However, if the model is tested be-
yond the range presented in the original paper, serious flaws
are revealed. Trends in the simulation data which can be
seen over the original range of SOA values continue at longer
SOAs, as the to-be-ignored dimension of the stimulus is pre-
sented increasingly before the to-be-responded to dimension
(see Figure 2). By convention SOAs which involve the to-be-
ignored dimension being presented first are labelled negative.
Thus, for colour naming, in the conflict condition, the model
response time increases as the SOA gets more negative until
eventually the word-aspect is presented early enough to force
an incorrect response. In Figure 2 this is represented by the
peak in the line showing the colour-naming conflict condition
reaction times. RTs start to decrease with increasing negative
SOA because the model is more and more quickly selecting
the wrong response. If the word is congruent to the colour
information then there is comparable interference, but this
reveals itself as a speeding of the correct response; this dy-
namic continues until, ultimately, the model responds before
the colour information has even been presented. In Figure
2 this shown by the point at which the line representing RTs
for colour-naming congruent condition crosses the dotted line
representing zero on the RT axis. For the same fundamental
reasons, in the word-naming task the conflict and congruent
conditions diverge in the same way (albeit over a longer time
span). Thus, the model behaves in accordance with the exper-
imentally disproved horse-race model: presenting colour in-
formation ahead of word information creates a reverse Stroop
effect — colour information interferes with word-reading.
The reason for these failures may be traced to the evidence

accumulation response mechanism. Because the model, like
all connectionist models, works on graded signals there is al-
ways some signal change due to the to-be-ignored, even if
this is very small due to the attentional inhibition. In the case
of the colour-naming task, it is integral to the model’s func-
tion that some influence of the word-aspect of the stimulus
survives attentional selection and comes to influence the re-
sponse stage. Without this feature the basic effect of Stroop
interference would not be present. However, in SOA condi-
tions, this influence of the to-be-ignored aspect may accumu-
late indefinitely. This affects selection time to an extent pro-
portional to the time it is presented multiplied by the strength
of evidence conveyed. So arbitrarily small amounts of evi-
dence can provoke erroneous selection if presented for long
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Figure 2: The SOA simulation of the original Cohen model.
The empirical data is shown inset. The simulation data corre-
sponds roughly to the empirical data over the range originally
reported (-400 to +400 ms) but beyond that diverges.

enough, or they can massively slow correct selection (because
accumulated evidence for the opposite response must be over-
come).
Adding a more biologically realistic response mechanism

— based on the basal ganglia— overcomes these deficiencies
and considerably extends the model’s explanatory power.

3 The Basal Ganglia model as a response
mechanism for a cognitive task

The neural network component of Cohen et al’s model per-
forms what is normally thought of as the cognitive elements
of the task: stimulus–response translation, attentional control
and learning. Only one minor change was required to this
‘front-end’ to make is compatible with using the basal gan-
glia model as the response mechanism. The output units of
the Cohen model originally had resting values of 0.5. This
was changed to 0.1, to make the output signals interpretable
by the basal ganglia model as indicative of the salience of the
corresponding response 1.
In all other respects the combined model is exactly as pub-

lished by Cohen et al [1990], except with the basal ganglia
model [Gurney et al., 2001b; Humphries and Gurney, 2002]
replacing evidence accumulation as the method of final re-
sponse selection.

1For consistency this entails changes in the initial weights the
networks is given before training, but these are not discussed here as
there is no substantive effect on the simulation results; as should be
expected from a good model the principle findings are robust under
parametric variation, and this aspect of the model is an implemen-
tational detail which is irrelevant to overall behaviour of the model.
For details see Stafford [2003].

Figure 3: Empirical and simulation reaction times in the basic
Stroop conditions for word-reading and colour-naming tasks.
Empirical data is from Dunbar & MacLeod [1984], for which
standard error bars are shown

4 The Simulation Results
4.1 Matching and Improving on the performance

of Cohen’s Model
We tested the Cohen connectionist front-end with the basal
ganglia model as the response mechanism (hereafter ‘The
Model’) on the first three simulations presented by Cohen et
al [1990]. The model simulates the basic Stroop task (simu-
lation 1), matching the empirical data as well as the original
Cohen model does (Figure 3).

The ability to realistically model learning phenomena is a
key benefit of connectionist models. The model mimics the
power-law function of learning (Figure 4), just as the origi-
nal Cohen model does. This demonstrates that the learning
dynamic captured by the connectionist front-end is not inter-
fered with by the use of the basal ganglia response mech-
anism; graded changes in the signals from the front end
are converted into appropriately graded changes in reaction
times.

The SOA task (Simulation 2) shows up the superiority of
the basal ganglia as a response mechanism over the original
response mechanism. As discussed, over long negative SOAs
the Cohen response mechanism makes wrong selections, due
to the small but significant influence of the distracting stim-
ulus dimension. The input units of the basal ganglia model
filter out small salience inputs (as discussed section 1). This
creates a minimal salience threshold, below which inputs are
ignored. Thus, using the basal ganglia response mechanism,
the model makes the correct selection at all SOA values. Fur-
thermore, the distracting influence of the to-be-ignored aspect
of the stimulus is limited. This is reflected in the stabilisation
of reaction times at SOAs below –400 ms (see Figure 5).

5 General Discussion
5.1 Strengths of the Model
This work validates our model against the basic Stroop phe-
nomena. Use of the basal ganglia model as the response
mechanism improves the fit that can be made to the empir-
ical data and highlights necessary features response mecha-
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Figure 4: The model conforms to the power law of prac-
tice [Logan, 1988]. Both axis use a log scale. Sim-
ulation results are shown as dots. The simple regres-
sion for the data is shown as a straight line and fol-
lows the form log10(Processing Time) = 2.65 − 0.46 ×

log10(Epochs). R2 = 0.948.

nisms should contain, the lack of which was overlooked in
the previous account. Use of the basal ganglia model also
extends the account of Stroop processing to connect with the
neurobiology of selection. The basal ganglia model includes
anatomical specific pathways and an account of the dopamine
system. This allows future tests of the model against various
pathologies, such as schizophrenia.
A better account of the data is one benefit of this model.

There is also a theoretical purity to testing models by utilis-
ing them in new areas that they were not developed with in
mind. It is testament to the basal ganglia model’s value as
a general model of selection that it deals appropriately with
signals provided by a connections model of a cognitive task.

5.2 Why Does The Model Work?
The model captures the basic Stroop (Figure 3) and learn-
ing (Figure 4) phenomena because, for moderately sized
saliences, selection time is based on the relative difference be-
tween the to-be-selected salience and the competing salience
(if any). It is with small saliences, and when dealing with suc-
cessive rather than simultaneous inputs, that the basal ganglia
model shows its superiority as a selection mechanism. Both
of these cases are revealed by comparison of the SOA simu-
lations (Figures 2 and 5).
The failure of the Cohen model on the SOA simulations is

because of a model feature which is neither trivial nor irrele-
vant. The existence empirically of the basic Stroop interfer-
ence effect demonstrates that response activation from the to-
be-ignored word aspect of the stimulus must break through
any initial attentional inhibition. Arriving at the response
mechanism before the response activation of the colour as-
pect, this activity is enough, in Cohen’s model, to cause selec-
tion. The erroneous selection produced at long SOAs shows
that a response mechanismmust not make selections based on

Figure 5: Model SOA data.

inconsequentially low inputs. Our basal ganglia model avoids
this by having a minimum salience threshold, below which no
action is selected.
This minimal threshold was included in the basal ganglia

model because of the neurobiology of medium spiny neurons
in the striatum – the main input nucleus of the basal gan-
glia. These neurons possess upstate / downstate functionality,
which means that they only start to release action potentials
if their input is above a certain threshold. This feature has
the effect of filtering out noise in the inputs which is below
threshold. The Cohen model evidence accumulation mech-
anism has no such minimal threshold, and no decay of ac-
cumulated evidence, and because of this it always makes a
selection if left for long enough. By extension, the diffusion
model, the general form of the evidence accumulation mech-
anism used, contains no capacity for not making a selection.
This is a serious flaw. It means that evidence accumulation
and the diffusion model alone cannot provide a full account
of action selection.
In the basal ganglia model, competition on other channels,

even if below selection level, can affect selection time. This
priming, whether positive or negative, occurs because activ-
ity on other channels alters the resting level of output signals
in GPi, and thereby affects the time it takes for outputs to
drop to the point whereby selection occurs. The amount of
this priming is limited because the model uses units with an
output range restricted between 0 and 1. Compare this with
the Cohen response mechanism, and by extension the diffu-
sion model, which, with no constraints on where the selection
threshold is set, contains the capacity to retain infinitely large
values and thus can generate arbitrarily large amount of inter-
ference (as seen in the SOA simulations, Figure 2). This ben-
efit of the basal ganglia model demonstrates the value of con-
sidering the mechanisms of action selection within a (neural)
signal processing context.
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5.3 What properties must a selection mechanism
possess?

At a minimum these issues indicate that the context within
which the diffusion model of selection is used cannot be ig-
nored or assumed. The simulation of the SOA paradigm high-
lights two properties which the basal ganglia as a selection
mechanism brings to the combined model to improve the ac-
count of the data. Together both of these features mean that
not only is the wrong response not selected, but also the right
response is selected efficiently. This is an example of the
’clean switching’ property which has been identified as a nec-
essary feature of any selection mechanism [Redgrave et al.,
1999].
The first feature is that the basal ganglia model limits the

maximum possible influence on selection of concurrently or
consecutively active competing inputs. So, in the SOA par-
adigm with negative SOAs the interference on reaction time
does not get progressively longer with increasing SOA, but
instead levels off – there is a maximum amount of interfer-
ence that a distracting stimulus can produce on reaction times.
This benefit is due to the wider context of adaptive control
that the basal ganglia model arose from. A response mecha-
nism needs to work in real-time, continuously, dealing with
the successive selection of actions and interruption of old ac-
tions by new. Because the BG model is designed to operate
continuously it has equilibrium final states, in which no ac-
tion is selected. All patterns of input, if unchanging, even-
tually produce unchanging output states (although such a sit-
uation is unlikely to arise). For some patterns of input, the
final output state indicates that no action is selected. The evi-
dence accumulation response mechanism, on the other hand,
has only one type of final state – that of selecting an action –
and it continuously moves towards this state. The existence
of equilibrium final states allows the successive switching be-
tween actions, without those actions interfering more with the
selection of new actions the longer they have been selected.
The second necessary feature is that the basal ganglia will

not make selections based on arbitrarily low inputs. This is
because, due to the physiological properties of the medium
spiny neurons in the striatum, the input nucleus of the basal
ganglia, the model has built into it a minimum input thresh-
old below which signals are ignored. Without such an input
threshold, any level of input will cause the evidence accumu-
lation counter to inextricably increase towards the selection
threshold. A minimum input threshold is not the only way
of preventing this kind of erroneous selection. Usher & Mc-
Clelland [2001], in their model of perceptual choice, present
an alternative strategy to a minimal input threshold, but one
which has the same functional role. They argue that models
of perceptual choice – they discuss the same kind of choice
algorithms that are the basis for the Cohen et al [1990] re-
sponse mechanism [Luce, 1986] – require the addition of ac-
tivation decay on the choice representations. A decay mech-
anism can fulfill the same role as a minimal input threshold,
since for situations where input is less than the decay that in-
put is effectively filtered out. Another way of solving this
erroneous selection problem might be to send a no-go sig-
nal which prevents selection until appropriate. This would

not be feasible with a evidence accumulation model of selec-
tion, but it would be feasible with the basal ganglia response
mechanism because it does not allow previous signal values
to carry potentially unlimited weight when selecting new ac-
tions (i.e. clean switching, as discussed above). In the SOA
task a no-go signal could be provided by the front-end to the
basal ganglia on a third channel. This no-go signal, by being
itself selected, can prevent selection until the relevant stim-
ulus dimension has appeared. Although possible, this type
of solution is perhaps not theoretically desirable because it
relegates the problem of selection to another part of the sys-
tem and hence begs the question of how correct selection is
achieved.
A third possible way of accounting for the basic Stroop ef-

fect but avoiding erroneous selection in the SOA conditions
is to include in the model a kind of reactive attentional inhi-
bition, which suppresses activity based on the to-be-ignored
dimension but only after it has occurred. Just such a stimulus-
evoked inhibition mechanism is the focus of the cognitive
control hypothesis of Botvinick et al [2001]. Initial investiga-
tions suggest that this mechanism, because it reduces interfer-
ence from the to-be-ignored dimension of the Stroop stimulus
but not until that interference has first arisen, would allow the
accurate modelling of the course of interference in the SOA
paradigm [Stafford, 2003]. Future modelling work may sug-
gest ways in which these ways of limiting interference and
preventing selection based on arbitrarily small values can be
experimentally distinguished.
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Abstract 

Subcortical loops through the basal ganglia and 
cerebellum form computationally powerful dis-
tributed processing modules (DPMs). This paper 
relates the computational features of a DPM’s 
loop through the basal ganglia to experimental re-
sults for two kinds of natural action selection. 
First, functional imaging during a serial order re-
call task was used to study human brain activity 
during the selection of sequential actions from 
working memory. Second, microelectrode re-
cordings from monkeys trained in a step-tracking 
task were used to study the natural selection of 
corrective submovements. Our DPM-based model 
assisted in the interpretation of puzzling data from 
both of these experiments. We come to posit that 
the many loops through the basal ganglia each 
regulate the embodiment of pattern formation in a 
given area of cerebral cortex. This operation 
serves to instantiate different kinds of action (or 
thought) mediated by different areas of cerebral 
cortex.  

1. DPM-based Model  
The higher order circuitry of the brain is comprised of a 
large-scale network of cerebral cortical areas that are indi-
vidually regulated by loops through subcortical structures, 
particularly through the basal ganglia and the cerebellum 
[Houk and Wise 1995; Kelly and Strick 2003, 2004]. These 
subcortical loops form distributed processing modules 
(DPMs) that have powerful computational architectures 
(Figure 1) [Houk 2005]. The final outcome of all of the 
computations in a given DPM is a spatiotemporal pattern of 
activity in the module’s output vector, representing the 
activity in its set of cortical output neurons. This allows a 
given DPM to participate in the computations taking place 
in other areas of cerebral cortex, or in the brainstem or spi-
nal cord.  
 The loop through the basal ganglia is thought to 
regulate the selection and/or initiation of pattern formation 
[Gurney et al. 2001; Houk & Wise 1995; Houk 2001; 
Redgrave et al 1999]. The term Embodiment is used in 
Figure 1 [Houk 2005] to capture both possibilities, i.e. ei-
ther selection or initiation, the former occurring when dis-
inhibition allows other cortical inputs to initiate and the 
latter when the selection is strong and does its own initia-

tion. Embodiment is critically dependent on the refined, 
neuromodulated pattern classification operations that take 
place in the input layer of the basal ganglia, the striatum 
[Gruber et al. 2003]. According to most contemporary 
models, bursts of striatal spiny neurons, via the direct 
pathway through the basal ganglia, disinhibit their targets 
in thalamus, allowing thalamo-cortical loops to embody 
patterns of activity that represent a ballpark estimate of an 
action, or a thought. In contrast, via the indirect pathways 
through the basal ganglia, bursts of striatal spiny neurons 
depress their targets in thalamus, inhibiting the embodi-
ment of patterns that would represent poor choices in ac-
tion selection.  
 Once a tentative pattern has been selected and 
initiated through the operation of the loops through the 
basal ganglia, the loops through the cerebellum amplify 
and sculpt that pattern into a refined output vector [Houk 
and Mugnaini 2002]. The amplification step appears to be 
implemented by the loop through the cerebellar nuclei. 
Regenerative positive feedback in this loop amplifies the 
output’s intensity, duration and spatial extent. The re-
strainment of this amplification process and, more impor-
tantly, sculpting it into an accurate representation of an 
action (or thought) is implemented by the loop through the 
cerebellar cortex. The cerebellar cortex is considered to be 
an exceptional neuronal architecture for learning difficult 
computations [Raymond et al. 1996; Houk & Mugnaini, 
2002] and so is well suited to this task.  

2. Serial Order Recall 
Tasks in which lists of items are presented, after which the 
subject is required to recall the items in the same order in 
which they were presented, require serial order processing 
and sequential action selection. Here we introduce a task 
dubbed Replicate without intending to identify novel be-
havioral phenomena. Instead we aspire to establish a task 
paradigm that elicits many standard patterns of serial recall 
behavior, but which also can be conveniently applied 
across research modalities and, in particular, across species. 
Benchmark properties of serial order recall include: 1) A 
graded decline in recall accuracy with sequence length, 2) 
transposition gradients reflecting a tendency for items to be 
recalled at serial positions near to their original positions, 
3) item similarity effects including a) a tendency for items 
to be recalled near the item where they originally appeared, 
b) a tendency for sequences of similar items to be recalled 
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less accurately than sequences of less similar items [Bot-
vinick and Plaut 2005]. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1:  The abstract signal processing operations posited for each DPM. Net excitatory pathways are shown with closed arrows, net 
inhibitory pathways are shown with open arrows, and the diamonds signify neuromodulatory and training inputs 
 
 The Replicate task presents K targets on an NxN 
grid of squares in a randomized sequence and requires the 
subjects to remember their positions and serial order over a 
brief delay. The subjects are then cued to use a joystick to 
move a cursor to the K positions in the same order in which 
they were originally presented. The phase of target presen-
tation requires the setting up of a working memory repre-
sentation, which must be sustained through the delay and 
then decoded in order to produce correct joystick move-
ments; we thus refer to the three phases of the task as the 
encoding, maintenance and decoding phases. We also em-
ploy a control task, referred to as Chase. In Chase, a se-
quence of location cues appears just as in Replicate, but 
subjects use the joystick to track these cues immediately as 
they appear. Chase involves similar stimulus and response 
sequences to the Replicate task, but eliminates the working 
memory component. 
 Preliminary behavioral studies with Replicate con-
firm that the task generates several standard patterns of 
recall behavior. Thirty-two Replicate trials were performed, 
eight at each of four sequence lengths (3-6 for half the sub-
jects, 4-7 for the other half). Each trial was initiated by the 
subject using the joystick to move a cursor into the central 
tile in a 5x5 grid. A target sequence then appeared, with 
each target location illuminated for a total of 500 msec. 
Following a 10 sec delay, the joystick cursor changed 
color, cuing the subject to reproduce the target sequence, 
returning to the central tile when finished. A maximum of 3 
sec was allotted for identification of each location. Our 
error analysis suggested that the Replicate task yields the 
typical visual memory span of 4-5 items, and that errors 
frequently involve 1) transpositions of items located near to 
one another in the sequence and/or 2) substitution of a loca-
tion target with a nearby location in the grid. These results 

demonstrate that Replicate has several benchmark proper-
ties of serial order recall [Botvinick and Plaut 2005].  
 
Functional neuroimaging (fMRI) was used to 
study BOLD changes during the Replicate task. There were 
two primary BOLD contrasts. The “execution” contrast 
was made between the period of sensory guided joystick 
movements in the Chase task and a rest period. This con-
trast was designed to show the neural correlates of serial 
motor execution. The “decoding” contrast was made be-
tween the memory guided movement period of the Repli-
cate task and the sensory guided movement period of the 
Chase task. This contrast was designed to reveal the neural 
correlates of the decoding process while simultaneously 
controlling for BOLD activity related to pure motor execu-
tion.  Whole brain EPI data (24 6 mm slices, TR=2000 ms) 
were collected from 10 subjects, and a partial-brain scan-
ning protocol focusing on the basal ganglia (12 6mm slices, 
TR=1000 ms) was used for 9 subjects.  

In the participants who provided whole-brain data, 
reliable decoding activity was observed in right prefrontal 
cortex, left anterior cingulate, left supplementary motor 
area, and portions of cerebellum. Activity related to the 
execution of joystick movements was observed in the con-
tralateral primary motor cortex, contralateral putamen, and 
ipsilateral cerebellar cortex. The partial-brain imaging pro-
tocol provided better sensitivity to changes within the stria-
tum of the basal ganglia. 
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Figure 2: Differential BOLD activity in the right and left head of 
the caudate and putamen for the decoding (light grey), and execu-
tion (dark grey) contrasts. Error bars indicate standard error. Sin-
gle asterisk (*) indicates a significant difference [t(8) ≥ 2.36, p < 
0.05] while double asterisks (**) indicate a highly significant 
difference [t(8) ≥ 4.16, p < 0.01]. A significant decrease in activ-
ity was found in the caudate nucleus for decoding, whereas a 
significant increase in activity was found in the putamen for exe-
cution. Deactivation, representing a statistically significant de-
crease in blood flow in caudate during decoding, was surprising.  
 
Action selection in the loop through the basal gan-
glia. Although many authors have suggested that the loop 
through the basal ganglia plays an important role in action 
selection, there are diverse views concerning the mecha-
nism by which this might occur. Most authors agree that 
action selection occurs in the input nucleus of the basal 
ganglia loop, namely the striatum (but see [Rubchinsky et 
al. 2003]), comprised of caudate and putamen divisions.  
The principal neurons of the striatum, the medium spiny 
neurons, are inhibitory GABAergic projection neurons and 
emit an elaborate array of collaterals to neighboring spiny 
neurons before they project to globus pallidus. The collat-
erals give rise to an inhibitory feedback network in the 
striatum mediating a competitive pattern classification op-
eration. Collateral inhibition is deemed an effective mecha-
nism for competition by some authors [Plenz 2003] and 
ineffective by others, the latter believing that feedforward 
inhibition mediates the pattern classification operation 
[Tepper et al. 2004]. Beiser and Houk [1998] modeled both 
mechanisms and found that both worked, but that the in-
hibitory feedback network worked more effectively than 
the feedforward network. 
 What has not been considered to date is the possi-
bility that the inhibitory feedback network relies on pre-
synaptic, as opposed to postsynaptic, inhibition. This is 
surprising since presynaptic inhibition of cortical input to 
the striatum has been demonstrated electrophysiologically 
[Calabresi et al. 1991; Nisenbaum et al. 1993]. Indeed, the 
operation of a presynaptic mechanism for collateral inhibi-
tion could also explain the surprising fMRI BOLD deacti-
vation that we found for the decoding contrast in caudate 
(Figure 2). Synaptic input is believed to be a strong con-
tributor to BOLD signals (Arbib et al. 2000). Since pre-

synaptic inhibition would decrease synaptic input, that 
could explain the deactivation for caudate. The activation 
seen for putamen presumably results from a greater de-
pendence on postsynaptic inhibition. The cause for this 
difference might relate to phylogeny; by and large, caudate 
is phylogenetically more recent than putamen.  
 
Model of competitive pattern classification. Presynap-
tic inhibition should give rise to a computationally power-
ful mechanism for pattern classification. Beiser and Houk 
[1998] found that, since the equilibrium potential for post-
synaptic GABAergic inhibition, is between the down and 
up state of spiny neurons, this mechanism for mediating 
competition between neighboring spiny neurons was quite 
sensitive to spontaneous membrane potential and to model 
parameters. It performed better than feedforward inhibition, 
but it was not optimal. Presynaptic inhibition has no equi-
librium potential – it just cuts off the synaptic input regard-
less of the membrane potential of the spiny neuron.  
 Fansler-Wald et al [2004] modeled a network of 
recurrent loops through the cortex and basal ganglia to en-
code the serial order of two visual cues, A and B (Figure 
3). The spiny neurons were simulated using the Gruber 
model [Gruber et al. 2003] with excitatory and postsynaptic 
inhibitory conductance inputs. Presynaptic inhibition was 
also modeled, by dynamically decreasing the excitatory 
synaptic weights. The GPi-T-PF loop (symbols in legend) 
was abstractly modeled based upon the Bieser and Houk 
model [1998] with a sigmoidal function to transform mem-
brane potentials to firing rates. Response to a sequence of 
A followed by B is demonstrated (Figure 4). The network 
was then subjected to noise using no inhibition, presynaptic 
inhibition, and postsynaptic inhibition in caudate. A mis-
classification error in this example would be firing of the 
BA neuron in PF Cortex. 
 

 
 
Figure 3:  Serial order encoding network.  Recurrent loops in the 
direct pathway through the prefrontal (PF) cortex, caudate (CD) 
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nucleus, globus pallidus pars internus (GPi), and thalamus (T) are 
used to encode two visual cues, A and B. Computational units AB 
and BA are labeled for the sequence they respond to best; Ax 
(Bx) is activated by A (B) independent of its serial order.  Pre-
frontal cortex projections are excitatory, with synaptic weights 
represented by dot sizes.  Caudate spiny units are interconnected 
by inhibitory collaterals to form a competitive network (shown 
symbolically by the shaded gray area).  CD units are inhibitory to 
GPi, which in turn inhibit thalamic units.  This disinhibition acti-
vates thalamic units. The loop is completed by reciprocal excita-
tory connections between thalamus and cortex. 
  
Presynaptic inhibition yielded improved noise tolerance 
and decreased energy requirements compared to postsynap-
tic inhibition. When the network was subjected to noisy 
inputs, the misclassification rate without inhibition was 
54.6% but fell to 24.1% for postsynaptic inhibition and 
19.4% for presynaptic inhibition (4.8% decrease with pre-
synaptic versus postsynaptic inhibition, p<0.001). Pre-
synaptic inhibition also decreased the synaptic activity 
level in caudate from 118 to 98.0 (difference of 16.9%, 
p<0.001). This decreased excitatory synaptic activity may 
explain the reduced fMRI BOLD signal in caudate during 
the decoding contrast (Figure 2). 

 
Figure 4: Response to a sequence of A followed by B using pre-
synaptic inhibition in caudate. Firing rates in caudate (CD) and 

prefrontal cortex (PF) are on the left axis.  CD membrane poten-
tials are on the right axis. The effect of inhibition can best be seen 
as the membrane potential of the CD BA neuron is suppressed by 
lateral inhibition of the activated CD units.  Inhibitory input from 
CD units causes tonically active GPi units to hyperpolarize and 
pause, producing rebound responses in thalamic units. The re-
spective PF cortical units are then activated and sustained by posi-
tive feedback between thalamic and PF units. 
 

3. Selection of Corrective Submovements 
Tracking movements that require both speed and accuracy 
consist of a primary movement that is often off target, in 
which case it is followed by one or more corrective sub-
movements in man [Novak et al. 2002] and in monkey 
[Fishbach et al. 2005]. The corrective submovements often 
overlap the primary movement, which suggests that the 
neural control system uses a forward model to predict the 
movement endpoint based on a copy of the neural com-
mand (efference copy) and a delayed sensory feedback. 
Whether the update of the neural command is continuous 
or intermittent is still under debate. Our findings from an 
analysis of the properties of submovements when perturba-
tions of target location were introduced at movement onset 
strongly support the hypothesis that the neural controller 
predicts the need for a correction and selects an appropriate 
one intermittently, as illustrated in Figure 5.  
 

 
 
Figure 5:  An operational model of how corrective submovements 
are generated. Vision provides the information about the desired 
endpoint, which can be updated as rapidly as 180 ms when a vis-
ual perturbation is introduced at movement onset. The brain com-
putes the predicted endpoint based on efference copy and sensory 
input, and it computes the prediction variance based on past ex-
perience.  The normalized predicted error (Z-score) must exceed a 
threshold value T in order to initiate a corrective submovement. 
The executed submovement follows an approximately bell-shaped 
velocity profile. 
 
Single cell recordings in monkeys can be used to study 
how the basal ganglia participate in these processes. Since 
the output cells in GPi of the basal ganglia project to many 
different areas in the cerebral cortex, neurons need to be 
sampled from the region of GPi that projects to the primary 
motor cortex [Roy et al. 2003]. The sampled neurons 
should also be ones that are well related to the task. Figure 
6 is an example that meets both of these criteria. 
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Figure 6:  Activity during a single trial of a GPi neuron. In this 
task the monkey turns a rotating handle to move a cursor horizon-
tally on a screen (blue trace (c) = position; red trace (b) = veloc-
ity) to acquire a target (boxes). The baseline-rate normalized cu-
mulative sum histogram for the neuron ((a) green trace) shows 
three pauses in the high tonic discharge rate in this GPi neuron. 
The first pause (1) is small and occurs prior to the primary 
movement; the second and third are stronger pauses in association 
with tiny corrective submovements (2 & 3).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7 illustrates the reliability of single trial properties in a  
block of trials for the Figure 6 neuron. The average firing rate of 
the cell is shown for all trials containing a single corrective sub-
movement ((a) blue trace) and for trials containing multiple cor-
rective submovements ((b) red trace). Both traces are aligned to 
the onset of the first correction. Note that the pauses correspond-
ing to the submovements are as strong or stronger than the pause 
for the primary movement, even though the corrections they ap-
pear to control are typically much smaller than is the primary 
movement. In the next paragraph, we discuss the likely explana-
tion for these discrepant amplitude relationships. 
  
The DPM model mentioned earlier (also see [Houk and 
Wise, 1995]), posits that practice in a task allows regularly 
rehearsed processing steps to be exported from the basal 
ganglia and/or cerebellum to the area of cerebral cortex to 
which the channel projects [Houk 2001, 2005]. Primary 

movements can be exported to the motor cortex since they 
are rehearsed in every trial. In contrast, the corrective sub-
movements vary substantially from trial to trial, so noth-
ing regular is rehearsed. This model of knowledge transfer 
from basal ganglia is supported by recent dual caudate-
prefrontal cortex recordings of single cell activity [Pasupa-
thy and Miller 2005]. 

4. Discussion 
Our model of action selection is motivated by the extence 
of powerful computational features in the loops through the 
basal ganglia. The pattern classification operation shown in 
Figure 1 takes place in the striatal layer of a DPM. Compu-
tationally powerful pattern classification derives from sev-
eral unique features of striatal medium spiny neurons 
[Houk 2005]. These features include: 1) a high conver-
gence ratio [Kincaid et al. 1998] that presents nearly 
20,000 different cortical inputs to any given spiny neuron, 
2) a 3-factor learning rule that uses reward-predicting train-
ing signals from dopamine neurons to consolidate LTP 
learning [Houk et al. 1995], 3) an attentional neuromodula-
tory factor [Nicola et al. 2000] that induces bistability and 
nonlinear amplification in spiny neurons [Gruber et al. 
2003], 4) competition among spiny neurons mediated by 
presynaptic and postsynaptic collateral inhibition [Figure 2; 
Plenz, 2003].  
 The anatomically demonstrated projections that 
loop back to the same area of cortex from which they de-
rive [Kelly & Strick, 2004] allow cortical-basal ganglionic 
modules to perform serial order processing [Beiser and 
Houk 1998]. This feature allows them in principle to im-
plement immediate serial order recall from working memo-
ries of a sequence. Long-term memories of serial order 
could be stored in cortico-cortical synapses or in the syn-
apses between cortical neurons and striatal spiny neurons. 
The latter storage mechanism is thought to have a larger 
memory capacity for salient information [Houk & Wise, 
1995]. Consistent with this hypothesis, the learning of new 
associations proceeds more rapidly in striatum than in cor-
tex [Pasupathy & Miller, 2005]. The recall of previously 
learned sequences should also be efficient because cortical-
basal ganglionic modules implement parallel searches 
through a vast repertoire of past experiences stored in the 
synapses of spiny neurons. Another important feature is 
that a network of DPM modules is in principle capable of 
recursion [Houk 2005], thus potentially resolving the “uni-
versal grammar” dilemma of language [Hauser et al. 2002].  
 
Integrative control by basal ganglia and cerebellum. 
The present paper deals mainly with cortical-basal gangli-
onic loops whereas most DPMs also have loops through 
cerebellum. Regarding the latter, presently we know most 
about signal processing in the loops between cerebellum 
and primary motor cortex [Houk & Mugnaini 2002]. There 
are actually two loops in each cortical-cerebellar module. 
The one through the cerebellar nucleus is predominately 
excitatory and is responsible for the high firing rates of 
voluntary movement commands [Holdefer et al. 2005]. 

a 

b

c 

a 
b 

a 

b 
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This is the amplification block in Figure 1 -- positive feed-
back is responsible for the amplification. The longer loop 
through cerebellar cortex uses the strong inhibitory output 
from Purkinje cells to restrain the positive feedback and, 
most importantly, to set the fixed points of this attractor 
network [Houk & Mugnaini 2002].  
 How do cortical-basal ganglionic and cortical-
cerebellar modules work together? Figures 6 and 7 show an 
example of a GPi neuron in the basal ganglia helping to 
select a primary movement and subsequent submovements 
in a tracking task. These pauses will result in disinhibitions 
of the M1 neurons to which the GPi neuron, via thalamus, 
projects, thus facilitating one or more bursts of discharge. 
Each of these bursts would then need to be amplified and 
refined by the cerebellum. Amplification in intensity and 
time would serve to generate any given element of the M1 
output vector in Figure 1, and spatial amplification would 
recruit the large population of M1 neurons (additional ele-
ments of that vector) which are required to produce a 
movement [Georgopoulos & Kristan, 2001]. The cerebellar 
cortex would then restrain and refine the entire M1 output 
vector, shaping it into a composite motor command calling 
for a primary movement and the subsequent corrective sub-
movements that home in on the target.  
 The engineering operations in Figure 5 nicely su-
perimpose on the neurophysiological operations abstracted 
in Figure 1. With the help of dopamine neuromodulation, 
pattern classification in the striatum should be able to gen-
erate the normalized predicted error in Figure 5, utilizing 
convergent cortical input reflecting both phasic sensory / 
efference copy events and tonic contextual cues. The 3-
factor learning rule in striatum would, through prior ex-
perience, have stored these combined patterns in corticos-
triatal synaptic weights via reinforcement learning. The 
resultant output vector from the basal ganglia should then 
be able to embody appropriate motor cortical neurons for 
starting a movement in approximately the right direction, 
thus also initiating positive feedback and amplification in 
the loop through cerebellar nucleus. Finally, the Purkinje 
cells in the cerebellar cortex would shape population dis-
charge into an output vector that commands a reasonable 
bell-shaped primary movement together with the subse-
quent corrective submovements that are needed to ensure 
an accurate overall movement.  
 
Implications for schizophrenia. A simplified version 
of the Replicate task has been studied in patients suffering 
from schizophrenia [Fraser et al. 2004]. The patients exhib-
ited two prominent deficits that were anticipated from ex-
isting models: (1) in line with predictions based on 
Monach’s [2003] capacity model, serial order processing 
became saturated at 3 or 4 items in the list, as contrasted 
with the normal capacity of 7±2 [Miller 1956] and (2) in 
line with predictions based on the Beiser and Houk [1998] 
network model, targets presented later in the sequence were 
remembered most poorly. Both highly significant deficits 
were attributed to defective pattern classification in the 
caudate nucleus. This interpretation could be tested by im-

aging the Replicate task. One prediction to be tested is that 
the decrease in caudate blood flow in the decoding contrast 
(Figure 2) will be attenuated or even reversed in schizo-
phrenia, assuming there is a deficit in GABAb mediated 
presynaptic inhibition.  
 In fact, there is a modified expression of the 
GABAb receptor in schizophrenia [Enna & Bowery, 2004]. 
This implicates the modified GABAbR1 gene on chromo-
some 6p21.3 [Martin et al. 2001] as a major contributor to 
schizophrenia. Since the inheritance of schizophrenia is 
multigenic [Freedman et al. 2001], the gene identified by 
Freedman, Leonard and collaborators is also strongly im-
plicated, a gene that causes altered expression of a nicotinic 
receptor that is prevalent in many of the loops between the 
cerebral cortex and the cerebellar nuclei. Altered transmis-
sion in these loops is thought to contribute to the cognitive 
dysmetria of schizophrenia [Andreasen, 1999].  
 A central paradox of schizophrenia is that a condi-
tion which is genetic in origin survives in the population in 
spite of a substantial fecundity disadvantage. The magni-
tude of the latter is such that any genetic predisposition 
would be eliminated from the population within a few gen-
erations. Instead, since the incidence of schizophrenia re-
mains steady at 1-2%, there must be an accompanying ge-
netic advantage [Huxley et al. 1964]. In analyzing this is-
sue, Kuttner et al. [1967] offered three potential advanta-
geous functions that accompany the inheritance of schizo-
phrenia: (1) a capacity for complex social relations, (2) 
intelligence and (3) language. Crow and colleagues have 
made a strong case for an evolutionary link between the 
origin of language and the etiology of schizophrenia [Ber-
lim et al. 2003]. This hypothesis is consistent with the defi-
cit in competitive pattern classification in schizo-phrenia 
mentioned earlier -- language contains abundant examples 
of serial order processing. One gene coding for GABAb 
receptors at presynaptic sites and another coding for nico-
tinic receptors, along with occasional malfunctioning vari-
ants associated with epigenetic expression, might explain 
the survival of genes responsible for schizophrenia.  
 

5. Summary 
We posit that both on-line error correction and serial order 
recall are examples of natural action selection. They appear 
to use analogous mechanisms for signal processing in their 
respective DPMs. Large-scale models comprised of inter-
acting networks of DPMs may provide an ideal substrate 
for exploring the dynamics of the mind. Such simulations 
may also help us to understand schizophrenia. 
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Abstract
This paper presents a large-scale model of the ar-
chitecture of the mammalian brain, the core circuit
of which carries out inner rehearsal of interaction
with the environment to realise a form of cogni-
tively mediated action selection. As it alternates
between broadcast to and competition between its
component neural assemblies, the core circuit ex-
hibits an episodic dynamics suggestive of cortical
processing in discrete frames. The implemented ar-
chitecture is used to control a simulated robot, and
a classic experimental paradigm in which rats per-
formed apparently goal-directed action selection is
emulated.

1 Introduction
In the 1940s, Tolman and Gleitman used a classic experi-
mental setup to demonstrate apparently goal-directed be-
haviour in rats (Tolman & Gletiman, 1949). The rats were
allowed to explore a T-maze containing a dark room on the
left and a light room on the right (Fig. 1, left). Both rooms
contained food. The rats were then placed in a separate en-
closure resembling the dark room, and subjected to electric
shocks through the feet. When reintroduced to the base of
the T-maze, the rats always navigated directly to the light
room, even though the actions of turning left and right had
been equally reinforced.

The rat’s ability to “think ahead” in this situation is hard
to explain using reinforcement alone, and seems to require
the inference of an indirect cause-and-effect relationship.
However, Hesslow (2002) argues that the only extension to
the paradigm of classical conditioning required to explain
this sort of behaviour is a mechanism for inner rehearsal.
Indeed, both Cotterill (1998) and Hesslow (2002) propose
internally simulated interaction with the environment as the
very basis of animal and human cognition.

In pursuit of this suggestion, the present paper describes a
large-scale, high-level neural model that realises goal-
directed action selection for a simulated robot in an analo-
gous experimental setup (Fig. 1, right). The model imple-
ments an architecture whose core circuit carries out inner
rehearsal to anticipate the effects of currently executable
actions, which are held on veto while these anticipated ef-
fects are evaluated by an affective system. This can bring
about an increase or decrease in an action’s salience, which
in turn can result in the strengthening or weakening of its
veto. When an action’s salience exceeds a given threshold,
its veto is released and the action is carried out.

The design of the core circuit facilitates the integration of
the activities of multiple, parallel neural assemblies using a
combination of competition and broadcast, and thereby re-
alises a global workspace architecture (Baars, 1988; 2002).
The dynamics of the core circuit exhibits a pattern of alter-
nation between stability and rapid change, and is reminis-
cent of certain recent EEG findings suggestive of the idea
that the cortex processes information in discrete frames
(Freeman, 2003; 2004).

2   The Architecture of the Model
Fig. 2 shows a top-level schematic of the model’s architec-
ture. It can be thought of in terms of two interacting sub-
systems. The first-order system is purely reactive, and de-
termines an immediate motor response to the present situa-
tion without the intervention of cognition. But these unme-
diated motor responses are subject to a veto imposed by BG
(the basal ganglia analogue). Through BG, which carries out
salience-based action selection, the higher-order loop
modulates the behaviour of the first-order system. It does
this by adjusting the salience of currently executable ac-
tions. Sometimes this adjustment will result in a new action
becoming the most salient, and sometimes it will boost an
action’s salience above the threshold required to release its
veto, bringing about that action’s execution.

The higher-order system determines these salience ad-
justments by carrying out off-line rehearsals of trajectories
through (abstractions of) the robot’s sensorimotor space. In
this way – through the exercise of its “imagination” – the
robot is able to anticipate and plan for potential rewards and
threats without exhibiting overt behaviour. The first- and
higher-order systems have the same basic components and
structure. Both are sensorimotor loops. The key difference is
that the first-order loop is closed through interaction with
the world itself while the higher-order loop is closed inter-
nally. This internal closure is facilitated by AC, which
simulates — or generates an abstraction of — the sensory
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stimulus expected to follow from a given motor output, and
fulfils a similar role to that of a forward model in the work
of various authors (Demiris & Hayes, 2002; Hoffman &
Möller, 2004; Grush, 2004; Ziemke, et al., 2005). The corti-
cal components of the higher-order system (SC, AC, and
MC) correspond neurologically to regions of association
cortex, including the prefrontal cortex which is implicated in
planning and working memory (Fuster, 1997).

2.1   Affect and Action Selection
Analogues of various sub-cortical and limbic structures ap-
pear in both the first- and higher-order systems, namely the
basal ganglia, the amygdala, and the thalamus. In both sys-
tems, the basal ganglia are implicated in action selection.
Although, for ease of presentation, the schematic in Fig. 2
suggests that the final stage of motor output before the brain
stem is the basal ganglia, the truth is more complicated in
both the mammalian brain and the robot architecture under
discussion.

In the mammalian brain, the pertinent class of basal gan-
glia circuits originate in cortex, then traverse a number of
nuclei of the basal ganglia, and finally pass through the
thalamus on their way back to the cortical site from which
they originated. The projections up to cortex are thought to
effect action selection by suppressing all motor output ex-
cept for that having the highest salience, which thereby
makes it directly to the brain stem and causes muscular
movement (Redgrave, et al., 1999). The basolateral nuclei
of the amygdala are believed to modulate the affect-based
salience information used by the basal ganglia through the
association of cortically mediated stimuli with threat or re-
ward (Baxter & Murray, 2002).

The robot architecture includes analogues of the basal
ganglia and amygdala that function in a similar way. These
operate in both the first- and higher-order systems. In the
first-order system, the amygdala analogue associates pat-
terns of cortical activation with either reward or punishment,
and thereby modulates the salience attached to each cur-
rently executable action (Balkenius & Morén, 2001). The
basal ganglia analogue adjudicates the competition between
each executable action and, using a winner-takes-all strat-
egy, selects the most salient for possible execution (Prescott,

et al., 1999). While the salience of the selected action falls
below a given threshold it is held on veto, but as soon as its
salience exceeds that threshold it is executed.

The roles of the basal ganglia and amygdala analogues in
the higher-order system are similar, but not identical, to
their roles in the first-order system (Cotterill, 2001). These
structures are again responsible for action selection. How-
ever, action selection in the higher-order system does not
determine overt behaviour but rather selects one path
through the robot’s sensorimotor space for inner rehearsal in
preference to all others. Moreover, as well as gating the out-
put of motor association cortex (M C), the basal ganglia
must gate the output of sensory association cortex (AC)
accordingly, and thus determine the next hypothetical sen-
sory state to be processed by the higher-order loop.

This distinction between first-order and higher-order
functions within the basal ganglia is reflected in the relevant
neuroanatomy. Distinct parallel circuits operate at each level
(Nolte, 2002, p. 271). In the first-order circuit, sensorimotor
cortex projects to the putamen (a basal ganglia input nu-
cleus), and then to the globus pallidus (a basal ganglia out-
put nucleus), which projects to the ventral lateral and ventral
anterior nuclei of the thalamus, which in turn project back to
sensorimotor cortex. In the higher-order circuit, association
cortex projects to the caudate nucleus (a basal ganglia input
structure), and then to the substantia nigra (a basal ganglia
output nucleus), which projects to the mediodorsal nucleus
of the thalamus, which in turn projects back to association
cortex.

2.2   Global Workspace Theory
An important feature of the architecture, though not one that
is explored fully in the present paper, is that it conforms to
global workspace theory (Baars, 1988), which advances a
model of information flow in which multiple, parallel, spe-
cialist processes compete and co-operate for access to a
global workspace. Gaining access to the global workspace
allows a winning coalition of processes to broadcast infor-
mation back out to the entire set of specialists. Although the
global workspace exhibits a serial procession of broadcast
states, each successive state itself is the integrated product
of parallel processing.

Fig. 2: A top-level schematic of the architecture. MC = motor cortex, SC = sensory
cortex, AC = association cortex, BG = basal ganglia, Am = amygdala, Th = thalamus.
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According to global workspace theory, the mammalian
brain instantiates this model of information flow, which
permits a distinction to be drawn between conscious and
unconscious information processing. Information that is
broadcast via the global workspace is consciously processed
while information processing that is confined to the spe-
cialists is unconscious. A considerable body of empirical
evidence in favour of this distinction has accumulated in
recent years (Baars, 2002). Although the topic of conscious-
ness is orthogonal to the present paper, the combination of
broadcast and competition that is the hallmark of the global
workspace architecture is central to the action selection
mechanism under investigation. During the process of inter-
nally exploring a space of possible sensorimotor trajectories,
broadcast enables multiple branch points to be considered –
in effect engaging many forward models simultaneously –
while competition determines which of the candidate
branches is actually explored next.

Moreover, the particular blend of serial and parallel com-
putation favoured by global workspace theory suggests a
way to address the frame problem – in the philosopher’s
sense of that term (Fodor, 2000) – which in turn suggests
that conscious information processing may be cognitively
efficacious in a way that unconscious information process-
ing is not (Shanahan & Baars, 2005). In particular, in the
context of so-called informationally unencapsulated cogni-
tive processes, it allows relevant information to be sifted
from the irrelevant without incurring an impossible compu-
tational burden. More generally, broadcast interleaved with
competition facilitates the integration of the activities of
large numbers of specialist processes working separately. So
the global workspace model can be thought of as one way to
manage the massively parallel computational resources that
surely underpin human and animal cognitive prowess.

The architecture of this paper conforms to the global
workspace model of information flow by incorporating
complementary mechanisms for the broadcast of informa-
tion to multiple cortical areas and for selection between
competing patterns of activation within those areas (Fig. 3).
In Fig. 3, the locus of broadcast is denoted GW (for global
workspace). Information fans out from GW to multiple cor-

tical sites (within which it may be subject to further local
distribution). Conversely, information funnels back into
GW, after competition within cortically localised regions,
thanks to a process of selection between cortical sites real-
ised by the basal ganglia.

A number of candidate structures exist in the brain that
might fulfill the role of GW. For example, the first-order /
higher-order distinction is preserved in the thalamus, which
contains not only first-order relays that direct signals from
the brain stem up to cortex (located, for example, in the lat-
eral geniculate nucleus), but also higher-order relays that
route cortical traffic back up to cortex (located, for example,
in the pulvinar) (Sherman & Guillery, 2001). So the thala-
mus is one plausible candidate for a broadcast mechanism in
the mammalian brain. But the same function could be reli-
ased by long-range corticocortical fibres, as proposed by
Dehaene, et al. (2003), or indeed by some combination of
thalamocortical and corticocortical communication.

Thankfully, there is no need to take a stand on this issue
to supply an explanatory framework at an architectural
level. What matters more in the present context is that the
fan-and-funnel model of broadcast / distribution and com-
petition / selection can be straightforwardly combined with
the top-level schematic of Fig. 2, as is apparent from the
diagrams. Indeed, the role of the BG  component of the

Fig 3: The fan-and-funnel model
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higher-order loop introduced in Fig. 2 is precisely to effect
the sort of selection between the outputs of multiple com-
peting cortical areas shown in Fig. 3.

3   An Implementation
The brain-inspired architecture of the previous section has
been implemented using NRM, a tool for building large-
scale neural network models using G-RAMs (generalising
random access memories) (Figs. 4 and 5). These are
weightless neurons employing single-shot training whose
update function can be rapidly computed (Aleksander,
1990), and which can be easily organised into attractor net-
works with similar properties to Hopfield nets (Lockwood
& Aleksander, 2003).

The basic operation of a single G-RAM is illustrated in
Fig. 4. The input vector is used to index a lookup table. In
the example shown, the input vector of 1011 matches ex-
actly with the fourth line of the table, which yields the out-
put 6. When there is no exact match, the output is given by
the line of the lookup table with the smallest Hamming dis-
tance from the input vector, so long as this exceeds a prede-
fined threshold. In this example, if the input vector had been
1010, then none of the lines in the lookup table would yield
an exact match. But the fourth line would again be the best

match, with a Hamming distance of 1, so the output would
again be 6. If no line of the lookup table yields a sufficiently
close match to the input vector the neuron outputs 0, which
represents quiescence.

The core of the implementation, which comprises almost
40,000 neurons and over 3,000,000 connections, is a set of
cascaded attractor networks corresponding to each of the
components identified in the architectural blueprint of the
previous section. The NRM model is interfaced to Webots, a
commercial robot simulation environment. The simulated
robot is a Khepera with a 64 ¥ 64 pixel camera, and the
simulated world contains cylindrical objects of various col-
ours. The Khepera is programmed with a small suite of low-
level actions including “rotate until an object is in the centre
of the visual field” and “approach an object in the centre of
the visual field”. These two actions alone are sufficient to
permit simple exploration and navigation in the robot’s sim-
ple environment.

The overall system can be divided into four separate
modules – the visual system (Fig. 6), the affective system
(Fig. 7), the action selection system (Fig. 8), and the broad-
cast / inner rehearsal system (Fig. 9). Each box in these fig-
ures denotes a layer of neurons and each path denotes a
bundle of connections. If a path connects a layer A to an n ¥
n layer B then it comprises n2 separate pathways – one for

Fig. 7: Affect circuitry (Am)

Reward

Punish

Salience1

Salience2

Salience3

VC / IT

GW
BG

Fig. 8: Action selection circuitry (BG / MC)

MC1

MC2

MC3

BG

Veto

Selected
action
buffer

Motor
command

VC / IT

Am

Robot
motor

controllers

New
action

detector
VC / IT

Urgency

Fig. 6: Visual system circuitry (VC / IT). VC = visual
cortex, IT = inferotemporal cortex.

New
stimulus
detector

Transient
buffer

Long-term
buffer

Robot
camera

GW

MC / Am

New action
detector

95



each of the neurons in B – each of which itself consist of m
input connections originating in a randomly assigned subset
of the neurons in A (Fig. 5). For the majority of visual maps
m is set to 32.

The two buffers in the visual system comprise 64 ¥ 64
topographically organised neurons (Fig. 6). These are both
attractor networks, a property indicated by the presence of a
local feedback path. The transient buffer is activated by the
presence of a new visual stimulus. The hallmark of a new
stimulus is that it can jog the long-term visual buffer out of
one attractor and into another. The GW component of the
inner rehearsal system is loaded from the transient visual
buffer, whose contents rapidly fade allowing the dynamics
of inner rehearsal to be temporarily dominated by intrinsic
activity rather than sensory input.

The contents of the long-term visual buffer are fed to
three competing motor-cortical areas, MC1 to MC3 (Fig. 8),
each of which responds either with inactivity or with a rec-
ommended motor response to the current stimulus. Each
recommended response has an associated salience (Fig. 7).
This is used by the action selection system to determine the
currently most salient action, which is loaded into the “se-
lected action buffer” (Fig. 8). But the currently selected ac-
tion is subject to a veto. Only if its salience is sufficiently
high does it get loaded into the “motor command” buffer,
whose contents is forwarded to the robot’s motor controllers
for immediate execution.

So far the mechanism described is little different from a
standard behaviour-based robot control architecture. What
sets it apart from a purely reactive system is its capacity for
inner rehearsal. This is realised by the core circuit depicted
in Fig. 9, which is similar in both structure and function to
the recurrent neural network of Tani (1996). When a new
visual stimulus arrives, it overwrites the present contents of
GW, and is thereby broadcast to the three cortical associa-
tion areas AC1a to AC3a. The contents of these areas
stimulates the association areas AC1b to AC3b to take on
patterns of activation corresponding to the expected out-

comes of the actions recommended by their motor-cortical
counterparts. These patterns are fed back to GW / BG,
leading to further associations corresponding to the out-
comes of later hypothetical actions. By following chains of
associations in this way, the system can explore the poten-
tial consequences of its actions prior to their performance,
enabling it to anticipate and plan ahead.

But for this capacity to be useful, the system needs to be
able to evaluate hypothetical futures as it discovers them. So
as a result of inner rehearsal, the salience of the currently
selected action becomes modulated according to the affec-
tive value of the situations to which it might lead (Fig. 7). If
the currently selected action potentially leads to a desirable
situation, a small population of “reward” neurons becomes
active, causing an increase in the salience of that action.
This in turn may be sufficient to trigger the release of its
veto, bringing about its execution. Conversely, if the cur-
rently selected action potentially leads to an undesirable
situation, a small population of “punish” neurons becomes
active. The resulting decrease in the salience of that action
may cause a new action to become the most salient. In this
case, the transient visual buffer is reloaded, its contents is
passed on to GW, and the process of inner rehearsal is re-
started. This is, in effect, a form of backtracking, allowing
the system to perform a limited search of the space of possi-
ble courses of action.

To ensure that the system never gets stuck in a “thinking
rut”, endlessly pondering the possible consequences of its
actions instead of actually doing something, a small popula-
tion of neurons acts as an indicator of the urgency with
which the robot should act (Fig. 8). At the onset of a new
stimulus, this neural population becomes quiescent, reflect-
ing a lack of urgency, holding the currently selected action
on veto and giving the inner rehearsal system time to work.
But its level of activity grows with time, reflecting an in-
creasing sense of urgency, and the need to act soon. The
veto on the execution of the currently most favoured action
is thereby gradually weakened, and eventually this action

Fig. 9: Circuitry for broadcast and inner rehearsal (GW / BG / AC). GW = global workspace.
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will be executed regardless of ongoing rehearsal. In this
way, a balance is struck between reactivity and cognitively
mediated, deliberative behaviour.

4   Results and Discussion
The implemented system currently runs on a 2.5 GHz
Pentium 4 machine. Both Webots and NRM are run on the
same machine, and the two systems communicate through
an internal TCP socket. Under these somewhat unfavourable
circumstances, each update cycle for the whole set of neu-
rons takes approximately 750ms. A large proportion of this
time is taken up by internal communication and graphics
processing.

In each of the following experiments, the system runs a
predefined training script prior to exhibiting the behaviour
reported. Running this script sets up associations between
patterns of visual input (VC / IT) and, for a subset of the
three motor-neuronal assemblies (M C 1  to MC3), corre-
sponding recommended actions (Fig. 8) and their saliences
(Fig. 7). This is analogous to reinforcement learning, ac-
quiring a number of preferred immediate responses to an
ongoing situation. In addition, the training script sets up
associations between the current contents of GW and the
punishment / reward neurons of Fig. 7. These permit the
inner rehearsal mechanism, via the amygdala (Am), to exer-
cise its influence on action selection. Producing similar re-
sults with a less supervised form of learning is an obvious
theme for future research.

Fig. 10 illustrates an interesting property of the circuit of
Fig. 9. The graph plots the percentage of neurons in the four
maps GW and AC1a to AC3a that changed state from one
time step to the next (where a time step corresponds to one
complete cycle of updates to all the neurons in the system)
during a typical run in which no external sensory input was
presented to the robot. (A similar pattern is typically pro-
duced soon after the initial presentation of an external
stimulus.) In order to study long chains of associations, a set
of images of abstract coloured shapes (lozenges, stars, and

so on) was used as a training set, rather than images ob-
tained from the Webots simulator. But the same effect is
apparent with images obtained directly from the simulated
robot’s camera. Specifically, the graph shows that the sys-
tem of inner rehearsal exhibits a procession of stable states
punctuated by episodes of instability, a pattern which is
reminiscent of the recently reported phenomenon of aperi-
odic alternation between pan-cortical coherent and decoher-
ent EEG activity (Freeman & Rogers, 2003; Freeman,
2004). According to Freeman, these results suggest that the
cortex processes information in a series of movie-like
frames corresponding to “recurring episodes of exchange
and sharing of perceptual information among multiple sen-
sory cortices” (Freeman, 2004, p. 2077).

In a similar vein, the periods of stability depicted in the
graph occur when the contents of GW is being successfully
broadcast to the three cortical regions, while the spikes of
instability indicate that GW is being nudged out of its pre-
vious attractor and is starting to fall into a new one. The new
attractor will be the outcome of a competition between
AC1b to AC3b. The resulting new contents of GW is then
broadcast to AC1a to AC3a, causing new activation pat-
terns to form in AC1b to AC3b, which in turn give rise to a
renewed competition for access to GW. This tendency to
chain a series of associations together is what gives the sys-
tem its ability to look several actions ahead.

Tables 1 and 2 summarise episodes within two typical
runs of the system, corresponding respectively to the with-
out-aversion and with-aversion conditions in the classic
experiment of Tolman & Gleitman (1949) described in the
introduction (Fig. 1, left). Each episode starts with the initial
presentation of a new stimulus, and ends with the robot’s
first action. Under both conditions, the robot’s environment
contained just three cylinders – one green, one red, and one
blue (Fig. 1, right). Area MC1 of the motor-cortical system
was trained to recommend “rotate right” (RR) when pre-
sented with a green cylinder, while area MC2 was trained to
recommend “rotate left” (RL).

Fig. 10: Cycles of stability and instability

97



Time Events
0 Green cylinder comes into view.

2

Green cylinder image in both visual buffers.
MC1 recommends RR, MC2 recommends RL.
RR has higher salience and is currently selected
action. Veto is on.

3

Green cylinder image in GW and broadcast to
AC1a to AC3a. AC1b has association with red
cylinder, AC2b has association with blue cylin-
der.

6 Associated red cylinder image in GW.

8 Affective system quiescent, but urgency in-
creasing.

19 Urgency very high. Veto released.

20 RR passed on to motor command area. Robot
rotates right until red cylinder in view.

Time Events
0 Green cylinder comes into view.

2

Green cylinder image in both visual buffers.
MC1 recommends RR, MC2 recommends RL.
RR has higher salience and is currently selected
action. Veto is on.

3

Green cylinder image in GW and broadcast to
AC1a to AC3a. AC1b has association with red
cylinder, AC2b has association with blue cylin-
der.

5 Associated red cylinder image in GW.

6 “Punish” neurons active, salience of RR going
down.

9 Salience of RR very low. RL becomes currently
selected action.

10 Transient visual buffer reloaded with green cyl-
inder image.

14 Green cylinder image in GW and broadcast to
AC1a to AC3a.

15 Associated blue cylinder image in GW . “Re-
ward” neurons active. Salience of RL going up.

16 Salience of RL very high. Veto released.

17 RL passed on to motor command area. Robot
rotates left until blue cylinder in view.

The action selection networks were trained in such a way
that MC1’s recommendation (rotate right) had the higher
initial salience, and in a purely reactive system this action
would have been immediately executed under both the
without- and with-aversion conditions. But thanks to the
imposition of a veto, the inner rehearsal system had a
chance to anticipate the outcome of the recommended ac-
tion, giving rise to contrasting behaviours in the two ex-
perimental conditions, as in Tolman and Gleitman’s rat ex-
periments. The inner rehearsal system was trained, using a
predefined script matching the experimental setup, to asso-
ciate 1) the RR action and the image of the green cylinder

with the subsequent presentation of the red cylinder, and 2)
the RL cylinder and the image of the green cylinder with the
subsequent presentation of the blue cylinder.

To emulate the without-aversion condition, the affective
system was trained so that neither its “reward” nor its “pun-
ishment” neurons fired when GW contained the image of a
red cylinder. Under this condition, the robot’s behaviour is
the result of pure reinforcement. As Table 1 shows, this
brought about the execution of RR – the system’s immedi-
ately preferred, reactive response – as soon as the combina-
tion of urgency and salience exceeded the threshold required
to release the veto on that action.

By contrast, to emulate the with-aversion condition, the
“punish” neurons were trained to fire when GW contained
the image of the red cylinder. As Table 2 shows, this lead
the system to reduce the salience of its initially preferred
action (RR) following a period of inner rehearsal that re-
vealed its unpleasant expected consequences. The inner re-
hearsal system then explored the consequences of the alter-
native RL action. When these turned out to be more palat-
able, the salience of the RL action increased until its veto
was eventually released, the RL command was forwarded to
the motor output area, and the robot finally rotated to face
the blue cylinder.

As all of this took place, urgency was increasing, but not
fast enough to outpace the process of rehearsal and prevent
it from influencing the selected action. The upper row of
Table 3 summarises the results of eight further trials under
the with-aversion condition, using the same training script
but with a different randomly generated network configura-
tion for each trial. The RL action is selected on each occa-
sion, with some variation in timing.

Time to first action / action taken
1 2 3 4 5 6 7 8

µ=8 17
RL

16
RL

15
RL

16
RL

15
RL

15
RL

20
RL

15
RL

µ=24 6
RR

9
RL

3
RR

15
RL

2
RR

14
RL

17
RL

3
RR

The behaviour the system exhibits under these two ex-
perimental conditions demonstrates that the architecture is
capable of an elementary from of cognitively mediated ac-
tion selection similar to that first reported by Tolman and
Gleitman (1949). Moreover, the architecture is broadly con-
sistent with contemporary high-level neuroanatomy, and it
conforms to the theoretical proposals of both Baars (1998)
and Hesslow (2003). In addition, the episodic dynamics of
its core circuit is supportive of Freeman’s interpretation of
recent EEG findings in terms of discrete frames of cortical
processing (Freeman & Rogers, 2003; Freeman, 2004).
Neither the architecture nor the current implementation is
confined to the simple experimental setup described in this
paper, and their use in richer environments is the subject of
ongoing work.

For example, by varying the system’s baseline level of
urgency (µ), it is possible to adjust the trade-off between

Table 1: Without aversion to red cylinders

Table 2: With aversion to red cylinders

Table 3: Sample runs with aversion
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deliberation and reactivity – a high baseline level of urgency
results in a tendency to act quickly but “unthinkingly” (Ta-
ble 3, lower row), while a low baseline level of urgency
results in slower but sometimes more effective action selec-
tion (Table 3, upper row). Preliminary experimentation also
suggests that it may be possible to reproduce the behav-
ioural phenomenon of “microchoices” reported by Brown
(1992), wherein rats make tentative small explorations of
arms of a star-maze before eventually making an apparently
goal-directed choice. Using the mechanisms described here,
a similar effect can be had by selecting a baseline level of
urgency that allows for some anticipation of the conse-
quences of actions, but only enough to look a very few ac-
tions ahead. The long-term hope is that, through experi-
ments such as this, the conceptual framework and architec-
ture of the present paper will help to further our under-
standing of the basis of cognition in both animals and ma-
chines.
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Abstract

We have developped a mobile robot controller
based on hippocampus and prefrontal models. The
model adresses two action selection problems en-
coutered in navigation tasks: selection of the goal
(in a the case of multiple and contradictarory goals)
and choice of the motor actions according to the
local situation. It relies on a cognitive map link-
ing ”transition cells” coding for the transition be-
tween two places successively recognized. We pro-
pose these transitions are learned and predicted by
a simple neural mechanism corresponding to the
hippocampus. Each transition cell can then be as-
sociated with the integrated direction used during
the displacement. When several contradictory tran-
sitions are possible, a small bias from the plan-
ning system (prefrontal cortex) is sufficient to se-
lect/filter the appropriate transitions. Final selec-
tion of the motor action results from the merging of
these global decisions with local constraints such
as obstacle avoidance, robot inertia... We show a
dynamical neural field is a simple and efficient so-
lution to solve these possible contradictions and al-
low a stable and correct behavior. Simulations and
robotics experiments are used to illustrate theses
mechanisms.

1 Introduction
Path planning requires from the agent or the robot to select
the appropriate action to perform. This task might be complex
when several actions are possible, and so different approaches
have been proposed to choose what to do next.

Some works use ruled-based algorithms, classical func-
tional approach, that can exhibit the desired behaviors, we
will not discuss them in this paper, but one can refer to [Don-
nart and Meyer, 1996; Tyrrell, 1993]. Instead, other works
try to look at what the nature does by taking inpiration from
neurobiology to design control architecture. There are at least
two reasons for this:

• first, getting robust, adaptative, opportunistic and ready-
made solutions for control architecture.

• second, if robotic results can be compared to experimen-
tal results involving several parts of the brains which are
generally difficult to study due to its complexity, it can
help neurobiologist to understand how a neurobiological
model behaves.

Experiments carried out on rats have led to the definition of
cognitive maps used for path planning [Tolman, 1948]. Most
of cognitive maps models are based on graphs showing how
to go from one place to an other [Arbib and Lieblich, 1977;
Samsonovich and McNaughton, 1997; Bachelder and Wax-
man, 1994; Trullier et al., 1997; Schölkopf and Mallot, 1995;
Bugmann et al., 1995]. They mainly differ in the way they
use the map in order to find the shortest path, in the way
they react to dynamical environment changes, and in the way
they achieve contradictory goal satisfactions. We will focus
here on models inspired by the possible use of particular neu-
rons of the rat’s hippocampus, called place cells [O’Keefe and
Nadel, 1978]. These neurons fire when a rat is at a particular
location in its environment. We will first present the simu-
lated environment and the animat possible behaviors (section
2), then we will describe our model for goal selection, based
on transition cells (section 3). Finally, we will use a neu-
ral field selecting the final movement to perform (section 4).
Simulations are carried out on an animat, and real world ex-
periments on a Labo3 robot.

2 Animat behaviors
The models studied in this paper have all been experimented
using an approach inspired from the concepts of situated
agents and animats [Meyer and Wilson, 1991]. We suppose
our animats live in an unknown environment with several
sources (like “food”, “water” and “nest”) and some obsta-
cles. We use three contradictory motivations (eating, drink-
ing, and resting) each one associated with a satisfaction level
that decreases over time and increases when the animat is on
the proper source. We do not provide any ad hoc description
of the environment. Indeed, the animat gets only two types
of information: the presence of landmarks from its visual in-
put and the azimuth of these landmarks relatively to the north
given by a compass or a vestibular system [Arleo and Gerst-
ner, 2000]. Animats have four possible behaviors for decid-
ing which action to realize. They are given here in decreased
order of priority:
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Figure 1: a)Schematic figure of the brain structures we are intersted in. PRPH represent the perirhinal and the parahippocampus. b)Details
of the sub-structures of the hippocampus.

1. Random exploration to discover the environment and the
needed sources.

2. Planning to reach the sources in order to satisfy the ani-
mat’s motivations.

3. Obstacles avoidance allows the animat to follow obsta-
cles until the desired movement becomes possible.

4. When the source is very near, the animat directly sees
where the source is located and uses this information to
reach it.

3 Goal selection model
Our model focuses on a loop formed by the hippocampus
(HS), the prefrontal cortex (PF) and the basal ganglia (BG).
These two last structures are modelized from a functionnal
approach rather than in a detailed manner (see forward)).

The hippocampus is a brain sub-cortical structures which
takes input from the whole associative areas (see fig.1) via
the entorhinal cortex (EC) and projects efferences into asso-
ciative, prefrontal and premotor cortical areas. A schematic
overwiew of the structure we are interested in is given in fig-
ure 1. It has been shown that the hippocampus was involved
when performing a navigation task since place cells have been
found in the rat’s hippocampus (particularly CA3, CA1 and
DG regions) and in the entorhinal cortex (EC) [O’Keefe and
Nadel, 1978].

There is no need for a Cartesian map since a particular
place is defined by a given set of (landmark, azimuth) pairs.
The recognition of the present location is based on the land-
mark configuration. A place cell Pc responds according to
the position of the animat in its environment. In our model
its activity is calculated as the distance between a landmark
configuration learned and the present one. So, the higher this
response, the closer the animat is to Pc. After competition
between all place cells, the winning cell represents the loca-
tion where the animat thinks it is [Gaussier et al., 2000]. As
a place cell still keeps a certain amount of activity even if the
animat isn’t near the coded place, the neuron place filed can
be quite large. Consequently, we use a rule that controls the
recruitment of a new neuron. Hence, a new neuron will code

for a place, if all previously learned neurons have an activity
lower than the Recognition Threshold (RT). A place cell may
be linked with the movement needed to reach a goal. This
sensory-motor association may be generalized to the whole
environment [Gaussier et al., 2000]. However, this simple re-
active mechanism is not enough in environments composed of
several rooms, or when there are contradictory motivations. A
cognitive map will solve these drawbacks. Transition cells are

B

Motivation

Drive

d/dt

Figure 2: Planning from transition cells. Place cells recognitions
feeds the transition prediction mechanism that provides all possi-
ble transitions beginning with the corresponding place cells. In this
example, transitions BC and BD are predicted since two different
action has been learned from B location. The choice of the correct
transition to use is performed (in ACC) by the bias given by the ac-
tivity of the goal level transitions (PF). As a higher activity means a
shorter path to the goal, the BC transition is selected, since the goal
is located at location C.

inspired by a neurobiological model of timing and temporal
sequence learning in the hippocampus [Banquet et al., 1997;
Gaussier et al., 2002; Banquet et al., 2005].

Figure 2 shows the hippocampal model and the cognitive
map in the prefrontal cortex. Place cells are created in EC by
learning the landmark-azimuth configuration. Transition cells
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are formed in CA3 by the merging of the current location in
EC and the previous one in DG.

The transition cell is also coded in CA1. A path integra-
tion mechanism computes the mean direction used for going
from one place to the other [Samsonovich and McNaughton,
1997]. This direction is linked with the transition at the out-
put of the nucleus accumbens (ACC).

The cognitive map is located in our model in the prefrontal
cortex (PF). The prefrontal cortex, in our model, is a sim-
ple neural network encoding a graph. It is built by linking
transition cells successively reached during exploration and
seems to be coherent with neurobiological data [V. Hok and
Poucet, to appear in 2005]. Learning the cognitive map is
performed continuously (latent learning). There is no sepa-
ration between the learning and planning phase. This graph
is a topological representation of the explored environment.
The transition cells are the nodes of this graph and synapses
link the transitions successively reached. Each source place
is associated with a motivation neuron. This allows to de-
fine a road to be followed for reaching the goal: the activity
diffuses along the links on the map and activates transition
cells according to their distance (in number of links) to the
goal. Diffusion is achieved in a way resulting to similar re-
sults than the Bellman-Ford one [Bellman, 1958]. This ac-
tivity is sent to ACC layer where it is added to the proposed
transitions. This bias allows the selection of the most acti-
vated transitions via a competition mechanism. Finally the
corresponding movement is triggered (see fig. 3).

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

Food 

Starting point 
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AB 

BC 

1) In the location A,      
the transition AB          
 is first used to reach B. 

2) When the location B       
 is reached a new            
transition is predicted : BC 

3) Then the BC transition              
 is expoited to go to location C, etc..
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A 

Figure 3: The animat first follows the direction coded by B and
when it comes in B, the transition BC is predicted, and the corre-
sponding direction is used.

A relevant question is about the growth of the number of
transition cells created while exploring the environment. In
order to answer this question we first have to underline that
this number is intimately linked with the number of place
cells, and above all, the number of place cells created for a
fixed RT value, depends on the complexity of the environ-
ment. The degree of complexity of an environment relies
mainly on two factors: the number and the location of its
landmarks and the number of obstacles found inside. Hence,
we have studied the ratio between created transition cells over
created place cells for three environments of increasing com-
plexity according to their obstacle configuration. For these
tests, we have chosen to set the number of landmarks at a high
value. For each experiment, we have launched a series of an-
imats until 10 survive, and we let them live for 50000 cycles.

This number has been chosen high enough to be sure that the
animat has learned a complete cognitive map of the environ-
ment. The results shown here are the average on these 10 ani-
mat results. We have done these tests for a single, a two and a
four room environment. The ratio remains stable around the
mean value 5.45 for all environments once the cognitive map
of the environment is complete (see table 1). Indeed, only
a few transitions can be created, since a transition is a link
between “adjacent” place cells. Furthermore the number of
a place cell neighbours is necessary limited. So there is no
combinatorial explosion on the number of created transitions.

Env / RT 0.97
nbp 133.8(2.85)
nbt 735.8(19.80)

ratio 5.49(0.06)
nbp 606.2(6.89)
nbt 3389.2(56.38)

ratio 5.59(0.08)
nbp 643.7(9,88)
nbt 3281,2(48,80)

ratio 5.09(0,04)

Table 1: Ratio of the number of place cells (nbp) created over the
number of transitions created (nbt) according to the number of room
in the environment: with one room (top line), with two rooms (mid-
dle line) and four rooms (bottom line). Standard deviation is given
into brackets. This ratio remains stable. There are five times more
transition cells than place cells.

... ...

...DG

  CA3  EC
Figure 4: CA3 inputs from EC and DG. For more clarity, only
3 possible transitions are shown (instead of 5 in our simulation).
For the same reason, connections from only one neuron of DG are
drawn.

Now that we know the number of possible transitions starting
from a given place cell, we can modify our model of CA3 (see
fig. 4). Instead of having a full matrix linking all location to-
gether, we can restrict the possible connections to 5 (as found
before). Consequently the number of neurons of CA3 has
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decreased since we only take into account real possible tran-
sitions and not all the combination of place cells. Each CA3
neurons of a given line receives projections both from EC and
DG. Each CA3 neuron belongs to a particular neighboorhood
supervised by a single EC neuron (a line in the figure 4). No
learning is allowed on those links and their weight are not
sufficient to trigger any activity on the associated CA3 neu-
rons. Conversely, each CA3 neuron is connected to all the DG
neurons through conditional links. The activation of EC neu-
rons increases the weights coming from the activated neuron
in DG. When no CA3 neuron already corresponds to this con-
junction. Once those weigths learned, in a prediction mode,
the single activity of the corresponding DG neuron allows the
activity of the CA3 neuron even if no unconditionnal signal
comes from EC.

4 Motor action selection using a neural field
The goal selection mechanism proposes several possible tran-
sitions. But how to exploit these informations? We have first
experimented strict competition between them, but why do
not also use other transitions that contains interesting infor-
mation about the agent location context (only near transitions,
of the current place, are proposed...). So instead of having
only one transition win in ACC, we now allow several transi-
tions to be taken into account for the movement.

In our model, basal ganglia and pre-motor cortex are not
modelized in details. We rather adopt a functionnal model
using a dynamical approach in which the action selection and
the motor control are obtained by a stable solution of a dy-
namical system: the neural field [Amari, 1997]. The prop-
erties of the neural field have already been successfully ex-
perimented to move the robot’s arm by imitation using visual
tracking of movement [Andry et al., 2004], or control a robot
movement [Schöner et al., 1995; Quoy et al., 2003]. Fur-
thermore, the Neural Field can account for most of the prop-
erties (action selection according to contextual inputs, persi-
tence, etc..) exhibited by a neural circuit (the striatum, the
globus pallidus (internal and external segment), the subthala-
mic nucleus, the substantia nigrai (compacta and reticulla))
in more detailed models [K. Gurnett and Redgrave, 2001;
K. N. Gurnett and Redgrave, 2001; B. Girard and Prescott,
2002].The limbic loop ( connected to the hippocampus via
the core part of ACC) of the basal ganglia is known to play
a role in the motor action, and is considered as the output of
our model.. The neural field equation is the following:

τ.
f(x, t)

dt
= −f(x, t)+I(x, t)+h+

∫

z∈Vx

w(z).f(x−z, t)dz

(1)
Where f(x, t) is the activity of neuron x, at time t. I(x, t)

is the input to the system. h is a negative constant. τ is
the relaxation rate of the system. w is the interaction ker-
nel in the neural field activation. A difference of Gaussian
(DOG) models these lateral interactions that can be excita-
tory or inhibitory. Vx is the lateral interaction interval that
defines the neighborhood. Without inputs the constant h en-
sures the stability of the neural field homogeneous pattern
since f(x, t) = h. In the following, the x dimension will by

an angle (direction to follow), 0corresponding to go straight
forward.

The properties of this equation allow the computation of
attractors corresponding to fixed points of the dynamics and
to local maxima of the neural field activity. Repellors may
appear too, depending on the inputs. A stable direction to
follow is reached when the system is on any of the attractors.

The angle of a candidate transition is used as input. The in-
tensity of this input depends on the corresponding goal tran-
sition activity, but also on its origin place cell recognition ac-
tivity. If only one transition is proposed, there will be only
one input with an angle xtarg = x∗ and it erects only one
attractor x∗ = xtarg on the neural field. If xc is the current
orientation of the animat, the animat rotation speed will be
w = ẋ = F (xc) (see fig. 5, bottom).

Merging of several transition informations depends on the
distance between them. Indeed the Amari’s equation allows
cooperation for coherent inputs associated with spatially sep-
arated goals (for us different angles proposed). If the inputs
are spatially close, the dynamics give rise to a single attrac-
tor corresponding to the average of them (see fig. 5). Oth-
erwise, if we progressively amplify the distance between in-
puts, a bifurcation point appears for a critical distance, and
the previous attractor becomes a repellor and two new attrac-
tors emerge. An example of two inputs spatially too far to be
merged is described in figure 6.
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Direction proposed by predicted transitions
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Figure 5: a) Zoom on the cognitive map. The direction followed by
the animat corresponds to the attractor generated from both B and
BC. b) Activity of the neural field. The inputs of the system (Gaus-
sian) are centered on the directions coded by transitions B and BC.
Since the two inputs are spatially close enough, a unique attractor is
created (x*).

Oscillations between two possible directions are
avoided by the hysteresis property of this input compe-
tition/cooperation mechanism. It is possible to adjust this
distance to a correct value by calibrating the two elements
responsible for this effect: spatial filtering is obtained by
convoluting the dirac like signal coming from transition
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information with a Gaussian and taking it as the input to the
system. This combined with the lateral interactions allows
the merging of distinct input as a same attractor. The larger
the curve, the more merging there will be.

a)

after competition 
:

:

:

C

BC

B

AB

A

Animat

DC
D

Direction used by the animat

Direction proposed by predicted transitions

b)

0 1 2 3 4 5 6 7
0.2

0.4

0.6

0.8

x (rad)

a(
x)

0 1 2 3 4 5 6 7
−0.1

−0.05

0

0.05

0.1

Neural field Activity A=f(x) 

x (rad) 

x (rad) 

f(x) 

df(x)/dx 

x x* 

x* 

c 

x c 

Motor control w=df(x)/dt 

AB 
BC 

No Fusion of transitions BC and DC 

Attractor genereted         
by the fusion of transitions
AB and BC                   

1 x* 
² 

1 x* 2 

et DC 

Attractor genereted         
by the transition           
 BC                         

Figure 6: a) Zoom on the cognitive map. Two transitions are pre-
dicted: one from place B that gives BC and another from location D
that gives DC. Both come to the same place C, but from a different
place and so with a different direction. b) Activity of the neural field.
Transitions BC and DC are too spatially distant: two attractors (in
x
∗

1 and x
∗

2) are created. The motor control converges to x
∗

1, closer to
the current direction of the animat.

In our case, the neural field allows, first to use multiple
entries and to combine them to get something coherent, and
this at a very low level (motor control and action selection)
in the architecture. For example, information from sensors to
realize obstacle avoidance can be set as negative inputs gen-
erating repellors in the direction leading to an obstacle (see
fig. 7). Second, it allows to generalize the decision of the
movement and it is robust even in the case of a noisy input
signals. This allows to solve the drawback of an incomplete
cognitive map and to get a less suboptimal path plan other-
wise. Indeed, the inputs give information about where the
animat is located inside the place field, since other transitions
are only proposed if close to this place (modulation of the
transition activity by the recognition). Moreover, the equa-
tion takes into account the time information due to a memory
effect. Then the effective transition at time ’t-1’, and so the
direction used to enter this place cell, contributes with the in-
formations of other transitions to the dynamics leading to the
effective transition at time ’t’, even if the entry at time ’t-1’ is
not active anymore. This allows to get an effective transition
giving a direction to follow with a better accuracy, by taking
into account the location of the animat inside the place field
of the current place cell (see fig. 8). This memory effect de-
creases with time and is an important parameter that must be
correctly set. It also allows to smooth the different sequences
of direction and to perform a motor control and an action se-
lection insensible to its input discontinuities (in particular for
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Figure 7: Top: Trajectory of a Labo3 robot in an open environe-
ment with obstacles. The direction to go is given by a joystick input.
Middle: Neural field activity without any obstacle. The direction
taken corresponds to the joystick input. Bottom: Neural field activ-
ity with an obstacle. The obstacle shifts the neural field maximal
activity leading to a turning move.

stimuli arriving at different times).
Neural fields are a good alternative to overcome the po-

tential fields local minima problems [Khatib, 1986; Koren
and Borenstein, 1991]. The main difference is that we do
not have a global minimum corresponding to a goal to reach.
Hence we cannot draw a global potential landscape (and use
a gradient algorithm). In our system there is always a merg-
ing between the external information (obstacle) and the inter-
nal current direction, leading to follow the attractor which is
the nearest from the current direction. Indeed, even though
there are several attractors due to different obstacles, they are
not added like potentials resulting in high “potential barriers”
from which the robot cannot escape, or compensating each
other. However, we have to tune a parameter in order to get
through a door for instance. This parameter is the width of
the interaction interval Vx. It depends on the infrared cell
responses and on the size of the robot.

5 Conclusions and discussion
Transition based models brings interesting features to action
selection problems. They allow to solve several problems in
an efficient and very simple way : local minima encountered
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Figure 8: The merging mechanism allows to get a better direction
(global mvt) than the use of the single information obtained from
current transition (BD). It takes into account the previous movement
performed and the transitions predicted from close enough place cell
(C).

with steady states models (i.e. : place cells or potential fields)
do not appear and the selection of the action is easier to per-
form without any ambiguity. From a biological point of view,
our model avoids an homunculus problem since the selection
is done naturally by exploiting the dynamics of the system
used. It may be a possible candidate to explain how the hip-
pocampus uses information.

Neural fields allow to merge multi modal inputs to get a
stable result. One can imagine to integrate several other sig-
nals such as sound direction and other visual target directions.
Note that the updating of these different informations does
not need to be performed at the same frequency. The neural
field is robust enough to deal with intermittent information
or high level signal having a very low frequency due to their
computation time.

As it has been shown for the motor action selection, relax-
ing the system constraints can lead to a better generalisation.
On going works focus on the generalization of this approach
to the transition construction. Indeed we are testing the pos-
sibility to allow ’AA’ like transitions resulting in the coexis-
tence of place cells and transition cells in CA3. We are also
working on the internal hippocampal loop. More exactly, we
focus on the link coming from subiculum to the deep layer of
EC that might allow to integrate into place cells path integra-
tion informations. So integrated movement would allow to
activated place cell without visual information... Next, inte-
gration of a higher level should allow the animat to discover
shortcuts, by integrating the informations of the transitions
successively used from the beginning of the planning until
reaching the goal. This mechanism should be very useful
when the cognitive map is incomplete at the beginning of the
exploration, so that the animat could try to use shorter unex-
perienced paths.
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Abstract 

Neurophysiological evidence suggests that visually-
guided reaching movements are produced through 
“specification” and “selection” processes that 
overlap both temporally and anatomically [Cisek 
and Kalaska, 2005]. Here, I present a formal 
computational model which demonstrates how 
partial specification of several potential movement 
directions, and the selection of the correct 
movement, can occur in populations of 
directionally tuned cells in a distributed cortical 
network including posterior parietal, premotor, 
prefrontal, and primary motor cortex. The model 
reproduces a large set of neurophysiological and 
psychophysical phenomena, including the behavior 
of cortical cells during a reach decision task and the 
spatial and temporal statistics of human reaching 
choices. 

1 Introduction 
Traditional theories of voluntary movement control view 

it as a serial process of planning and execution situated at 
the end of a larger serial process of perceptual 
representation and cognitive decision-making. In that view, 
information from many systems involved in sensory 
processing, memory, affect, etc. is integrated by cognitive 
systems to make a decision about the course of action that is 
appropriate for the current situation. This decision is then 
turned into a motor program by a motor planning system, 
and then executed by the appropriate control circuits. 
However, despite its theoretical appeal, this serial view of 
the functional architecture of voluntary behavior does not 
find support in neurophysiological data. In particular, neural 
systems do not appear to be partitioned into “decision-
making”, “planning”, or “execution” centers but rather 

appear to mix these putative functions, even at the level of 
single-cell activity [Cisek, 2005; Kalaska et al., 1998]. 

As an alternative to these concepts, I present a 
hypothetical functional architecture that is inspired by 
neurophysiological data from frontal and parietal cortical 
regions.  The hypothesis is based on a key distinction 
between processes of “action specification” and “action 
selection”.  Action specification involves parallel 
sensorimotor transformations which use sensory information 
about the spatial layout of the environment to crudely 
specify potential actions which are currently available 
(potential reaching actions, potential grasp points, potential 

 

cognitive
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motor
command

visual feedback
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attention

behavioral
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Figure 1:  Schematic diagram of the “affordance 

competition theory” of visually-guided action. Black 
arrows represent processes which transform visual 
information into representations of potential actions, 
and gray arrows represent processes involved in 
selecting from among these the action that is most 
appropriate given the current behavioral context. 
Rectangles represent instances of neural populations 
which encode information about potential actions as 
“parameter fields”. 
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gaze targets, etc). Action selection involves processes which 
narrow down these potential actions, eliminating many from 
further sensorimotor processing on the basis of salience, 
attention, behavioral relevance, expected reward, and other 
cognitive factors.  When an action is selected for execution, 
it is not pre-planned in detail before movement onset, but 
rather specified crudely and then fine-tuned on-line using 
rapid feedback through the parietal lobe and predictive 
feedback through a cerebellar forward model [Miall and 
Wolpert, 1996]. 

Figure 1 shows a simplified schematic of how and where 
specification and selection may take place in the primate 
brain during visually-guided voluntary behavior [Cisek, 
2001]. At all times, information from the dorsal visual 
stream is used to specify the parameters of several potential 
motor actions that are currently available (black arrows). 
These “potential actions” are defined as activity in a series 
of parameter fields (oblique rectangles), each of which is a 
neural population in which the activity of a cell indicates the 
likelihood of performing an action with the parameter values 
preferred by that cell. Distinct potential actions appear as 
islands of activity in such fronto-parietal parameter fields. 

These representations compete for overt execution through 
mutual inhibition that is biased by various factors such as 
salience, attention, expected reward, and other cognitive 
factors, many of which are computed on the basis of 
information from the ventral stream and processed in the 
basal ganglia and frontal cortical regions (gray arrows). In 
brief, it is hypothesized that voluntary behavior involves a 
constant competition, biased by cognitive influences, among 
simultaneous early representations of potential actions 
[Cisek, 2001; Cisek and Turgeon, 1999; Kalaska et al., 
1998]. 

2 Methods 
Figure 2a shows the network architecture of a formal 

computational model which demonstrates how partial 
specification of several potential movement directions, and 
the selection of the correct movement, can occur in 
populations of directionally tuned cells in a distributed 
cortical network including posterior parietal (PPC), dorsal 
premotor (PMd), prefrontal (PFC), and primary motor 
cortex (M1). Briefly, visual information generates activity in 
a field of tuned PPC neurons, with peaks corresponding to 
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Figure 2:  Computational model. A) Network architecture. B) The kernel of interactions between cells with different 

preferred directions. C) The lateral influence of a cell on its neighbors as a function of activity. 
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different potential actions. Through reciprocal topological 
connections, this pattern is repeated in PMd. Because lateral 
connections among model PPC and PMd cells are organized 
with an on-center-off-surround pattern, distinct peaks 
corresponding to distinct actions compete against each other 
through mutual inhibition. This competition is biased by 
various factors, notably including excitatory input from 
model PFC cells which gradually integrate evidence in favor 
of choosing each of the alternative movement options. 

Each layer in the model consists of 90 cells whose 
behavior is governed by the following non-linear differential 
equation: 

( ) noiseIXEXXdt
dX +⋅−⋅−+−= γβα  

where X is the activity of a given neuron, dt
dX  is the 

change in that activity over time, E is the excitatory input to 
the neuron, I is the inhibitory input, α is a decay rate, β is the 
neuron’s maximum activity, and γ is the excitatory gain. The 
constants were set at α = 3, β = 2, and γ = 6 for all 
populations except the PFC layers, for which they were set at 
α = 0.01, β = 3, and γ = 0.25. While the dynamics of all cells 
in all layers were similar, what gave them different properties 
was the nature of the excitatory and inhibitory inputs that each 
received. 

There were two kinds of external inputs to the model: 1) 
visual information about objects in the environment; and 2) 
a GO signal. Visual information consisted of a vector of 
binary values indicating the presence or absence of an object 
of a particular category at a particular location. Processing 
along the “dorsal stream” was insensitive to category 
information and cells in the Posterior Parietal Cortex (PPC) 
layer simply received input whenever any object was present 
in the direction to which they were tuned. In addition to this 
excitatory input from “visual” regions, cells within the PPC 
layer also received excitatory feedback connections from 
dorsal premotor cortex (PMd), as well as lateral interactions 
within PPC itself. These interactions involved mutual 
excitation from neighboring cells with a similar preferred 
direction (PD) and inhibitory input from cells with different 
PDs (Fig.   2b). Because of this on-center-off-surround 
architecture among PPC cells, the visual input was contrast-
enhanced, forming distinct broad peaks centered on the 
directions to given objects. PMd was simulated in a similar 
manner. That is, it received excitatory input from 
“upstream” PPC cells as well as feedback excitation from 
“downstream” regions, and included lateral on-center-off-
surround interactions among cells within PMd. Importantly 
however; the input to PMd from PPC was modulated by 
biasing signals from the model’s prefrontal cortex (PFC). 

Because of the positive feedback between PPC and PMd, 
both regions exhibit similar responses to visual inputs 
specifying one or more potential targets for movement. For 
example, if two targets are presented in visual space, distinct 
peaks of activity will appear, first in PPC and then in PMd, 
representing the potential actions of moving to each of these 

targets. Due to lateral interactions within both PPC and 
PMd, these peaks of activity will compete against each 
other, but in the absence of information favoring one over 
the other, their influence will be balanced and both will 
persist as sustained activity in both PPC and PMd. 

The nature of the interaction among cells within 
individual layers of the model is critical to its behavior. 
Because neural activities are noisy, the competition between 
distinct peaks of activity cannot follow a simple “winner-
take-all” rule. If that were the case, then random fluctuations 
due to noise would determine the winner each time, and no 
informed decision-making would be possible. To prevent 
this, small differences in the levels of activity associated 
with two response choices should be treated as 
uninformative noise and ignored by the system. On the other 
hand, if the activity associated with one of the choices 
becomes sufficiently strong due to biasing information in 
favor of making that choice, then it should be allowed to 
suppress its opponents and win the competition. In other 
words, there should be a threshold of activity which, once 
reached by a particular peak of activity, causes it to be 
selected as the final response choice. As described by 
Grossberg [1973], implementing such resistance to noise as 
well as a decision threshold within a competitive network 
can be done using a non-linear function defining interactions 
between neighboring cells. In particular, the function used 
here is of the form shown in Fig. 2c, with a slower-than-
linear portion when activity is low, and a faster-than-linear 
portion when activity is high. Because of this shape, when 
two or more peaks are present in the population and have 
low levels of activity, their influence upon each other de-
emphasizes the differences between their activities, thus 
achieving balance and resistance to noise. However, once 
the activity of one of the peaks increases and passes into the 
faster-than-linear regime of the interaction function, then it 
begins to exert stronger and stronger suppression upon its 
opponents, thus winning the competition. The point at which 
a given peak becomes the winner is called a “quenching 
threshold” [Grossberg, 1973], and it effectively acts as a 
threshold for committing to a particular decision. However, 
unlike classical models of decision-thresholds [Carpenter 
and Williams, 1995; Reddi et al., 2003; Smith and Ratcliff, 
2004], the quenching threshold is not a preset constant in the 
model but rather an emergent threshold which depends both 
on the number of choices, their relative strengths, and even 
the angular distance between them. 

As described earlier, the competition between distinct 
regions of activity in PPC and PMd is biased by modulatory 
input from the prefrontal cortex (PFC). Model PFC cells are 
sensitive to specific combinations of spatial and category 
information. Their spatial “receptive fields” are very large 
but they are topographically connected to similarly tuned 
PMd cells. Because there are no lateral interactions, and 
thus no topology, between model PFC cells, they may be 
thought of as arbitrarily interspersed in the prefrontal cortex. 
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The dynamics of the PFC cells are slow relative to PPC and 
PMd (because α and γ are small), and so their activity 
gradually grows whenever they are presented with inputs 
that match either their spatial preference or their category 
preference or both. Thus, they integrate over time the total 
evidence in favor of a particular choice of action. As that 
integration proceeds, it biases the competition in PMd until 
one of the PMd regions of activity crosses the quenching 
threshold and is thus selected for execution. 

The activity in the PMd population is transmitted to the 
M1 population in the model when the GO signal (a single 
scalar) is turned on. This begins the selected movement, and 
further features of execution are not simulated. 

3 Results 
The network reproduces, with a single set of parameters, a 

large set of neurophysiological and psychophysical findings. 
For example, it reproduces the behavior of the kinds of cells 
observed in PMd during a variety of reach-decision tasks 
[Cisek and Kalaska, 2005]. Figure 3 compares the activity of 
the model with neural data collected from PMd and M1 
during execution of a “2-target task” in which monkeys were 

presented with two possible reach choices and then given a 
cue to choose one for execution. In the simulation, the 
model was presented with two targets belonging to different 
categories (red and blue targets). This caused activity to 
arise in two locations in the PPC layer, as well as in two 
populations of PFC cells. Due to the positive feedback 
between PPC and PMd, two peaks of activity were present 
in both regions, even after the targets themselves vanished. 
Next, the disambiguating color cue was presented, simulated 
as excitation to all cells in PFC which preferred the 
indicated category, i.e. red. This caused a bias to arise in 
PFC and to tip the balance in PMd in favor of the target 
where a red cue had appeared, pushing the corresponding 
activity over the quenching threshold and thus toward a 
decision to move to that target. In addition to reproducing 
this main result, the model also exhibited more subtle 
phenomena such as an inverse relationship between the 
number of targets and the magnitude and width of activity 
associated with each, and the gradient of properties between 
rostral and caudal PMd subpopulations, which were 
implemented with identical equations. The model also 
reproduced the observation that decision errors are in most 
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Figure 3:  Comparison of model and data. A) The behavioral task involved first presenting two potential reach targets, then 

indicating which was the correct target, and finally presenting a GO instruction. B) Population activity in rostral PMd, 
caudal PMd, and M1, represented as greyscale plots where time is indicated along the x-axis and cell preferred direction 
along the y-axis. The activity in PMd indicated the presence of two directional signals after presentation of the spatial 
cues (S), the selection of one of these after the disambiguating color cue (C), and execution of the selected target after 
the GO signal (G). C) Activities in the model populations during simulation of an analogous task. Comparison of the 
PMd and M1 activities between the model and data shows similarity among most of the salient qualitative properties. 
Neural data adapted from [Cisek and Kalaska, 2005].
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cases caused by a bias in the activity which existed prior to 
the choice cue (not shown). 

The model also simulates several psychophysical results 
on the spatial and temporal statistics of human reaching 
choices. For example, Ghez et al. [1997] reported that when 
choices are made quickly, subjects move in-between targets 
that are close together, but choose randomly between targets 
that are far apart. The same pattern of errors is produced by 
the model when the time between the choice cue and the GO 
signal is made sufficiently short. As shown in Fig. 4a, when 
targets are far apart, the decision is forced by the strong 
winner-take-all dynamics in M1, and the choice is 
determined by noise. In contrast, when targets are close 
together the two peaks of activity in PMd coalesce and the 
resulting movement is in-between the two targets. 

The model also produces results on the distribution of 
decision-latencies. Because of the gradual accumulation of 
activity in PFC until the quenching threshold is reached, the 
behavior of the network resembles that of horse-race models 
of decision making, and like those models, reproduces 
results on the distribution of reaction times with different 
levels of decision certainty [Carpenter and Williams, 1995; 
Reddi et al., 2003; Smith and Ratcliff, 2004]. Figure 4b 
shows results of simulations of a 2-target task with four 
different levels of magnitude of the choice cue. As shown 
for human data, as the quality of the information provided 
by the choice cue decreases, distributions of decision 
latencies become both later and broader. 

4 Conclusions 
The model presented here is a mathematical 

implementation of a general hypothesis on action selection 
and motor planning – that in many everyday situations, 
several potential actions are often specified simultaneously 
and compete for overt execution. According to this view, 
visual information in the dorsal stream [Milner and Goodale, 
1995; Ungerleider and Mishkin, 1982] is used to specify the 
parameters of potential motor actions in parietal [Kalaska et 
al., 1998; Snyder et al., 1997] and premotor cortex [Cisek 
and Kalaska, 2005]. These potential actions compete 
through lateral inhibition, while at the same time other 
systems collect evidence for or against particular actions, in 
part using information from the ventral stream. These 
mechanisms include selective attention [Allport, 1987; 
Neumann, 1990; Tipper et al., 1998], switching mechanisms 
in the basal ganglia [Redgrave et al., 1999], and 
accumulation of task-relevant information in prefrontal 
cortex [Hoshi et al., 2000; Kim and Shadlen, 1999]. This 
hypothesis is an attempt to unify psychophysical results on 
human decision-making with data on single cell activity in 
monkeys during simple decision tasks, and to understand 
from a theoretical perspective the functional reason for the 
observed mixing of sensory, motor, and cognitive variables 
within the activity of cells in movement-related cortical 
regions. 
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Figure 4:  A) Simulations of the Ghez paradigm, in which 

humans make choices only a short time after choice cue 
presentation. Left: When targets are close together, the 
peaks of activity corresponding to each coalesce, and the 
resulting movement is in-between the targets. Right: 
When targets are far apart, selection occurs but is 
determined by noise. In the case shown, the wrong 
target was selected. B) Distributions of the decision 
latency as a function of choice cue magnitude (M). 
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Abstract
Action selection in social situations often depends
on recognizing the action of another individual, and
that individual’s intent in executing that action. A
class of neurons has been identified in area F5 of
the macaque premotor cortex that respond to the
observation of both self-directed actions and simi-
lar actions performed by others. It is thought that
these ”mirror neurons” provide the monkey with a
common representation for action generation and
perception, mediating action recognition and pos-
sibly action selection via response facilitation or
affordance learning. This system was previously
modeled as a feedforward network of artificial neu-
rons that was trained using back propagation to
classify several types of grasps based on longer and
longer prefixes of a trajectory relating view of hand
and object. Since the coding required for the input
to the feed-forwardmodel is unrealistic, we present
here an updated model of the grasp-related mirror
neuron system that utilizes a recurrent neural net-
work trained using back propagation through time
and includes audio input, a working memory, and
dynamic remapping. The model not only replicates
the findings of the original study but also explains
further experimental data showing that F5 mirror
neurons in the macaque respond to audio as well as
visual stimuli and also to visual observation grasps
even when the end of the trajectory is hidden and
must be inferred.

1 Introduction
Action selection involves formulating a plan to execute the
most appropriate action given the state of the environment.
In social organisms the environment often includes other
agents carrying out their own plans of action. To function
effectively in such an environment, the activities of these
agents must be recognized and used to guide subsequent ac-
tion. The relationship between action recognition and ac-
tion generation has been investigated in the context of co-
operative teams of robots [Parker, 1995] and skill learning
through imitation [Schaal, 1999]. These two complemen-
tary processes are thought to be linked in primate brains by

the premotor cortex where it seems that an observed action
is mapped onto the internal motor programs used to gen-
erate a similar action [Arbib, 2005; Gallese et al., 1996;
Rizzolatti et al., 1996].
A class of neurons has been identified in area F5 of the

macaque premotor cortex that respond to the observation of
both self-directed actions and similar actions performed by
others [Gallese et al., 1996]. It is thought that these ”mir-
ror neurons” provide the monkey with a common represen-
tation for action generation and perception, mediating action
recognition and possibly action selection via response facil-
itation or affordance learning. Moreover, it has been found
that F5 mirror neurons in the macaque respond to audio as
well as visual stimuli [Koller et al., 2002] and actions where
the final component is hidden and must be inferred [Umilta et
al., 2001]. Here, we present an updated model of the grasp-
related mirror neuron system that utilizes a recurrent neural
network trained using back propagation through time and in-
cludes audio input, a working memory, and dynamic remap-
ping to address these data.
A previous model [Oztop & Arbib, 2002] of the monkey

mirror system used a feed-forward artificial neural network
with one hidden layer. Hand state information for a grasp
was represented as a 7 dimensional trajectory encoding hand-
object relations. At each point in time, the initial segment of
the hand state trajectory up to that time was fitted by a cubic
spline, and then sampled 30 times to produce a 210 dimen-
sional input vector to the network. In this way, the tempo-
ral representation of hand state was pre-processed such that
it could be encoded in a spatial representation for input into
the feed-forward network. The network was trained on a set
of self-performed grasps using back propagation. This sys-
tem was shown to correctly classify observed grasps, often
before the hand contacted the object. In addition, the net-
work yielded neurophysiological predictions concerning the
time course of mirror neuron activation and activity during
the resolution of an ambiguous grasp.
However, the unnatural temporal to spatial encoding trans-

formation required for the hand-state trajectory (relating hand
and object) led us to look for a model that could process the
time series of hand-object relationships without extensive re-
coding. We thus turned to recurrent networks. These net-
works have been shown to be computationally powerful and
useful for reducing problem dimensionality [Jones, 1992].
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They have been applied to a variety of problems includ-
ing context-sensitive language processing [Steijvers & Grun-
wald, 1996], noisy time series prediction [Giles et al., 2001],
and temporal sequence classification. We investigated the use
of a Jordan-type recurrent network to classify grasps based
on the temporal sequence of hand state information. The re-
current network allows us to avoid the input pre-processing
steps necessary to recognize sequences with a feed-forward
net. The raw 7 dimensional hand state vector is simply in-
put to the network at each time step. The network was again
trained on a set of self-generated grasps, but this time using
back propagation through time [Werbos, 1990]. We show that
this system also correctly classifies different types of grasps,
often before the feed-forward implementation does, and pre-
serves the neurophysiological predictionsmade by the model.
Moreover, we have extended the model in a fashion consistent
with available data on the macaque brain to explain a range
of further experimental data.
Natural actions typically involve both a visual and an au-

dio component. The audio properties of mirror neurons are
of major interest because they may have been crucial in the
transition from gesture to vocal articulation in the evolution
of language [Arbib, 2005]. [Koller et al., 2002] (see Fig-
ure 5, left) found that a portion of the mirror neurons in
area F5 of the macaque premotor cortex that are responsive
for the observation of noisy actions (such as peanut break-
ing and paper ripping) are also just as responsive for the
sounds of these actions. Area F5 is located in the ventro-
rostal portion of area 6 in the caudal inferior arcuate sul-
cus [Rizzolatti et al., 1996]. Audio information reaches
inferior caudal arcuate cortex via direct connections from
the auditory cortex [Deacon, 1992] and reaches area 6 via
indirect connections through area 8 [Arikuni et al., 1988;
Romanski et al., 1998]. The macaque nonprimary audi-
tory cortex has been found to respond to complex sounds
[Rauschecker et al., 1995] while the primary auditory cor-
tex was found to have a tonotopic organization [Morel et al.,
1993]. It thus seems that auditory input is extensively pre-
processed by the time it reaches premotor cortex.
We model this sound pre-processing by auditory cortex at

an abstract level with a non-neural auditory cortex implemen-
tation. This abstract model of auditory cortex associates a
given type of sound with an arbitrary and distinct pattern of
activity in a 9-dimensional vector. This vector is then applied
to audio input units that are directly and fully connected to the
output layer of the recurrent neural network (figure 2), corre-
sponding to a direct connection from auditory cortex to F5.
These connection weights are modified using Hebbian learn-
ing. This makes the audio input units and their connections to
the external output units behave as a somewhat independent
network. In this way, any sound that is consistently perceived
during the course of an executed action becomes associated
with that action and incorporated into its representation. This
type of audio information is inherently actor-invariant and
this allows the monkey to recognize that another individual
is performing that action when the associated sound is heard.
In all actions tested by [Koller et al., 2002] the sound was
associated with the final phase of the action. Mirror neurons
responsive to audio and visual stimuli were thus found to be

Figure 1: System diagram. The recurrent network receives
both visual and auditory input from the external world. Vi-
sual input is also input into working memory. When visual
information is not available externally, the working memory
trace is input into the recurrent network.

active later during audio only conditions than conditions with
a visual component. The activation of these neurons during
conditions with only audio information was confined to the
duration of the audio input.
[Umilta et al., 2001] (see Figure 5 left) have shown that

mirror neurons in the macaque monkey can infer the result of
an action whose final portion is hidden. In these experiments,
the monkeys were shown an object that was then obscured
by a screen. When the monkey observed the experimenter
reaching behind the screen to grasp the object, the same mir-
ror neurons were activated that responded to a visible grasp to
the same object. The same neuron does not respond to a reach
when no object is visible, or if the human reaches behind a
screen that was not previously shown to conceal an object.
To recognize that another individual is executing a grasping
action even when the goal and final component of that action
is hidden, the monkey must possess a working memory trace
of the object that the action is directed towards. It is not clear
whether or not a working memory representation of the hand
is used to extrapolate the grasp trajectory or if the initial hand
state trajectory coupled with object location working mem-
ory is sufficient to correctly activate F5 mirror neurons. This
could be determined by gradually receding the point in the
grasp at which the experimenters hand disappears behind the
screen until the hand is behind the screen for entire grasp du-
ration. If the mirror neuron activity decays accordingly, this
could be evidence that a transient working memory activation
is supplying hand state information to area F5 when the hand
is not visible.
Dynamic remapping is a process where perceptual repre-

sentations are updated based on generated motor commands,
or related perceptual information. It has previously been used
in a model of saccade generation [Dominey & Arbib, 1992]
to update the working memory representation of the posi-
tion of a secondary saccade target based on self-generated
eye movements to a primary saccade target. We use dynamic
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Figure 2: Recurrent network diagram. The visual and recurrent input layers are fully connected to the hidden layer, which is
fully connected to the external and recurrent output layers. The recurrent output layer is fully connected to the recurrent input
layer and the audio input layer is fully connected to the external output layer.

remapping to extrapolate the observed grasp trajectory once
the hand disappears behind the screen. At each point in time
that the hand is obscured by the screen, the movement of the
still-visible elbow is used to update the working memory rep-
resentation of the wrist position. To test whether or not this
process is actually employed by the primate mirror system, a
fake hidden grasp where the hand overshoots the object could
be presented to the monkey. If the grasp-related mirror neu-
rons still respond to this example of a hidden non-grasp, this
could be an indication that hand trajectory extrapolation is not
used in hidden grasp recognition.
The mechanisms of working memory and dynamic remap-

ping of the representations held in working memory allow the
model to recognize grasps even when the final stage of object
contact is hidden and must be inferred. Before being hidden,
the object position and its affordance information are stored
in working memory. Once the hand is no longer visible, the
working memory representation of wrist position is updated
by using the still-visible elbow position and the fact that the
forearm is a rigid body. In this way, if the model observes an
object which is then hidden by a screen, and then observes a
grasp that disappears behind that screen, the wrist trajectory
will be extrapolated to end at the remembered object location
and the grasp will be recognized.

2 Methods
2.1 Reach and Grasp
We used the multi-joint 3D kinematics simulator developed
in [Oztop & Arbib, 2002] to plan a grasp and reach trajec-
tory and execute it in a simulated 3D world. This simulator

is a non-neural implementation of the FARS model of pri-
mate grasping [Fagg & Arbib, 1998] that controls a virtual
19 degrees of freedom (DOF) arm/hand and performs real-
istic grasps. Grasps are planned by determining the points
of desired contact of fingers on the object (based on the type
of grasp: power, precision, or side) and then finding the re-
quired arm/hand joint configuration to produce this grasp (the
inverse kinematics problem). The final arm/hand joint con-
figuration is determined by gradient descent with noise and
the grasp trajectory is then generated by warping time with a
cubic spline. The parameters of this spline are derived from
empirical studies to fit the natural reach-to-grasp aperture and
velocity profile. This simulator was used to generate realistic
grasps to train and test the model.

2.2 Visual Analysis of Hand State
The visual information input into network for grasp recog-
nition is the trajectory of a 7-dimensional vector encod-
ing hand-object relations (the hand state). This information
is calculated from the joint configuration of the simulated
arm/hand and 3D object. The components of the hand state
are a(t): aperture of virtual fingers involved in grasping, o1(t):
angle between the object axis and the (index finger tip - thumb
tip) vector, o2(t): angle between the object axis and the (in-
dex finger knuckle - thumb tip) vector, o3(t), o4(t): angle be-
tween the thumb and the side of the hand, and the thumb and
the inner surface of the palm, d(t): distance to target at time
t, and v(t): tangential velocity of the wrist. The hand state
is calculated in an object-centered framework, allowing self-
generated and observed grasps to evoke similar hand state tra-
jectories. At each point in time that the hand and object are
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Figure 3: Left: Example of a generated precision grasp. The squares denote the wrist trajectory. Right: External output unit
activation for this grasp in figure with no audio input. The precision grasp is correctly recognized well before the hand contacts
the object. In all output unit activation figures, the line with the square data points represents the trajectory of the power grasp
output unit’s activation, and the line with the diamond data points represents the activation of the precision grasp output unit.

Figure 4: Left: Example of a generated power grasp. The squares show the wrist trajectory. Right: External output unit
activation for this grasp with no audio input. The initially ambiguous grasp is correctly recognized as a power grasp well before
the hand contacts the object.

visible, this hand state is calculated directly from the simu-
lated arm/hand and object and applied to the input layer of
the recurrent neural network. The object and wrist coordi-
nates are stored in working memory. At each point in time
that the hand or the object is invisible, the hand state is cal-
culated from the working memory and input to the recurrent
neural network.

2.3 Action Recognition

Grasps are recognized by audio and visual input into a recur-
rent neural network augmented with working memory. The
visual input is the 7 dimensional hand state, and the auditory
input is an arbitrary, but unique 9 dimensional vector distin-
guishing different actions. The network output is a 3 dimen-
sional vector, each element of which encodes a type of grasp
(power, precision, or side). The most active element in the
network’s output layer indicates the grasp classification.

Recurrent Network Setup
We used a Jordan-type recurrent network containing 7 exter-
nal input units, 5 recurrent input units, 10 hidden units, 3 ex-
ternal output units, and 5 recurrent output units. Each layer
is fully connected with the layer above it, and the recurrent
output units are fully connected with the recurrent input units
(see Figure 2). The learning algorithm used is back propaga-
tion through time (BPTT) [Werbos, 1990].

Audio Input
Each type of grasp (power, precision, and side) was associ-
ated with a unique sound. These sounds are assumed to be
pre-processed by auditory cortex (not modeled here) and so
in this model are simply represented by arbitrary patterns of
audio input activity that are distinct for each type of sound.
Audio input to the model was as an array of 9 external in-
put units directly and fully connected with the external out-
put layer of the recurrent neural network. During the last time
steps of each type of grasp, a unique pattern of activation of
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is presented to the auditory input units. These patterns are
of different duration for each grasp type. Activity in these
units is propagated to the external output layer along with
the hidden layer activity (see Figure 2). For the audio input
to external output connection weights, learning is Hebbian if
the external output unit is greater than half active, and anti-
Hebbian otherwise.

Wij =

{

Wij + ηAj(t)MRi(t), ifMRi(t) > 0.5
Wij − ηAj(t)MRi(t), ifMRi(t) ≤ 0.5

(1)

where Aj(t) is the activity of the jth audio input unit and
MRi(t) is the activity of the ith external output unit at time
t,Wij is the weight of the connection between Aj andMRi,
and η is the Hebbian learning rate. The value used in our
simulations for η was 0.01. These connections were then nor-
malized using the sum of connection weights to each output
unit divided by 5.0. The division of this sum by the constant
5.0 serves as a scaling factor so that normalization bounds
connection weights by 0.0 and 5.0.

Wij = Wij/((
∑

i

Wij)/5.0) (2)

Working Memory and Dynamic Remapping
Working memory was implemented as arrays holding 3D co-
ordinates for both the object and the hand. For each time step
that the object or hand were visible, their coordinates were
stored in their respective working memory array. For each
time step that either the hand or object was not visible, ran-
dom values between -0.5 and 0.5 were added to each x,y,z
coordinate value in their working memory array to simulate
memory decay. The values held in working memory were
used to compute the hand state for network input when either
the hand or object was invisible.
Dynamic remapping was carried out on the working mem-

ory representation of the wrist position in each time step that
the hand was not visible. This serves to update the wrist
position in working memory by extrapolating its trajectory.
The wrist position working memory was displaced by the
same magnitude and direction as the change in elbow posi-
tion from the previous step in a similar manner to the dynamic
remapping of saccade target location based on eye position in
[Dominey & Arbib, 1992]. This is accomplished by calcu-
lating the difference in elbow position between the two latest
time steps, and using this value to update the working mem-
ory representation of wrist position:

WMwrist = WMwrist + (elbow(t) − elbow(t − 1)) (3)

whereWMwrist is the working memory representation of the
wrist’s 3 dimensional coordinates and elbow(t) is the three
dimensional coordinates of the elbow at time t.

2.4 Training
The training set was constructed by making the simulator per-
form various grasps in the following way.
1. The objects used were a cube of changing size (a generic
size cube scaled by a random factor between 0.5 and
1.5) and a ball (approximated as a dodecahedron, again
scaled randomly by a number between 0.75 and 1.5).

Figure 5: Left: Activation from (Kohler et al., 2002) of an au-
diovisual mirror neuron responding to (from top to bottom)
the visual and audio components, visual component alone,
and audio component alone of a peanut-breaking action. At
the bottom is an oscillogram of the peanut breaking sound.
Right: Activation of the model’s external output layer when
presented with a precision grasp sequence containing (from
top to bottom) visual and audio, visual only, and audio only
information. The unit encoding the precision grasp shows the
greatest level of activation, while the unit corresponding to
power grasps shows a small level of transient activitiy. At the
bottom is an oscillogram of the sound associated with the pre-
cision grasp. The experimental data and model output show
anticipatory mirror neuron activity for visual only and audio-
visual conditions, but this activity is confined to the duration
of the action sound in the audio only condition.

In the training set formation, a certain object always re-
ceived a certain grasp and each type of grasp is associ-
ated with a distinct audio input pattern at the grasp com-
pletion.

2. The object locations were chosen from a portion of the
surface of a sphere centered on the simulated arm’s
shoulder joint. The portion was defined by bounding the
longitude and latitude lines on the sphere’s surface by
−45o and 45o. During the generation of training data,
this portion of the sphere’s surface was traversed in in-
crements of 10o. Thus the simulator made 9 × 9 = 81
grasps per object. Unsuccessful grasp attempts were
identified as those in which the resulting trajectory did
not bring the hand in contact with the object and were
discarded from the training set. For each successful
grasp, one negative example was added to the training
set to stress that the distance to target was important.
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Figure 6: Left: Mirror neuron activation in Umilta et al. 2001 for visible pantomimed grasp, visible grasp, hidden grasp, and
hidden pantomimed grasp conditions. All grasps were power grasps. Right: Activation of the model’s external output units to
these conditions. The only output unit showing a significant level of activity in any plot is the one encoding power grasps. The
model output is in good agreement with the experimental data in that visible and hidden grasps are correctly identified, while
visible and hidden pantomimed grasps elicit little or no response.

The target location was perturbed and the grasp was re-
peated (to the original target position).

The recurrent neural network was trained with this set using
back propagation through time.

3 Simulation Results
3.1 Recurrent neural network performance
After training, the recurrent network was able to efficiently
classify grasps given the hand state trajectory. Most grasps
are initially ambiguous, but are eventually resolved by the
network often well before the hand makes contact with the
object. Figures 3 and 4 show examples of power and preci-
sion grasps generated by the simulator (see section 2.1 and
[Oztop & Arbib, 2002] for grasp simulator implementation)
and the time course of the network’s output unit activity for
each grasp. In these simulations there was no auditory com-
ponent to the grasps. The results of these simulations show
that the recurrent neural network functions just as effectively
in grasp recognition as the feed-forward implementation de-
veloped in [Oztop & Arbib, 2002] and predicts a similar time
course and pattern of mirror neuron activation for ambiguous
grasps.

3.2 Audio-Visual Mirror Neurons
We tested the performance of the network in classifying an
observed grasp under audio only, visual only, and audio-
visual input conditions. Under each condition the simulated
grasp and object were the same, but the arm and object’s vis-
ibility and the action’s audibility varied. In the audio-visual
input condition, the audio input served to slightly strengthen
the output activity. In the audio input only condition, the net-
work correctly identified the grasp type associated with the

sound. In this condition the output unit activity was confined
to the duration of the audio input activity (see Figure 5).

3.3 Hidden Grasp Simulations
To simulate a hidden grasp, the object was visible to the net-
work for the first 5 time steps of the grasps and was then set to
invisible. The hand was visible for the first 26 time steps, and
was then set to invisible as it reached to grasp the object be-
hind the screen. During these simulations, no auditory infor-
mation was presented to the network. The initial presentation
of the object allowed its position and affordance information
to be stored in working memory. The object and hand work-
ing memory traces utilizing dynamic remapping to update the
wrist position were sufficient for the network to correctly rec-
ognize a hidden grasp (see Figure 6). Pantomimed grasps
were simulated by setting the hand visible and object invis-
ible for the whole grasp. To simulate a hidden pantomimed
grasp, the hand was visible during the same time periods as in
the hidden grasp, but the object was set invisible for the whole
grasp. Neither of these methods allowed a trace of the object
location and affordance information to be stored in working
memory, and therefore the network correctly did not respond
to either pantomimed grasp condition.

4 Discussion
We have shown that the monkey grasp-related mirror system
can be modeled as a recurrent artificial neural network trained
on self-generated grasps. The addition of audio input, work-
ing memory, and dynamic remapping give the network more
flexibility in action recognition, allowing it to correctly recog-
nize actions given only their sound and when the final com-
ponent of the action is hidden. The ability to recognize in-
visible actions may allow primates to effectively monitor the
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actions and infer the intentions of their peers in crowded en-
vironments. This capacity for action recognition is important
for planning future actions and may underlie primate action
selection processes in social situations.

4.1 Audio-Visual Mirror Neurons

We have shown that a recurrent neural network associating
observed hand-object relation trajectories with motor pro-
grams can incorporate signals from other modalities by Heb-
bian association. This allows the monkey mirror neuron sys-
tem to function as a multi-modal, actor-invariant representa-
tion of action, rather than a simple associator of visual and
motor signals. If has been argued that Broca’s area is the
human homologue of area F5 in the macaque [Rizzolatti &
Arbib, 1998] and that human language arose from a ges-
ture based system which was later augmented with vocaliza-
tion [Arbib, 2005]. These multi-modal mirror neurons may
have allowed arbitrary vocalizations to become associated
with communicative gestures, facilitating the emergence of
a speech-based language from a system of manual gestures.
If this is indeed the case, the development of audio-visual
mirror neurons may have implications for the recognition of
communicative actions and ground the multi-modality of lan-
guage.

4.2 Inferring Hidden Actions

The results of these simulations show that the addition of a
working memory with dynamic remapping of its representa-
tions is sufficient to infer the result of an action whose final
component is hidden. The monkey mirror system is capa-
ble of inferring the final result of grasp given the initial sight
of an object and a preshaped hand directed towards it even
when the object and hand are subsequently obscured. It is not
clear whether or not this system infers the actual outcome of
the action, or the actor’s intent in executing it. It has been
proposed that mirror neurons are a part of, or a precursor
to a simulation theory of mind-reading [Gallese & Goldman,
1998]. [Kuroshima et al., 2002] showed that capuchin mon-
keys can learn to infer whether or not a human knows the
location of an object. We propose an experiment to test the
involvement of the monkey mirror neuron system in inferring
mental states and beliefs. Experimenter A would show an
object to the monkey and then conceal it inside a box. The
monkey would then observe experimenter B remove the ob-
ject from the box after experimenter A leaves the room. At
this point the monkey should know that the object is not inside
the box, but that experimenter A believes that it is. Now if ex-
perimenter A returns and reaches inside the box, the monkeys
grasp-related mirror neurons should discharge if they recog-
nize intention, because experimenter A believes the object is
inside the screen and intends to grasp it. If however, the mir-
ror neurons code the inferred result of the executed action,
they should be silent because the monkey knows that the ob-
ject is not in the box. The results of this experiment could
yield insight into the possible involvement of mirror neurons
in primate theory-of-mind.
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Abstract

Pupillography can be an index of mental activity
and sleepiness, however blinks prevent its mea-
surability as an artifact. A method of estimation
of pupil size from pupillary changes during blinks
was developed using a support vector regression
technique. Pupil responses for changes in periodic
brightness were prepared, and appropriate pupil
sizes for blinks were given as a set of training data.
The performance of the trained estimation models
were compared and an optimized model was ob-
tained. An examination of this revealed that its esti-
mation performance was better than that of the esti-
mation method using MLP. This development helps
in the understanding of the behavior of pupillary
change and blink action.

1 Introduction
Pupillography can be used as an index of mental activity and
sleepiness [Kuhlmann and Böttcher, 1999; Beatty, 1982]. In
particular, the eye sleepiness test, which is a kind of read-
ing of the frequency power spectrum, can often be applied to
measure the degree of tiredness in clinical observations or in
industrial engineering situations. Mental activity and sleepi-
ness are based on hi-level information processing, but pupil
response only can not provide sufficient evidence of the pro-
cess. Pupillography can be used as a measurable index to
understand human behaviour, however.

Most methods of measuring pupil size are based upon the
image processing of the eye. Therefore, any ’eye-blink’ prob-
lem can affect measurements due to the eye being obscured
by the eye lid during ’blink periods’. Blinks are usually dis-
cussed as an artifact for temporal observations such as mean
pupil sizes or results of frequency analysis [Nakayama and
Shimizu, 2001; 2004]. To extract the change in mental ac-
tivity, the temporal pupil size should be measured accurately
without blink artifact.

To reduce the influence of blinks on pupillary change, a
model for predicting pupil size has been developed. This

∗This research was partially supported by the Ministry of Edu-
cation, Sports, Culture, Science and Technology, Grant-in-Aid for
Exploratory Research 16650208, 2004-2005.

model may aid understanding pupillary behaviour or im-
plicit action. An estimation method was developed using
a three layer perceptron as a kind of multi layer perceptron
(MLP) [Nakayama and Shimizu, 2001; 2002]. The training
data was prepared as a pair of temporal pupillary changes.
One was the original measurement without blinks, and the
other was modified by replacing some periods with artificial
blinks. Here, artificial blinks are typical patterns of pupil-
lary change during blinks. The MLP was trained by re-
producing original pupil size without blinks from pupillary
changes with artificial blinks [Nakayama and Shimizu, 2001;
2002].

This estimation method can be applied to various ex-
perimental pupil sizes, however accuracy is often an issue.
One of the possible reasons might be the estimation pro-
cess. The MLP with sigmoidal function was applied to
the estimation according to the pupil response, based on
the non-linear model [Takahashi et al., 1976]. The acti-
vation function might not represent pupillary change suffi-
ciently. An alternative network to the MLP is the radial
basis function (RBF) network [Luo and Unbehauen, 1997;
Bishop, 1995], and this provides a smooth interpolating func-
tion by using basis functions such as the Gaussian function.
This estimation issue suggests a kind of regression. Currently
the support vector regression (SVR) can be used as a more ro-
bust representation for the regularization or the extraction of
feature space. It is also suggested that the Gaussian kernels
tend to yield good performance [Smola and Schölkopf, 1998].

Another reason might be that the training data consists of
artificial blinks. Due to the method of measuring pupil size,
the correct size during a blink is never obtained because the
pupil is covered by the eye lid. Therefore it is not easy to
prepare appropriate training data for making estimations.

In this paper, a new estimation method, which consists
of a SVR technique and an experimental pupillary change,
was developed to improve estimation accuracy and to observe
pupillary response.

The purposes of this paper are addressed as follows:

1. To prepare a training data set which consists of pupillary
change with blink artifact for developing the estimation
method.

2. To develop an estimation model by use of a support vec-
tor regression technique, and to evaluate the estimation
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performance in comparison with other methods.

2 Method
2.1 Periodic pupillary response
Estimation of pupil size during blink provides a possible pupil
size from the temporal sizes. Therefore, training data as a
prototype of pupil response consists of experimental pupil
sizes in the blink and possible sizes. As already suggested,
it is not easy to measure the possible size during blinks, so
the size should be obtained by estimation. In this paper the
periodic pupillary responses were observed to extract typi-
cal response patterns because the pupil accurately reacts to
light stimulus as an eye pupil reflex, despite blink artifact and
pupillary noise. It is easy to know overall change in response
to the brightness change. The light reflex was applied to con-
trol pupillary change and to extract regularized responses. In
a sense, observing the reflex reaction was not the main pur-
pose of this experiment.

The bright stimuli consisted of four square waves
(T = 4, 3, 2, 1sec.) and three triangular waves (T =

2.2, 5.3, 10.7sec.) in the range of 10 cd/m2 to 80 cd/m2 .
The duration of each stimulus was 40 seconds. This vi-
sual stimuli was presented on a 17 inch computer monitor.
Three subjects (Subject no.1∼ 3) who have normal visual acu-
ity took part in this experiment. They were seated with their
heads on a chin-rest which was positioned 50 cm from the
monitor.

Figure 1 illustrates pupillary change in response to a bright
stimulus from a square wave (T = 4sec.) of 3 seconds. The
horizontal axis shows time and the vertical axis shows pupil
size and brightness change. The bold line shows brightness,
the series of “•” show experimental measures of pupil size.
Pupil responses indicate light reflex reactions with time de-
lays which are approximately 0.2∼ 0.5 seconds [Utsunomiya,
1978]. The figure shows that pupil size decreases gradually
with time delays after the change in brightness. There are
two drops which are caused by the blink. The average blink
rate in this experiment was 12.3 blinks per minute. Usually, a
subject blinks about 20 times per minute [Tada et al., 1991].
It seems that subjects have suppressed blinks during the ex-
periment, however.

The pupillary responses to the stimuli were observed using
an eye tracker (nac:EMR-8) with pupil size measuring capa-
bility. The pupil image is captured by a small camera placed
between the display and the chin-rest. The camera does not
prevent the subject from seeing the display because it is lo-
cated lower than the viewing level. The captured pupil image
is analyzed as an ellipse which has longer and shorter diame-
ters. This analyzing equipment measures the longer diameter
of an ellipse of the pupil at 60 Hz, and produces the raw data
and the status code of the measurement. This equipment also
measures the shorter diameter simultaneously, to monitor the
aspect ratio of the longer and shorter diameters. If the eye
lid covered a part of pupil and the value of the diameter was
affected, the aspect ratio would be smaller than 1.0 because
of the round shape of the pupil. The longer diameter is the
horizontal length of the ellipse and the shorter diameter is the
vertical length during blinks. Both diameter and aspect ratio

decrease with the degree of coverage of the pupil by the eye
lid. When the aspect ratio of the pupil is under 0.7 ∼ 0.8, the
measuring error code is given as the output status [nac Corp.,
1999]. This means that pupil sizes during a blink are detected
by the equipment. The easiest way to estimate pupil size dur-
ing blink is to replace the drop in pupil size with a pupil size
which is the last valid measurement before the status regis-
ters an error code. This replacement algorithm and process
are very simple. The estimation value can be replaced auto-
matically according to the status code, and it is defined as the
“Auto correction”. This estimation is also illustrated in Fig.
1. There is no drop in pupil size, but the accuracy is still not
sufficient, however, because the pupil size has already begun
to decrease when the output status produces an error code.

The pupil size as a circle was calculated from the longer
diameter of the ellipse. The pupil size is zero when the whole
pupil is covered by the eye lid, such as during a blink. The
pupil size is significantly different among individuals, then
the size is standardized by individual average size. Pupil size
was originally observed at 60 Hz, however the data was re-
sampled at 30 Hz to compare the estimation performance of
the previous method [Nakayama and Shimizu, 2001].

2.2 Training data
To obtain pupillary change without blink, the pupil sizes dur-
ing blinks were interpolated manually for three participants
by referring to the periodical pupillary change. Because the
pupil’s light reflex to changes in the brightness of the stimuli
is mostly consistent, pupil size can be interpolated from reg-
ular responses in other cycles if the pupil size during blinks
has dropped off during a cycle. The interpolated periods are
longer than the area where the measuring status registers on
error code. This corrected pupil size is also illustrated in
Fig. 1 as the “Reference”. This seems to be a more plausible
method of measuring pupillary change during blink than the
estimation of “Auto correction”.

As a result, a pair of temporal pupillary changes with and
without blinks was prepared. Figure 2 illustrates the estima-
tion process which is a mapping. A target pupil size is gener-
ated from the pupillary change during the “drop–off period”
of the blink. Two out of the three sets of participant data were
assigned as training data and the remaining set of participant
data was assigned as test data.

2.3 Pupil size estimation by use of SVR
The estimation function was derived from the training data
by use of the support vector regression technique [Smola and
Schölkopf, 1998]. The estimation procedure is similar to the
one using MLP [Nakayama and Shimizu, 2001]. As dis-
played in Fig. 2, a sub-string of data x which consists of n
components is taken stepwisely from the time sequence data.
Here, k th x, xk is noted as follows:

xk = (xk−(n/2−1), . . . , xk, . . . , xk+(n/2−1))

The estimated pupil size ŷk for the empirical size yk at the
time position k is reproduced from xk. This requires deriving
the mapping from the experimental pupil size with blinks to
a pupil size without blinks, which is termed the “Reference”.
Here, the mapping function is defined as f . Figure 2 notes
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Figure 2: Relationship between experimental data (x) and es-
timation target (y)

the mapping function from x to f(x). The required map-
ping function f can provide an interpolated pupil size from x
where x includes the zero value component xi as blinks.

The number of the training data sets (xi, yi) is l, and the
mapping function f is defined by linear regression as follows
[Collbert and Bengio, 1998]:

f(x) = (w · x) + b

To estimate the function f with a precision of ϵ, the minimiza-
tion problem is defined as introducing the geometric margin

1

∥w∥2 , as follows:

1

2
∥ w ∥2

+ C
l

∑

i=1

|yi − f(xi)|ϵ

where ∥ · ∥2 is the Euclidean norm, 1

2
∥ w ∥2 is a regulariza-

tion factor, C is a fixed constant, and | · |ϵ is the ϵ-insensitive
loss-function.

|z|ϵ = max{0, |z|− ϵ}

Here, one can introduce slack variables ξ, ξ∗to support vector
“soft-margin” loss function, and then this is written as the
minimization problem of τ [Collbert and Bengio, 1998].

τ(w, ξ, ξ∗) =
1

2
∥ w ∥2

+ C
l

∑

i=1

(ξ + ξ∗)

((w · xi) + b) − yi ≤ ϵ + ξi

yi − ((w · xi) + b) ≤ ϵ + ξi
∗

ξ, ξi
∗≥ 0.

To generalize as non-linear regression, a kernel k(·) is de-
noted non-linear transform Φ(x) for the feature vector x. This
procedure is the so-called kernel trick. Introducing Lagrange
multipliers αi, (i = 1, . . . , l), this is the minimization prob-
lem of the objective function, as follows:

1

2

l
∑

i=1

(αi − αi
∗
)(αj − αj

∗
)k(xi,xj)

−
l

∑

i=1

(αi − αi
∗
) + ϵ

l
∑

i=1

(αi + αi
∗
)

l
∑

i=1

(αi − αi
∗
) = 0

0 ≤ αi, αi
∗≤ C

Then, function f is written as follows:

w =

l
∑

i=1

(αi − αi
∗
)Φ(xi)

f(x) =

l
∑

i=1

(αi − αi
∗
)k(xi,x) + b
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In this paper, the Gaussian kernel in the introduction is intro-
duced as follows:

k(x,x′
) = exp(− ∥ x − x′ ∥2 /2σ2

)

Example l is given by the amount of training data. To ob-
tain the optimized model, a dimension n of x, and a precision
ϵ(eps) and σ(STD) of Gaussian kernel should be derived.

The practical calculation was conducted using the SVM-
Torch package [Collbert, 2000], and parameters were opti-
mized.

3 Result
3.1 Reproducing performance
To derive the optimal condition, the performance which was
reproduced, was examined according to the parameters.

The dimension n in Fig. 2 was examined across eight con-
ditions: n = 30, 35, 40, 45, 50, 55, 60, 75 when the precision
was set to ϵ(eps) = 0.01. While in this condition, σ(STD)

of the Gaussian kernel function was controlled from 0.4 to 8.0
by 0.4 increment steps. For example, the amount of training
data was l = 15, 416 in the condition of n = 35.

After the training of the support vector regression with
SVMTorch II, the performance for reproducing the training
data was examined. The mean square error (MSE) and the
standard deviation (SD) of errors were compared across the
training conditions. The least mean square error and the stan-
dard deviation of error for each dimensional condition was
summarized in Fig. 3 and labeled as input dimensions (i-n).
The vertical axis shows the mean square error, the horizon-
tal axis shows the SD of errors. As shown in Fig. 3, the least
mean square error was n = 35. Where n = 35, the least MSE
was σ(STD) = 2.4, and the number of Support Vectors was
1,380.

3.2 Estimation result
The trained model was applied to experimental data for Sub-
ject 3 in Fig. 1. The output of the model was illustrated as

SVR in Fig. 4. According to the temporal pupillary change
which was reproduced by SVR, all pupil sizes during blinks
were replaced with plausible assumptions.

Another estimation using the MLP model [Nakayama and
Shimizu, 2001], which was developed previously with em-
pirical pupil sizes and artificial change for the blink, was also
illustrated in the same format in Fig. 4. Some estimation sizes
during blink were higher than the plausible sizes. Comparing
the two estimations in this figure, the estimation with SVR
seems more appropriate.

3.3 Estimation performance
To evaluate estimation performance of pupil size during
blink, MSEs for the test data set were compared across the
following four estimation methods. Here, the error was de-
fined as the difference between the estimation size and the
“Reference” which was determined, as was the training data.

1. Experimental measured size including blink influence
(Exp)

2. Keeping previous valid size during blink (Auto)

3. Estimation size by MLP which was trained with artificial
blinks (MLP)

4. Estimation size by SVR which was trained with the
above training data (SVR)

For the estimation using SVR, the performance was com-
pared across precision ϵ(eps) = 0.001, 0.005, 0.01, 0.05.
The parameter σ(STD) was given for each precision con-
dition according to the least square error for the training data.
In general, the square error of the reproduction decreases as
the precision ϵ(eps) becomes smaller.

Total square error and square error during blink periods for
the test data set were summed up in each condition. Those
errors were summarized in Fig. 5. The vertical axis indicates
the total sum of square error, and the horizontal axis indi-
cates the sum of the square error during blinks. Both axes
are shown in logarithmic scale. For the experimental data in-
cluding blinks, the total sum of the square errors resulted in
drops in blinks. Therefore both errors coincided and were the
largest value. Estimation performance of MLP was compara-
ble to “Auto” condition.

When the performance of SVR was compared across pre-
cision parameters, the total square error in the condition of
ϵ(eps) = 0.01 was the least. According to the test result, pa-
rameters of the optimized condition are the input dimension
n = 35, a parameter of the Gaussian kernel σ(STD) = 2.4,
and a precision ϵ(eps) = 0.01.

As a result, the total sum of the square error decreased to
25% of MLP, and 47% of “Auto”. Also, the sum of the square
error during blinks decreased to 43% of MLP, and 28% of
“Auto”. It is interesting that the sum of square error during
blinks decreases with larger ϵ(eps).

3.4 Application to another data set
To examine the pupil size estimation possibility of the trained
model, other experimental data as well as the test data was
used. Pupillary change was measured in an experiment which
gave oral calculation tasks to a subject while visual stimulus
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such as the subsequent ocular task was displayed [Nakayama
et al., 2002]. Experimental pupil size which was measured at
30 Hz was illustrated for 10 seconds in Fig. 6 as Exp. The
horizontal axis shows time and the vertical axis shows pupil
size, and also drops show blinks.

The estimation result using the above trained model was
overlapped in Fig. 6, as SVR. The SVR indicates the same
pupil size without blink periods and gives possible sizes dur-
ing blinks. However, blinks affect estimation sizes before or
after blink periods. As the blink often widely influences pupil
size before or after the blink, it is not easy to select the target
period for estimation. Another reason is the difficulty in dis-

criminating between correct and incorrect pupil sizes. Some
irregular pupil sizes are displayed in Fig. 6, but they have
valid sizes in the correct range. These will be the subjects of
further study.

4 Summary

The estimation method of pupil size during blinks was de-
veloped using a support vector regression technique, while
the training data was prepared from pupillary responses for
7 periodical brightness changes. According to the period-
ical pupillary changes, pupil sizes during blink were given
manually, to prepare a pair of possible pupil sizes and empir-
ical data. The parameters for the support vector regression
technique were optimized in the training and test processes.
The estimation performance was the highest amongst the pro-
posed methods. This model can be applied to other pupillary
observations which were conducted as part of an experiment
using different subjects for a different purpose.

The model could simulate human eye pupil and blink,
therefore there is a possibility to obtain the behavior of pupil-
lary change and blink action. In particular, it may be possible
to extract some features of pupil action as support vectors.
Therefore, analysis of the support vectors and the relation-
ship between pupil action and these support vectors should
be conducted. The examination of these points will be the
subject of further study.
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Abstract
We present an agent-based model of the key ac-
tivities of a troop of chacma baboons (Papio
hamadryas ursinus) based on data collected at the
De Hoop Nature Reserve in South Africa. The con-
struction of the model identified some key elements
that were missing from the field data that would
need be collected in subsequent fieldwork. The
simulation results identified decisions concerning
movement (group action selection) as having the
greatest influence on the outcomes. We analysed
the predictions of the model in terms of how well
it was able to duplicate the observed activity pat-
terns of the animals and the relationship between
the parameters that control the agent’s decision pro-
cedure and the model’s predictions. The model pre-
dicts reasonable yearly average values for energy
intake, time spent socialising and resting, and habi-
tat utilisation, but is unable to account for month by
month variation in the field data. However even at
the current stage of model development we are able
to show that, across a wide range of decision pa-
rameter values, the baboons are able to achieve en-
ergetic and social time requirements. This suggests
that these particular animals may be influenced by
other factors such as predation risk or thermal load
in deciding their activity patterns.

1 Introduction
Where two activities cannot be performed simultaneously, an-
imals are forced to schedule certain behaviours preferentially,
such that costs may be incurred by the reduced opportunities
to engage in other biologically important activities [Caraco,
1979]. As a consequence, determining how ecological and
demographic constraints influence time budget allocation and
scheduling decisions is a key issue underlying detailed un-
derstanding of primate socioecology. Agent-based modelling
is a powerful tool for ecological modelling and is especially
suitable for situations where individual strategy and planning
may be important as is commonly assumed to be the case
when considering primates. However for this technique to
be useful it is necessary to confirm that the model is suf-
ficiently complex to represent observed behaviour patterns

and to identify the environmental and behavioural measures
that need to be collected to (a) build a successful model and
(b) validate the predictions of the model against experimen-
tal data. In this paper we consider these issues using a set
of empirical data from a troop of chacma baboons (Papio
hamadryas ursinus) with associated ecological data collected
at the De Hoop Nature Reserve in South Africa. We present
an agent-based model designed to simulate the key activities
of the troop and analysed its predictions in terms of how well
it was able to duplicate the observed activity patterns of the
animals and also in terms of the relationship between the pa-
rameters that control the agent’s decision procedure and the
model’s predictions.

The remainder of the paper is organised as follows. In sec-
tion 2 we motivate our approach to agent-based modelling
and our choice of group behaviour as the focus of this paper.
In section 3 we briefly summarise the field data on which our
model is based and in section 4 we outline our agent-based
model and the decision procedure which the agents use to
choose their activities. In section 5 we present the results of
a Monte-Carlo sensitivity analysis of the parameters used in
the agent’s decision procedure. In section 6 we discuss the re-
sults and in section 7 we briefly outline some related work. In
section 8 we conclude and outline directions for future work.

2 Agent-based modelling
Individual-based ecological models have been growing in im-
portance over the last 20 years and it has been predicted that
this reductionist approach will provide valuable insight into
system wide properties [Lomnicki, 1992]. Early work in ar-
tificial life has shown that complex group behaviours such as
flocking and following can be produced using simple rules
applied to individuals [Reynolds, 1987]. Agent-based mod-
elling is an extension of this approach where each individual
retains information about its current and past states, and its
behaviour is controlled by an internal decision process. An
agent is a software system that perceives its environment and
acts in that environment in pursuit of its goals. Agents inte-
grate a range of (often relatively shallow) competences, e.g.,
goals and reactive behaviour, emotional state, memory and
inference. In agent-based modelling, the agents are situated
in a simulated environment, and are equipped with sensors
with differing ranges and directional properties (e.g., smell,
hearing, vision) and the ability to perform a range of actions
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which change the state of the environment or the perceptible
characteristics of the agent. The environment may contain
passive objects (e.g., topography) and active objects and pro-
cesses which change spontaneously during the course of the
simulation (e.g., weather) and/or in response to the actions of
the agents (e.g., food bearing plants).

The outcome of this process depends on the set of desires
and goals within the individual, its current internal state, an
internal world model, and sensory information. This reliance
on individual choice makes this technique especially useful
when dealing with intelligent organisms since it is likely that
the optimal strategy for an individual depends on the strate-
gies adopted by others in the group [Milinski and Parker,
1991]. The justification for this approach is that whilst the
factors influencing the decisions made by an individual may
vary as the environment changes, the decision process itself
is likely to be conserved, and an agent with a robust deci-
sion procedure will demonstrate reasonable behaviour under
a wide range of conditions. If we are confident that the de-
cision procedure is robust, then we can use the behaviour of
the agents to predict the behaviour of real populations and to
explore the potential effects of situational changes: climate,
food distribution and body size can all be altered and the ef-
fects on the agents’ behaviour can be observed.

Agent-based modelling has become a popular technique
for modelling social and spatial interactions in humans and
non-human primates: virtual worlds populated by decision-
making agents have been used to investigate topics as di-
verse as primate social hierarchies [Hemelrijk, 2002] and
Mesolithic hunter-gatherer behaviour [Mithen, 1994]. How-
ever such computer simulations are not without their crit-
ics. John Maynard-Smith has famously described these ap-
proaches as “fact-free science” [Maynard-Smith, 1995]. To
overcome such objections and to enable us to use this tech-
nique as a tool for exploring primate behavioural ecology, the
models produced must be tested by using them to predict be-
haviours in a given population and comparing the predictions
with field observations.

No model can accurately predict all aspects of primate be-
haviour. Even if it could, it is unlikely that it would be useful,
as one of the primary functions of a model is abstract the key
features of the system of interest. In this paper, we focus on
the problem of action selection in groups, i.e., where an indi-
vidual’s action choice is constrained by the choices of other
members of the group. Group living is a common strategy
among mammals and is key to understanding the success of
the primate order in general and early humans in particular.
A great deal of ecological theory has been generated to inves-
tigate grouping strategies and to identify the optimal group
size given various ecological parameters [Cheney, 1987;
Dunbar, 1996]. We focus on measures such as range size,
daily travel distance, energy and time budgets, as these are
good candidates for testing agent-based approaches: they
have measurable numerical values and so can be tested ob-
jectively, and they are highly dependent on the activities and
choices of the individual within the population. Baboons (Pa-
pio spp.) are one of the most widely studied primate species
and are ideal for studies of primate ecology since they often
live in open, terrestrial habitats, and can be observed closely

for long periods of time [Richard, 1985]. This means that
there is a wealth of data available documenting most aspects
of their behaviour in great detail. Many of these studies have
managed to quantify the activity patterns of individuals both
in terms of durations and also the costs and benefits of the
activity. Papio spp. are found across most of sub-Saharan
Africa [Jolly, 2001], at a range of altitudes, with attendant
large changes in average rainfall and temperature. Thus they
can be said to inhabit a wide variety of habitats and ecotypes,
and studies have shown that their diet and foraging varies
in response to environmental determinants [Hill and Dunbar,
2002].

Our long term aim is a robust model of baboon behaviour
which is valid across a wide range of habitats and baboon
species (including extinct species). Our methodology is to
first build a model that can successfully predict the behaviour
of a particular group of baboons and then attempt to gener-
alise, conserving the decision procedure while tailoring the
decision parameters to a particular species or habitat type.
The work reported in this paper is the first step in this pro-
cess, namely the modelling of a particular group of baboons
in a particular habitat.

3 Field Data
The model is based on data from De Hoop Nature Re-
serve, a coastal reserve in Western Cape Province, South
Africa. Vegetation is dominated by coastal fynbos, a unique
and diverse vegetation type comprising Proteacae, Ericaceae,
Restionaceae and geophyte species. Seven distinct habi-
tat types were classified on the basis of vegetation structure
within the home range of the baboons (Table 1: see [Hill,
1999] for detailed descriptions and further information on the
ecology of the reserve).

De Hoop has a mean annual rainfall of 428 mm, with a
mean annual temperature of 17.0◦C. Both rainfall and tem-
perature show considerable seasonal variation and shade tem-
perature in the summer months regularly exceeded 25◦C. Due
to its southerly latitude, De Hoop also experiences significant
day length variation (from 9.8 to 14.2 hours) that has impor-
tant implications for the behavioural ecology of this popula-
tion [Hill et al., 2003].

The data presented here are for a 7-month period (June to
December 1997) from a single troop of chacma baboons (Pa-
pio hamadryas ursinus) that ranged in size from 40 to 44 in-
dividuals over the course of the study. Data were collected
by means of instantaneous scan samples [Altmann, 1974] at
30-minute intervals, with 2-4 adult males and 12 adult fe-
males sampled for a minimum of five full days each month.
At each sample point, information was recorded on the iden-
tity, habitat type and activity state (feeding, moving, social-
ising or resting) of all visible individuals. Each scan lasted a
maximum of 5 minutes. A more detailed description of the
data collection methods is given in [Hill, 1999].

4 Agent-Based Model
The model consists of two components: the environment
model and the baboon model. The environment model was
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Habitat Type Proportion Bush Tree Food Shade Predation
of Range (%) Cover (%) Cover (%) Availability Availability Risk

Acacia Woodland 15.8 55.8 34.4 High Very high High
Burnt Acacia Woodland 1.2 3.2 0.4 Low Low Intermediate
Burnt Fynbos 27.6 3.6 0.0 Low Low Intermediate
Climax Fynbos 25.7 54.0 3.4 Low High High
Grassland 11.0 1.6 1.2 Intermediate Low Low
Vlei 18.7 0.0 0.0 High Very low Low

Table 1: Home range composition, vegetation food availability, shade availability and predation risk of the major habitat types
at De Hoop.

based on the 200× 200m map grid used for field data record-
ing, and consists of 660 cells within an area 5.4km by 8.4km.
Each cell contains a mixture of the 6 primary habitat types
found at De Hoop (Acacia Woodland, Burnt Acacia Wood-
land, Climax Fynbos, Burnt Fynbos, Grassland and Vlei)
and may also include one or more ‘special features’: water
sources, sleeping sites, and refuges (primarily cliffs). Each
habitat type was characterised by a maximum food availabil-
ity, energy intake rate when foraging and foraging on the
move, and replenishment rate, and these varied month by
month. For reasons of space, these values will be reported
elsewhere. The actions of the agents affect the environment.
For example, food consumed is depleted from the grid square
containing the agent, and is replaced at the replenishment
rate for the current simulation month for each of the habitat
type(s) occurring in the grid square. The energy value of the
food available was estimated at 13.98 kJg

−1 [Stacey, 1986].
The environment model is illustrated in the simulator’s graph-
ical output shown in Figure 1.

Figure 1: Graphical output from the simulator showing the
habitat types and distributions.

The baboon model models each baboon as an agent with

physical parameters based on well-known baboon physiol-
ogy. In addition, each agent maintains an individual score
for thirst, energy and social time. These scores function as
‘drives’ or ‘desires’ in biasing the agent’s choice of preferred
activity at each timestep.

At each timestep, each agent can choose one of four actions
corresponding to the activities recorded for the baboons at De
Hoop: feeding, moving, socialising or resting. In addition, an
agent can perform an instantaneous drinking action which can
be combined with any of the other activities (assuming the
agent is in a cell which contains a water source). Each action
has an associated energy cost. These were calculated using
the formulae given in [Tucker, 1970] for an average adult fe-
male baboon with a body mass of 16.1 kg (the heavier males
offset by the lighter infants and juveniles) and assuming that
the baboons moved relatively slowly (0.5 ms−1) since they
customarily foraged whilst moving. Thus foraging uses 36.71
W; moving 50.59 W; socialising 64.04 W; and resting 34.63
W. In addition to its energy cost, each action updates the ap-
propriate scores. Feeding causes food to be depleted from
the grid square containing the agent and increases the agent’s
energy score depending on the type of food consumed. The
agents also forage while moving, which depletes food from
the grid square at a lower, travel-foraging, rate.1 Socialising
increases the agent’s social time score by the length of the
timestep. Drinking adds one to the agent’s thirst score. Any
action other than socialising causes the social score to de-
crease by the length of the timestep, and not drinking causes
the agent’s drinking score to decrease by the reciprocal of the
timestep.

The agents have two hard constraints: they must return to a
sleeping site to rest each night and they must drink (i.e., visit
a grid square constraining a water source) at least once every
2 days. Otherwise they have 2 goals: to maintain their energy
balance (i.e., to eat sufficient food to make up for the energy
expended each day) and to spend 2 hours a day in social activ-
ity. Each agent is equipped with a simple decision procedure
designed to allow it to exploit the habitat to achieve its goals.
However the actions of each individual are constrained by ac-
tions selected by the other baboons in the manner explained
below.

The model uses a fixed timestep of 5 minutes. At the end
of each timestep each baboon chooses a preferred action to

1In some habitats there is no food to be gained by foraging on
the move in certain months.
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perform at the next timestep and whether it would prefer to
move to allow it to perform the action more effectively. If
the number of agents which vote to move is higher than a
given threshold, V , then the whole group moves in the most
commonly preferred direction. If the group does not move,
agents which voted to move have the opportunity to choose
an alternative action which can be performed in the current
grid square. The agent then spends the next 5 minutes per-
forming its chosen action and its scores in terms of energy
balance, thirst and social time adjusted accordingly. Drinking
is considered an instantaneous action that occurred whenever
the agent occupied a grid square containing a water source.

The complete decision procedure can be summarised as
follows:
Decision procedure:

for each agent:
if (!Automatic Action):

Choose Preferred Action
and Preferred Cell;
if Preferred Cell != Current Cell:

Vote to Move;

if ((Votes to Move / no. agents) > V):
for each agent:

Move in the most commonly
preferred direction;

else:
for each agent:

Check Preferred Action;
Perform Action;

Automatic Actions are the hard constraints (resting at
night, drinking) which can preempt the choice of Preferred
Action and Preferred Cell. For example, the require-
ment that the agents must return to a sleeping site to rest each
night constrains the choice of Preferred Cell so that the
agent can always reach a sleeping site in the time remain-
ing before nightfall. If the Automatic Action step has not
determined the agent’s choice of action at this timestep, the
agent’s Preferred Action is determined using a weighted
random function with weights proportional to the current de-
sire to drink, forage and socialise. Desires are linear func-
tions of the corresponding scores with gradients proportional
to user defined relative importance values for each action:
WD (the relative importance of drinking), WF (the relative
importance of foraging), and WS and the relative importance
of socialising. These desire functions fall to zero when the
target amount has been reached and when they are all zero
the agent will opt to rest. By aiming to keep all scores at zero,
the agents will drink on average once per day, and socialise
on average 2 hours per day.

The agent will Vote to Move if it can perform its desired
action more effectively in one of the neighbouring cells. This
is determined by evaluating all the grid squares within the
search radius, S, of the agent’s current location. For drinking
it is assumed that the agent knows where the nearest water
source is, irrespective of search radius. The agent will vote
to move if the best grid square is more than a user defined
threshold better than the current square. In the case of forag-
ing the threshold is denoted by TF , and depends on the food
availability, in the case of socialising and resting the thresh-

Parameter Min Max
V 0.1 0.9
S 200 2200
WF 1 10
WS 1 10
WD 1 10
TF 1 3
TS 1 3
TR 1 3
TK 0 0.25

Table 2: Key parameters in the decision procedures showing
the ranges used in the Monte-Carlo sensitivity analysis.

olds (denoted by TS, TR) are a measure of predation risk.
The votes for all the agents are counted and the group will
only move if more than V vote in favour of moving. If fewer
than V agents opt to move, then the agents which preferred to
move choose their most preferred action for the current cell at
the Check Preferred Action stage. This is because it is
impossible to drink if there is no water in the current cell and
undesirable to socialise or rest if the predation risk is greater
than TK . Finally all agents either move in chosen direction or
get to Perform Action, which is whatever non-move action
was decided upon after the preferred action was checked.

The difficulty is that we do not currently have suitable val-
ues for the parameters used in the decision process. Some
we may be able to estimate empirically with more detailed
field observations, but others are essentially unknowable. To
overcome this we choose plausible ranges for each decision
parameter and performed a Monte-Carlo sensitivity analysis
[Campolongo et al., 2000] where the simulation was repeated
a large number of times and the values of the parameters ran-
domly sampled from the range for each run. This allows us
both to estimate the importance of a particular parameter on
the outcome and to calculate the range of possible outcomes.
The parameter ranges used in the analysis are shown in Table
2.

5 Results
The model was run 100,000 times sampling the decision pa-
rameters from Table 2 each time. Figure 2 (a) and (b) show
the distribution of outcomes in terms of the goal states (daily
energy intake and daily social time). These values are highly
consistent between runs and almost always adequately high
suggesting that almost no matter what combination of deci-
sion parameters we use the agents are able to achieve their
goals. However if we look at the match between the model’s
predicted outcome and the recorded monthly activity sum-
maries from the field data we can see that there is a very large
amount of variation in the model’s predictions and not par-
ticularly good agreement with the field data. This is shown
in Figure 3 where the predictions in terms of time spent in
different activities are compared with the experimental data.

Figure 4 which shows the time spent in different habitats
shows a similar picture. In particular it shows that the ba-
boons spent a great deal of time in the Burnt Fynbos in Au-
gust (and to some extent in September). This is very hard
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Figure 2: Frequency of the primary outcomes for 100,000
repeats of the simulation with the input parameters randomly
sampled from the ranges in Table 2. (A) Daily energy intake
(target approx. 3500 kJ depending on activity pattern); (B)
Time spent socialising (target value is 7200 s); (C) Time spent
resting.

to explain in terms of food availability and it is not surprising
that it is not matched by the model. In terms of the whole year
the model is much better able to match the observed findings.

Figure 5 shows the mean daily activity pattern for the
whole year. Figure 6 shows the occupancy rates for differ-
ent habitat types which also show a similar pattern, although
the in the simulation the time spent in Acacia Woodland is
consistently less than that spent by the actual baboons. The
Burnt Fynbos usage over the whole year matches the baboon
data even though it cannot mimic the August peak.

The linear effects of the decision parameters were analysed
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Figure 3: The daily duration of the 4 activities observed in the
field and in the best matching run obtained in 100,000 repeats
using randomly sampled decision parameters.
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Figure 4: The daily amount of time each agent spends in a
particular habitat observed in the field and in the best match-
ing run obtained in 100,000 repeats using randomly sampled
decision parameters.

using Stepwise Multiple Regression in SPSS. Table 3 shows
the regression terms identified by this process. The clearest
relationship is between the V parameter and the time spent
moving. V also had a reasonably strong effect on the time
spent foraging, the energy intake, and the time spent in Aca-
cia Woodland. The time spent in Grassland is quite strongly
influenced by the search radius, S. In no case does the second
term add much to the overall relationship.

6 Discussion
The data show that the model is able to approximate the be-
haviour of the De Hoop baboon troop in general terms. How-
ever it is where the model and the real data differ that is most
informative. It is commonly supposed that the requirement to
obtain sufficient food is the key factor that produces primate
movement. The energetic aspects of the model are probably
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Dependent Variable Predictor 1 R square 1 Predictor 2 R square 2
Time Foraging V 0.412 WF 0.423
Time Resting TF 0.043 WF 0.060
Time Moving V 0.755 TF 0.827
Time Socialising WF 0.018 V 0.028
Energy Intake V 0.255 WF 0.264
Acacia Woodland V 0.368 TF 0.490
Burnt Acacia Woodland V 0.111 S 0.187
Burnt Fynbos V 0.061 WF 0.063
Climax Fynbos V 0.063 WD 0.069
Grassland S 0.304 V 0.330
Vlei V 0.054 S 0.064

Table 3: The first two terms of a linear stepwise regression using the Monte Carlo parameters as independent variables and the
behavioural outcomes as the dependent variables using the combined 100,000 runs as the data source.
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Figure 5: The daily duration of the 4 activities averaged over
the seven month sample time observed in the field and in
the best matching run obtained in 100,000 repeats using ran-
domly sampled decision parameters.
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Figure 6: The daily amount of time each agent spends in a
particular habitat averaged over the seven month sample time
observed in the field and in the best matching run obtained
in 100,000 repeats using randomly sampled decision param-
eters.

its most reliable features: we have reasonably good data for
daily food requirements and nutrition physiology. The fact
that even this simple model is able to obtain sufficient food
(there is no planning of optimal routes or intelligent choice

of when to feed) suggests that it is actually relatively easy for
these animals to obtain sufficient food and that there must be
other drives that have a strong influence on movement. Hill
[1999] showed that predation risk was an important influence
on the habitat choice of baboons and this is one area where the
current model is weak. The model contains no free-ranging
predators and predation risk is considered only in relation to
resting and grooming. Risk is taken to be a function of visi-
bility rather than a more complex model of predator-prey in-
teractions. Other factors that might be important include the
fact that, although energy is plentiful in the environment, par-
ticular nutritional components such as protein may be much
rarer. This might explain the high usage of the otherwise un-
desirable Burnt Fynbos habitat in August and September, if
the food items available there (mostly subterranean tubers and
roots) contain specific, rare dietary elements. More detailed
experimental and observational data will be needed to answer
this, and the dietary component of the model will need to be-
come more complex accordingly.

The Monte-Carlo analysis revealed that the model has very
little clear, linear dependence on any of the input parameters.
The V parameter is involved only in the decisions to move
and its influence it almost certainly entirely due to its strong
effect on the time spent moving. This is one of the least real-
istic parts of the model since clearly baboons do not actually
vote to move as the simulated baboons do.2 However they do
always move in more or less coherent groups (it is extremely
hazardous to be a lone baboon) so some sort of coordination
mechanism must be at work and this is one area where the
model would benefit from elaboration. Large values of S re-

2Conradt and Roper [2003] have shown that under certain as-
sumptions, “democratic” decision-making results in lower costs to
the group as a whole than “despotic” decision-making. They give as
empirical examples of ‘voting’ behaviours the use of specific body
postures, ritualised movements, and specific vocalisations, whereas
‘counting votes’ includes adding-up to a majority of cast votes, inte-
gration of voting signals until an intensity threshold is reached, and
averaging over all votes. They cite anecdotal reports of voting be-
haviours in baboons where a simple majority determines changes in
group activity based on movement, or a majority of adults or adult
males decide on the direction of travel based on body orientation or
position on a resting rock.
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flect a better knowledge of the environment. Low values of
S lead to more time being spent in grassland, suggesting that
the agents are then failing to find better habitat in these cases.

7 Related Work
Agent and individual-based modelling is an increasingly pop-
ular approach to the study of primates. In this section we
briefly review some of this work and sketch its relationship to
the model described in this paper.

Robbins and Robbins [2004] have developed a model to
simulate the growth rate, age structure and social system
of mountain gorillas in the Virunga Volcanoes region. The
model uses a one year time step and is based on the probabil-
ities of life history events (birth rates, mortality rates, disper-
sal patterns etc.) as determined by census data from habitu-
ated research groups of gorillas. Hemelrijk [2002] presents a
model of primate social behaviour in which agents have two
tendencies: to group and to perform dominance interactions.
By varying group cohesion she shows that denser grouping
can induce female dominance over males. Bryson and Flack
[2002] have used an agent-based model to investigate primate
social interactions. The agents are represented as 2D rectan-
gles in a walled enclosure which alternate between two be-
haviours: grooming neighbours and wandering (feeding in
relative isolation). They investigated the effect of a ‘tolerance
behaviour’ on the amount of time spent grooming.

For want of better terminology, we can distinguish between
individual-based and agent-based models. An individual-
based model takes individuals as the basic unit and tracks
them without the individuals interacting in a meaningful way.
We reserve the term agent-based for those individual-based
models in which the individuals interact with an environment
and/or each other.3 For example, the model proposed by Rob-
bins and Robbins is individual-based in that the gorillas don’t
interact with an environment model (or each other) and the
only decisions the gorillas make as individuals is whether
to move to a new group. In contrast the models by Hemel-
rijk and Bryson and Flack are agent-based in that they fo-
cus on the interaction of the individuals in the simulation. In
particular, both models explicitly take into account the spa-
tial position and orientation of individuals: in the Hemelrijk
model, cohesiveness is determined by the ‘SearchAngle’, the
angle by which an agent will rotate to locate other agents
when there are none in sight; in the Bryson and Flack model,
grooming requires being adjacent to and properly aligned
with an agent.

Our approach is intermediate between individual-based
and agent-based: baboons are modelled as individuals which
choose actions and interact with their environment based on
their individual state, but their interactions with each other are
limited to group level decisions, specifically whether to move,
and the constraints this places on their individual choice of
action. To the best of our knowledge this integration of indi-
vidual and group level action selection (where all the mem-
bers of the group participate in the selection and execution of
a common action) has not been addressed in previous work.

3Note that this usage is not consistent with that in the literature
generally or even the papers summarised in this section.

There is also a substantial body of work on joint action
in AI, for example [Grosz and Sidner, 1990; Cohen and
Levesque, 1991; Tambe, 1997]. However this work has
tended to view actions by individuals within a group as di-
rected towards the achievement of a joint intention, with each
agent committing to performing a (possibly different) action
from a shared or team plan, rather than the selection of an ac-
tion which is performed by all agents but which only serves
the interests of a subset. It seems unlikely that baboons have
joint intentions, or the shared plans and models of teamwork
necessary to achieve them.

8 Conclusion
This study shows the potential value of agent-based mod-
elling in primatology. It clearly demonstrates that, for this
population, factors other than food are important for ranging.
The construction of the model has identified key areas where
the available field data is missing, and so is extremely useful
for planning future studies. It also shows the non-linear na-
ture of the problem and indicates useful ways that the model
could be elaborated to investigate more complex issues, such
as predation and planning.

The fact that the model is able to match the yearly activ-
ity and occupancy profiles suggest that even a simple model
is perfectly adequate to simulate primate behaviour recorded
at this time scale. However it is clearly unable to match the
detailed activity at even a monthly, let alone daily or hourly
time scale, although the results presented here do suggest that
this should be possible. Some of the disparity between the
model’s predictions and the field data may be attributable to
the fact that the field data actually represent a subset (scan
samples at 30 minute intervals on 5 days per month) of the
complete monthly behavioural profile of the baboons. In con-
trast, the model simulates the behaviour of the baboons every
five minutes on every day each month. As a consequence, the
field data are more susceptible to stochastic sampling varia-
tion where ‘atypical’ behaviour patterns could produce mis-
leading monthly averages. The fact that the model matches
the long-term yearly averages where such effects are min-
imised, therefore, is extremely encouraging.

There are a number of areas where additional detail could
be beneficially added to the model. Firstly, the incorporation
of a full diet model may be essential. This would be easy
in modelling terms but difficult in terms of validation, since
it would require much more detailed chemical and calorific
analysis of what the baboons actually eat in different areas.
Secondly, since it seems likely that predation is a major driv-
ing force of primate ranging behaviour, this would need to
be incorporated specifically in the model. Fortunately this
is precisely where agent-based modelling reveals its power
and generality, since the predators can be modelled as agents
themselves. The difficulty here is that we know considerably
less about the behaviours of any of the predator species than
we do the prey animals, so that validation may be extremely
difficult. Thirdly, it seems likely that primates, and in partic-
ular baboons because of their larger than normal brains (for
equivalent sized mammals) [Jerison, 1973], do have some
sort of a mental map of their home range and do plan their
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daily activities to some extent. It is obviously almost im-
possible to know how a baboon might view the world but an
agent-based model is an ideal way of investigating possible
approaches and can certainly quantify the costs and benefits
associated with various levels of planning.

It would also be interesting to extend the model to explore
the relationship between individual and group level action se-
lection in more detail. For example, it would be straight-
forward to incorporate a weighted voting scheme in which
the votes of some individuals have a greater effect on action
choice (and in the limit some subset of individuals determines
group actions). However it would be more interesting to try to
model the emergence of group level action selection from the
sum of interactions between individual agent’s action choices
(i.e., without an explicit voting scheme). This would require
a much finer grained model of baboon sensing and behaviour,
and a greater time resolution of the model.
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Abstract
Most primate societies are characterised by hier-
archical dominance structures. Males are usually
dominant over females, but in periods of sexual
attraction (during females period of tumescence)
male ‘tolerance’ towards females rises. (Hemel-
rijk, 2002) shows in a model that this ‘tolerance’
is created as a side effect due to the rise of female
dominance during periods of sexual attraction. This
rise is in turn the consequence of the more frequent
approaches of males towards females during these
periods. In Hemelrijk’s model the males gain no
benefit from ‘tolerating’ females and they only do
so at high aggression levels as a kind of ‘respect-
ful timidity’, because some of the females have be-
come dominant over them.
This paper replicates and examines the results of
Hemelrijk’s study. We have found that some of
Hemelrijk’s results are highly reliant on aspects of
the model that are not well supported by the current
primate literature. We analyse the mechanisms un-
derlying her results, and suggest data that should
be sought from observation logs of real primate
colonies that would support or overturn the model.

1 Introduction
In this paper, we examine the best-established AI model of
primate social systems, Hemelrijk’s DomWorld (Hemelrijk,
1999b,a, 2000, 2002). Hemelrijk models a large amount of
primate behaviour using an incredibly simple model of social
interactions based on spatial locations. In this paper, we repli-
cate DomWorld, which allows us to examine the mechanisms
underlying the system. We pay particular attention to the re-
sults from Hemelrijk (2002), the explanation of the increase
of male tolerance experienced by females when they are sex-
ually receptive (in tumescence). This particular experiment,
situated in a wider model of differences between species in
classifications of primate social structures, gives us a great
deal of insight into the validity of Hemelrijk’s approach.
We begin this paper by describing the primate social data

to be explained and then by reviewing Hemelrijk’s contribu-
tions. We then present our replication and our initial insights

into the working of the DomWorld mechanisms. Finally, we
discuss the validity of the model and propose specific data to
look for that will either support or undermine the DomWorld
model.

2 Background
Most primate species are highly social. They live in struc-
tured societies which can be characterised as having more or
less steep dominance hierarchies. A steep hierarchy is one
in which individuals would never consider violating rank, for
example a lower-ranked individual would not take any food
in the presence of a higher ranked individual. In a more shal-
low hierarchy, dominant animals show greater tolerance of
subordinate behaviour, and considerations of rank plays less
of a role in ordinary action selection. The difference between
these social structures have been most studied in macaque so-
cieties (see for a recent review Thierry et al., 2004). Societies
characterised by steep hierarchies are often referred to collo-
quially as despotic, while those with the less rigid dominance
structures are called egalitarian. When a dominant animal al-
lows subordinate animals to take advantage of resources in its
presence, the dominant animal is said to be expressing toler-
ance.
Tolerance is considered one of the most basic forms of con-

flict resolution (de Waal and Luttrell, 1989). It might be diffi-
cult to see tolerance as an action to be selected, since it seems
more like a form of inaction. However, if an agent is very
inclined to preserve resources (including its own social rank),
then expressing tolerance can require considerable inhibition
of strong inclinations. In some species, for example, this is
achieved by the apparently deliberate averting of gaze or even
moving away from a resource in order to avoid witnessing a
desired event, such as allowing a juvenile throwing a tantrum
to feed. This shift in visual attention is necessary if witness-
ing such an event would automatically trigger an emotional /
species-typical response that would in turn prevent the com-
pletion of the feeding.
The structure of a primate society is also correlated with a

number of other characteristics (de Waal and Luttrell, 1989;
Thierry, 2000; Hemelrijk, 2002). Societies that are more
despotic also tend to have more violent or aggressive inter-
actions. On the other hand, their tend to be fewer conflicts
than in egalitarian societies. In egalitarian societies, there are
more frequent conflict interactions, but many of these involve
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no injury or violent dispute. They may for example involve
only hissing or snatching.
In most primate hierarchies males are usually dominant

over females, due to their greater size, strength and aggres-
sion. However, during the female sexually attractive period of
tumescence, chimpanzee males, for instance, allow females
priority in food access (Yerkes, 1940). This has been ex-
plained as a probably cognitive strategy — an exchange for
copulation — which is adaptive in that it also therefore pro-
duces offspring (Goodall, 1986; de Waal and Luttrell, 1989;
Stanford, 1996).
Hemelrijk and her colleagues have proposed a cognitively-

minimalist explanation of this change in behaviour. Hemel-
rijk claims that there is no statistical evidence for such ex-
changes for food (Hemelrijk et al., 1992), neither is there
any increase in related offspring (Hemelrijk et al., 1999).
Hemelrijk (2002) demonstrates a model where such a change
in dominance occurs in despotic societies even without any
benefit for the males, but as a simple consequence of the
higher frequency of dominance interactions between the
sexes brought on by the male’s attraction to the females.
Hemelrijk claims that in her models, under the condition

of high aggression intensities, males show tolerance towards
females. Her evidence of tolerance is that, in her model, in
times of sexual attraction, females may achieve ranks higher
than males, while in other times they do not. Females are
modelled as initially 50% weaker than males, and are per-
sistently 20% less aggressive, which explains why this such
outcomes are improbable in general. However, once an ani-
mal achieves a higher rank, their power is assumed (in these
models) to also increase.
Hemelrijk explains her findings as a side effect of the

higher frequency with which males approach the females.
Normally, animals tend to avoid invading each other’s ‘per-
sonal space’ and triggering a conflict unless they are of a
higher rank than the animal they are approaching. However,
in times of sexual attraction, Hemelrijk’s males ignore rank
in approaching females. Further, in Hemelrijk’s model, the
outcome of a dominance interaction is highly influenced by
the extent to which it was unexpected. Thus if a very low
ranking female happens to win a competition (which there is
always a small chance of success — the probability being in-
versely proportional to the discrepancy in rank) then she will
suddenly achieve a much higher rank.
Consequently, the opportunity for a low ranking female to

win an interaction will rise as more males approach her. Thus
she could become more dominant then some of the males,
who will nonetheless continue approaching her, consequently
likely increasing her rank as they fail in their subsequent dom-
inance disputes. Therefor this ‘tolerance’ is more a ’respect-
ful timidity’ towards higher ranking females. The males will
approach but not attack simply because she has a higher rank.
Thus a behaviour typically described as complex or even

cognitive could, according to Hemelrijk’s model, arise with-
out any corresponding cognition. This change could be intro-
duced to the species through a single exogenous factor, such
as the availability of food resources, if this leads to an in-
crease in aggression. This higher aggression then leads to a
more despotic society in which in the periods of sexual at-

traction the dominance of the females rises as shown in the
model and explained above.
Many researchers have expressed skepticism about Hemel-

rijk’s work because of her anti-cognitivist stance. People who
work closely with apes feel that it is ‘obvious’ that the ani-
mals have some cognitive capacity, or at least that when hu-
mans express very similar behaviour, they subsequently re-
port having cognitive state.
Because we were curious about Hemelrijk’s model and

wished to understand it better, and because no version of
DomWorld is freely available online, we have replicated
Hemelrijk’s work. In so doing we were able to examine the
assumptions behind the model, and find out what aspects of
the model were critical to its success in replicating primate
behaviour.

3 Methods
Hemelrijk’s model consists of a small troop of chimpanzees
living near each other and occasionally having aggressive in-
teractions, which result in shifts in dominance rank. After
the model has run for a while quantitative descriptions of the
agents’ relationships are taken, such as the steepness of the
dominance ranking hierarchy or the average centrality of an
agent within its troop. These measurements are then com-
pared to measurements made of real chimpanzees in natural
situations to judge the quality of the model as a hypothesis of
their behaviour.

3.1 The Model World
Our simulation was based on the model described by Hemel-
rijk (2002). She wrote her version in Object-Pascal and Bor-
land Pascal 7.0. We used NetLogo 2.1, because, as a purpose-
built modelling tool, it provides a relatively easy high-level
language for quickly constructing models and visualising re-
sults. The world in which the agents interact is wrapped
around on all sides and therefore resembles the geometrical
structure of a torus. This is to avoid border effects and en-
able the agents to move in every direction. As described by
Hemelrijk this space is of a size 200 x 200 units. It is a con-
tinuous space — agents have real-valued locations and can
move in any of 360 directions. When an experiment starts,
the agents set initially at random locations within a 30 x 30
parcel of this space. Each agent has a forward vision angle of
120 degrees (that is, it ‘sees’ or attends to agents that are 60
degrees to either side of its direction of forward motion), and
a maximum perception range (MaxView) of 50 units. Con-
sequently, at the beginning of the simulation, each agent will
need to do no more than turn around to see all the other agents
in the simulation. The visual limits restrict the amount of
things that the agent is likely to attend to at any particular
time.
Agent motion and social interaction is determined by a

number of additional threshold parameters:
• a near-perception range, NearView of 24 units. Agents
feel comfortable so long as they see some other agent
within this range. If they do not, but they do see an
agent (that is, one is within MaxView) then they will
go towards that agent.
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• a personal space parameter, PerSpace, of 2 units. Agents
within this range of each other will have a dominance
interaction.

• a search angle of 90 degrees. Agents rotate this amount
if they can see no one within their MaxView.

• a waiting period. After an moves around or engages in
a dominance interaction, it is assigned a random waiting
time before it performs its next action.

The waiting period simulates foraging or resting in the wild
— constant dominance interactions are not only unnatural but
also make the troop so chaotic that spatial measurements of
troop coherence and rank have no meaning. The waiting pe-
riod is abbreviated when the agent observed a dominance in-
teraction within its NearView. This is in accordance to obser-
vations in real animals, since in primate groups nearby fights
are likely to trigger active behaviour in individuals (Galef,
1988).
In our experience, the model does not appear overly sen-

sitive to most of the parameter values, although at the same
time none of them can be eliminated and still maintain the
action-selection model. However, the mode is particularly
sensitive to the organisation of the waiting period. This is
because many dominance interactions wouldn’t happen if the
relatively subordinate animal were able to avoid the relatively
dominant one, but because only one animal tends to be mov-
ing at a time, the dominant one can invade the personal space
of the subordinate.
In the simulations dealing with the impact of female tumes-

cence on their dominance ranking there is one additional pa-
rameter attraction which is either on, indicating that all the
females are tumescent, or off, indicating that none of them
are.

3.2 The Interaction Structure
The interactions in the model are classified into two groups,
one class consists of grouping interactions the other of dom-
inance interactions. These two classes resemble the two
forces which in nature on one hand drive groups apart and
on the other hold them together in order to stabilise them (c.f.
Reynolds, 1987).
For the grouping interactions Hemelrijk gives a set of four

rules:
1. An agent which observes another agent within its per-
sonal space may perform a dominance interaction, de-
pending on its own rank and the rank of the other agent.
For such an interaction, first the nearest potential oppo-
nent is chosen. After an interaction, the winning agent
moves one unit towards its opponent, while the loser
turns around 180 degrees, plus or minus an angle drawn
randomly from 45 degrees, then moves two units away.

2. If the agent detects nobody in its personal space, but can
see other agents within its NearView, then — in trials
without attraction — it moves one unit forward on its
present course. In the attraction condition, if a Virtual-
Male can see a VirtualFemale, they will change their di-
rection towards the nearest visible VirtualFemales and
then move one unit forward.

3. If the agent detects no other agents within NearView,
but there are agents within its MaxView range, then it
changes direction toward the nearest one and moves one
unit towards it.

4. If there are no other agents within MaxView, the agent
turns in a search angle of 90 degrees at random to the
right or left.

The dynamics of the simulation are such that, for any agent,
there will always be at least one agent still in MaxView in
some direction. Occasionally the troop splits, but the agents
always reunites shortly. Given the rate of motion of the troop,
the maximum duration of the waiting period, and the large
difference between MaxView and NearView, no single indi-
vidual can become “lost” from the troop.
In nature, dominance interactions between primates are

characterised by the competition for resources such as food
or potential mates. In order to gain stable access to such
resources the different individuals within a group try to es-
tablish a rank in hierarchy that is as high as possible. This
is achieved by constant interaction, which Hemelrijk calls in
her paper a ”long-term ‘power’ struggle.” In the model there
are no resources specified and the only trigger for interac-
tions is spatial distance. The agents start ‘fighting’ when an-
other agent is within their personal distance and the rank of
the other is lower or equal to their own rank. The agent ‘esti-
mates’ its chances to win, and if its chances seem good, then
it engages in the competition (see below.)
Since the dominance values within each sex is equal at the

beginning of a simulation, the outcome of every single inter-
action influences the chances of winning the next one. Such a
system is self-reinforcing and has been shown empirically in
many animal species (Hemelrijk, 2000).
The formula for determining the outcome of a dominance

interaction was modelled after Hogeweg (1988) and Hemel-
rijk (1999b). Each agent has a certain dominance value,
which is readjusted after every ‘fight’ the agent gets involved
in. We called this value Dom according to Hemelrijk’s nota-
tion. This variable is correlated both to the agent’s rank and
its ability to win an interaction. If one agent finds another
agent in its PerSpace, it compares its own Dom-value with
the Dom-value of the other. If its own value is higher or equal
to the other it ‘estimates’ it has good chances to win and will
therefore interact. The outcome of the interaction is calcu-
lated it with the following formula (from Hemelrijk, 2002, p.
734)

wi =

2

4
1 Domi

Domi+Domj
> Random(0, 1)

0 else

(1)

Where Random(0,1) produces a random real value between 0
and 1.
In this calculation, wi is the value which determines

whether agent i has lost or won. Here 1 means victory and
0 defeat. The relative dominance value is compared with a
randomly drawn number between 0 and 1. If if is greater then
the drawn number, the agent wins. This means that higher
an agent’s rank is relative to its opponent, the more likely the
agent is to win.
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After a dominance interaction, the dominance values of
both agents are adjusted according to the outcome, using
roughly the same information.

Domi = Domi +
µ

wi −
Domi

Domi + Domj

∂
∗ StepDom (2)

Domj = Domj +
µ

wi −
Domi

Domi + Domj

∂
∗ StepDom

The only exception to the above equations is that the lowest
possible Dom-value is set to 0.01 in order to keep the Dom-
values positive.
Hemelrijk calls this system for determining dominance val-

ues a damped positive feedback system, since in the case of
winning the dominance value of the higher ranking agent
goes up only slightly, but if the lower ranked agent wins its
dominance value undergoes a great change. This is intended
to reflect the fact that it is very unlikely for a low ranking in-
dividual to win an interaction with a high ranking one. Thus
ranking is not changed much by an expected outcome, but it
changes greatly for an unexpected one.
The amount of rank shift is also affected by another value

StepDom. This value Hemelrijk uses to represent the inten-
sity of the ‘aggression’ (or violence) of the interaction, which
she hypothesises also correlates to the impact the interaction
has on ranking. She uses a high StepDom value to repre-
sent the level of aggression in ‘despotic’ species, and a low
StepDom value to represent the level in egalitarian ones. Val-
ues for StepDom can vary from 0 to 1 but are held constant
within any give simulation, since they are considered to be
determined by species. Although Hemelrijk calls this value
‘aggression’, notice that it has no direct impact on the prob-
ability or outcome of an interaction (see Eq. 1). Rather, it’s
impact is only indirect through its long-term impact on the
dominance values which do determine both whether and how
well an agent fights.
Another important element for correlating Hemelrijk’s

models to the real world is understanding her coefficient of
variation of dominance values. This coefficient indicates the
average variation between dominance ranks of the individuals
in the troop. Hemelrijk interprets this coefficient as an indi-
cation of how ‘despotic’ or egalitarian a society is. Her hy-
pothesis is essentially that there isn’t a qualitative difference
in how monkeys in an egalitarian society treat their superi-
ors vs. how those in a despotic one do, but rather that every
agent will show an equal amount of respect for a troop-mate
with twice its dominance value. Thus Hemelrijk represents a
despotic society as one with an unambiguous / ‘steep’ domi-
nance hierarchy, with a great difference in rank between indi-
viduals, and an egalitarian one as having relatively ambiguous
rankings.

3.3 Experimental Set-Up
For our attempted replications, we used the parameter settings
Hemelrijk uses in several studies (Hemelrijk, 1999a, 2000).
We used 8 agents in a troop, four of each sex (N = 8).
As explained earlier, each agent had an personal space of 2
(PerSpace = 2), a vision angle of 120 degrees, an maxi-
mum perception range of 50 units (MaxV iew = 50) and

Figure 1: Total number of female interactions in different
conditions. aggrhigh+attr = high aggression + attraction;
aggrhigh = aggression high + no attraction; agglow+low =
aggression low + attraction; aggrlow = aggression low + no
attraction.

near-perception range of 24 units (NearV iew = 24). The
search angle was 90 degrees, the fleeing distance was 2 units
(fleeD = 2), the fleeing angle was 45 degrees at random di-
rection away from the opponent and the chasing distance was
1 unit (chased = 1) in the direction of the opponent.
To resemble the difference in physical strength between

males and females both sexes started out with different win-
ning or loosing tendencies — that is the DomValues of fe-
males were half that of males (virtual females = 8,
virtual males = 16). Also, females have only 80% of
the aggression intensity (StepDom) of males. The experiment
was conducted with 4 different conditions. We used two level
of aggression to correlate with the two types of social interac-
tions witnessed in different primate species. In the high level
the StepDom value of males was 1 and of females 0.8, in the
low aggression level the StepDom value of males was 0.1 and
of females 0.08. These two aggression conditions were each
run under two conditions of sexual attraction (either turned
on or off) 10 times each, resulting in a total number of 40
runs. Each run was 42800 time units long.

4 Results
Our results match Hemelrijk’s results to the extent that we
used the same analysis, which we largely did in order to test
the replication. The first figure shows a comparison between
the number of interactions performed by virtual females dur-
ing the different conditions. In the graph the total number
of aggressive interactions initiated by virtual females is com-
pared for all four different conditions used in the experiment.
In Figure 1 we can see that the number of virtual fe-

male dominance interactions increases significantly in con-
ditions with sexual attraction in both intensities of aggression
(Mann-Whitney, N = 10, U = 0, p < .001, two-tailed, Mann-
Whitney, N = 10, U = 0, p < .001, two-tailed). That means
females are involved in considerably more interactions when
they are attractive. The aggression level amplifies the re-
sult, even though this effect for the aggression is rather weak
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Figure 2: The dominance of virtual females as the sum of the
number of males ranked below each female at different times
in different conditions.

(Mann-Whitney U-Test, N = 10, U = 24 p< .049, two-tailed).
Figure 2 shows the dominance of virtual females as the sum

of the number of males ranked below each female at differ-
ent times in different conditions. We can see that, as reported
in Hemelrijk, the female dominance in conditions with high
aggression level increase over the time, but that they stay con-
stant in conditions with a low aggression level.

Figure 3: Distribution of the coefficient of variation of domi-
nance values in different conditions for both sexes.

Figure 3 is the classic Hemelrijk result. It shows the distri-
bution of the coefficient of variation of dominance values for
both sexes (see discussion in previous section.) If the aggres-
sion is high, there will be a steeper hierarchy— the difference
between rank values will be larger. This is true both within

and between sexes. Attraction amplifies this result, despite
the fact that some females may outrank some males in this
condition.
The last two figures show the change of dominance values

for both sexes in conditions with high and with low levels of
aggression. With high aggression a constant change in the
dominance structure is noticeable greater and greater differ-
entiation / steepness in the hierarchy. With low aggression
there is only very little change in the dominance values. This
creates a very stable hierarchy where the females never gain
a higher positions in the group.
The conclusion of these results is, that only in groups with

a high level of aggression females are able to gain higher po-
sitions in the social hierarchy. The attraction amplifies this
effect, but plays a secondary role.

5 Discussion
Our results show the same structure as the results in the origi-
nal study by (Hemelrijk, 2002) Figure 3A, p. 739 Figures 4A
B C, p. 741) and can therefor be seen as a replication. In
general, the diversity of different dominance values between
individuals increases if there is a high aggression level exist-
ing within the population. In conditions with low aggression
levels this effect does not appear, even though the results in
this model show that the increase of interactions between vir-
tual females and virtual males depends not on the increased
level of aggression but on the existence of female attraction.
In this first result, we can see that the level of aggression has
no (or at best only very little) influence on the number of in-
teractions between the individuals, yet in both conditions with
female attraction the increase of interactions is significant.
The most interesting effect is the change in dominance val-

ues towards more dominant females and as a possible conse-
quence a change in group structure. This connection between
higher interaction frequency and the dominance value change
Hemelrijk claims in her article (p. 742) could be a simple ex-
planation for the observed natural phenomenon of male tol-
erance towards females in their period of sexual attractive-
ness. Given our understanding of Hemelrijk’s model derived
from our replication, we will now examine these claims more
closely.
One of the strengths of agent-based modelling (ABM) is

its ability to demonstrate whether theories of the origin of be-
haviour can be explained by a given model of how an agent
selects its actions. In particular, as with the rest of science,
there is an emphasis in ABM on looking for the simplest pos-
sible explanation that fits the data. We look for the origins
of complex behavioural patterns on a social level as emergent
from simple behaviour in the individual.
We need to realize though, that this is not only a following

of the principle of parsimony for reasons of the philosophy of
science. It may also be a case of looking for our keys under
the light of the street lamp rather than over in the dark where
we lost them. Complex individual behaviour is difficult to
program, takes a long time to execute in simulation, and then
is difficult to analyse. So we may have a strong bias towards
looking for overly simple solutions. Thus while on the one
hand we need to be open-minded and be sure to understand
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(a) High Level Aggression

(b) Low Level Aggression

Figure 4: Distribution of dominance values at a high level and
at a low level of aggression. In both conditions, the males
start off initially higher than the females.

correlations where we find them, on the other hand we cannot
allow our biases to blind us to a situation where data may not
fit the predictions of our model. Guarding against this bias is
just as important as guarding against its opposite, the overly-
cognitive explanations.
The Hemelrijk model we have replicated seems to be a

good analogue system for macaque behaviour. Her Dom-
World model shows that apparently complex behaviours in
primate societies like ‘male tolerance’ or ‘female assertive-
ness’ can be created in computer-generated primate societies
with only a few simple assumptions about individual be-
haviours. The effect of female dominance appears for exam-
ple in the conditions with high aggression and is consolidated
by a high level of attractiveness in the females. Hemelrijk
notes the difference between this and the classical explana-
tions for this phenomenon, which propose exchanges involv-
ing food for sexual opportunities (Goodall, 1986). Hemel-
rijk’s model does not include any food or sex, yet still leads
to analogous results.
Now that we have a working model, we can try to under-

stand exactly where and how these phenomena ‘emerge’. We
can now analyse what the critical factors of the model are,
and look for biological correlates that would either prove or
disprove the model.
The effect of the model is based on two major assumptions:
1. the self-reinforcing effect of domination, and
2. the fact that females attract males in their time of tumes-
cence, but that males are not attractive to females.

The first assumption relates to the fact that the dominance
value DOM of an individual i (operationalised as the abil-
ity to win a fight) increases with a victory and decreases with
a defeat. Although this self-reinforcement is a well-known
phenomena that has been studied extensively in laboratory
animals such as mice, we are somewhat skeptical of the ex-
act extent to which this model depends on these factors. In
Hemelrijk’s model, the strength of the effect is determined
by the dominance ranking of the opponent, the ‘level of ag-
gression’ (that is, the step-value assigned to this species) and
chance. The result of a fight is calculated with Equation 1
repeated here:

wi =

2

4
1 Domi

Domi+Domj
> Random(0, 1)

0 else

(3)

Again as a reminder, the dominance level after a fight is cal-
culated with Equation 2:

Domi = Domi +
µ

wi −
Domi

Domi + Domj

∂
∗ StepDom

Domj = Domj +
µ

wi −
Domi

Domi + Domj

∂
∗ StepDom

As we emphasised earlier, Hemelrijk has defined the fac-
tor StepDom to mean aggression. An individual therefore
increases its ability to win a fight (its dominance) most, if
it wins against an individual with a preferably much higher
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dominance level and if the aggression level in the group is
high.
The aggression is therefor the crucial value which decides

within the system how far an individual can go up or fall down
in the hierarchy as the result of a single fight. This is largely
the basis of the reinforcement effect of domination, but to
what extent does this effect exist in nature? Hemelrijk’s text
only mentions observations on bumblebees and other com-
putational models as examples (p. 743 f). Thinking about it
in a intuitive way it might be plausible, that self-confidence
about winning a fight increases, if one wins against someone
much stronger. Further, we know that even in adult mam-
mals, growth hormones can be triggered by success in social
competitions. Nevertheless in a real fight the body size and
strength is at least as important as the psychological status of
the individual.
To test the validity of Hemelrijk’s model, we need to use

the documented history of dominance hierarchies in real an-
imals. We would need to look carefully at the relatively rare
events where a lower-ranked animal bested a higher ranking
animal, and see what the impact is on the troops dominance
structure before and after. We should look in particular for
the following factors:
• If one agent defeats another that vastly outranks it in a
dominance interaction, do the two agents immediately
change ranks within the troop? In other words, is an
unexpected outcome from a fight likely to have a very
significant effect? If this is true, it would validate the
use of relative dominance values in Equation 2.

• In comparing across species, does it take fewer interac-
tions to advance rank in a ‘despotic’ species? If this is
true, then it would justify the use of StepDom in Equa-
tion 2.

• Within species, if a fight is more violent (e.g. if blood
is drawn compared to mild beating, or if there is mild
beating compared to a non-physical interaction) does it
have more impact on dominance hierarchy? If this is so,
then it makes sense to refer to StepDom as ‘aggression’
and it would further validate it’s use in Equation 2.

• Are females more likely to engage in fights when they
are in tumescent? If not then this model cannot account
for their increased dominance.

• Do females only become dominant during their tumes-
cence in ‘despotic’ species? Given that the prime in-
dication in Hemelrijk’s model of increased dominance
for the females is the males’ increased tolerance of
them, discriminating an increase of rank in an egalitarian
species may be difficult, since these species are defini-
tionally tolerant towards all group members. But it is a
predicition of the model.

• Is it true that when an animal in an egalitarian species
is clearly outranked by another animal, that those two
animals’ interactions will be similar to two more nearly
ranked animals in a less egalitarian species? Or is there
a qualitative difference in how different species behave
with respect to dominance hierarchies? The answer to
this question will serve to validate whether steepness

of the dominance hierarchy is a good representation of
despotism / egalitarianism.

Of course, this is complicated by the fact that establishing a
dominance hierarchy is never easy — it’s not clear that ev-
ery animal will agree on the current hierarchy, and indeed
some animals will behave differently with respect to oth-
ers depending on what other animals are present (Harcourt,
1992). However, many groups work diligently to attempt to
establish these sorts of records, so we can hope to test these
predictions.
We need to also look critically at the second basic assump-

tion, the idea that the female primates attract male primate
in their fertile days. This is obviously true, but sexual at-
traction is bidirectional and therefor influences the grouping
behaviour of females as well. Of course, it is possible that
the male attraction is strong enough to overwhelm the data,
or even that just putting high male attraction is a good ap-
proximation for mutual attraction. However, the question re-
mains as to whether the mechanism exploited by the model
— increased conflict leading to a higher probability of an oc-
casional lucky win by the female that immediately catapults
her high into the dominance hierarchy — is at all plausible.

6 Conclusions
We have presented a replication of Hemelrijk (2002) and an
analysis of how her model works. We have also presented a
critical list of suggestions for testing the validity of the mech-
anism. We suspect that the rules for determining dominance
from the outcome of dominance battles are not sufficiently
realistic and cannot fully explain the change in female domi-
nance rank on their own. If we are right, then this model may
need additional factors to explain this phenomena, possibly
including cognitive state sufficient for the traditional theories
of reciprocation.
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Abstract 
Action selection is a problem that is faced not 
only by individual organisms, but also by col-
lectives of organisms. Colonies of social in-
sects are highly integrated units that frequently 
perform optimal collective action selection in 
a decentralised manner. Social insect colonies 
provide very accessible model systems for 
studying the mechanisms underlying such ac-
tion selection processes. This paper discusses 
models of two action selection mechanisms in 
insect colonies, and speculates as to the poten-
tial for comparing action selection in such 
colonies to action selection in individuals. 

1 Introduction 
Action selection by individual organisms is a well studied 
problem. However, groups of organisms must also fre-
quently perform action selection. The action selection prob-
lem becomes acute for highly integrated units such as colo-
nies of social insects, where consensus during collective 
action selection is critical for the continued survival of the 
colony. What makes the action selection problem hard for 
insect colonies is their decentralised nature. While colonies 
of ants or honeybees do typically have a queen, these are 
only nominally in charge of the colony’s fate. Certainly 
there is no individual within the colony, whether the queen 
or another, who takes the crucial decisions on the colony’s 
behalf and issues instructions for their implementation. In-
stead, the colony has a rather flat management-hierarchy, 
and decisions are reached in a decentralised manner via lo-
cal interactions between colony members. As social insect 
colonies are very amenable to experimental manipulation 
and observation, far more so than primate brains for exam-
ple, they provide excellent model systems to study how col-
lective decision making can be realised. In this paper we 
describe two such systems, and models that have been con-
structed to explain their behaviour. Furthermore, similarities 
between insect colonies and populations of neurons suggest 
that lessons learned from the study of group decision mak-
ing in social insects may also be applicable to individual 
decision making, and vice versa. 

2 Nest Site Selection by Temnothorax albi-
pennis 

Colonies of the ant Temnothorax albipennis (formerly Lep-
tothorax albipennis) need periodically to emigrate from 
their current nest site to a new one. Two typical reasons for 
such emigrations are that either the original nest site has 
been rendered uninhabitable, perhaps being destroyed by a 
larger animal, or the colony’s numbers have grown such that 
the current nest site is no longer large enough. During emi-
gration it is normally very important that the colony avoids 
being split between two or more nest sites; the colony is so 
tightly integrated that the queen, all other adult ants, and all 
brood items need to be in the same nest site to ensure the 
colony’s survival. The details of this emigration process 
have been elucidated by experimental observation (Mallon 
et al., 2001, Pratt et al., 2002, Franks et al., 2003, Dornhaus 
et al., 2004). When an emigration begins, scout ants from 
the colony leave the original nest site and search for poten-
tial new nest sites in the vicinity. On finding a potential site, 
a scout will assess several criteria, such as internal area 
(Mallon & Franks, 2000), structural integrity, darkness, etc., 
and integrate these different criteria into a single quality 
measurement (Franks et al., 2003a). This measure translates 
into a time delay before recruitment that is inversely propor-
tional to the perceived quality of the site. After delaying, the 
scout will recruit other scouts to assess the same site and in 
turn recruit others, thus providing a kind of multiple “sec-
ond opinion”. When a scout recruits to a potential site, she 
initially recruits via a slow process known as “tandem run-
ning”, in which the scout leads another ant to the site, main-
taining physical contact throughout. However, if a scout 
enters a potential site and discovers that it contains a suffi-
cient number of ants from the same colony, she will change 
her subsequent recruitment mode to a process known as 
“social carrying”. Social carrying involves the scout picking 
up another passive ant or brood item and carrying it; social 
carrying is approximately three times faster than tandem-
running (Pratt et al., 2002). The number of nest mates that 
must be in a potential site to trigger social carrying is known 
as the “quorum threshold”. The quorum threshold is a key 
control device in the colony’s decision-making process, 
allowing the colony to achieve slow but accurate decisions, 
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or fast but inaccurate decisions, by having a high or low 
quorum threshold respectively (Franks et al., 2003b). Low 
quorum thresholds mean that scouts begin social-carrying 
earlier, leading to more individualistic decision-making, 
while high thresholds mean that scouts take longer to begin 
social carrying, allowing them to recruit many other scouts 
to give their verdict on a site’s quality. Colonies respond 
adaptively to the urgency of their emigration by varying the 
quorum threshold appropriately. Colonies use low quorum 
thresholds and hence fast, inaccurate decisions when their 
original nest has been destroyed, or they find themselves in 
a harsh environment. However colonies use high quorum 
thresholds to achieve slower, more accurate decisions when 
there is no urgency, for example when the original nest site 
is intact and they are simply searching for a superior nest 
site (Dornhaus et al., 2004). 
A simple ordinary differential equation (ODE) model, for-
mulated by Pratt et al. (2002), is able to recreate this de-
pendence of speed and accuracy of decision making on quo-
rum threshold (figure 1). 

Figure 1. Output from a mathematical model of house-hunting in 
T. albipennis parameterised to replicate their speed-accuracy trade-
off. The graph shows the decision time (time until the original nest 
site is empty in minutes) and accuracy (items ending up at site 2, 
out of 208 total) achieved with different quorum thresholds (results 
from the model presented in Pratt et al. (2002), figure reproduced 
from Marshall et al. (2005)). 
 
Subsequent work by Pratt et al. (2005) resulted in a more 
realistic individual-based model, extensively validated 
against data from biological experiments, hence demonstrat-
ing the sufficiency of individual-based rules to achieve the 
collective behaviour observed in T. albipennis. 
However, Marshall et al. (2005) revealed this original result 
to be an artefact of a very low rate of switching between 
alternative nest sites. Ant scouts are observed to be able to 
change the target of their assessment or recruitment efforts, 
if they discover an alternative site during an emigration. A 
fundamental assumption of the Pratt et al. ODE model was 
that such switching was unidirectional, from inferior to su-
perior choice, based on experimental observations that ant 
scouts visiting both alternative nest sites subsequently con-
fine their recruitment to the superior of the two. Marshall et 
al. noted that increasing this switching rate thus collapsed a 

two solution decision problem to a single solution decision 
problem, and even with a moderate increase in the switching 
rate the colony could achieve a completely accurate decision 
using the minimum quorum size, with no corresponding 
increase in decision time (figure 2). Marshall et al. con-
structed a similar individual-based model to Pratt et al. 
(2005), adding a variable time cost for nest site assessment, 
and a variable degree of noise, and found that both of these 
mitigated the benefits of increased preference switching 
rate. The conclusion of this investigation was thus that the 
time cost and noise that real colonies of T. albipennis ex-
perience when assessing nest sites probably mean that their 
switching rate is Pareto-optimal; increasing switching rate 
might improve accuracy but only at the cost of speed (Mar-
shall et al., 2005). 

Figure 2. Output from the same mathematical model (Pratt et al., 
2002) with the same parameters used to generate figure 1, but with 
the switching rate, 12, from the inferior to superior nest site in-
creased from 0.008 to 0.06. The result of this change is that the 
speed-accuracy trade-off observed in figure 1 disappears; minimal 
quorum size leads to perfectly accurate decisions without any cor-
responding increase in decision time, and decision time becomes 
less influenced by quorum threshold used (figure reproduced from 
Marshall et al., 2005). 

3 Navigation During Swarming by Apis mel-
lifera 

During emigration, colonies of the honeybee Apis mellifera 
search for potential new nest sites in a similar way to T. 
albipennis. Scouts leave the hive, discover potential new 
nest sites, then return to the hive and advertise their location 
via the waggle-dance (von Frisch, 1967). Other scouts thus 
acquire information about the location of alternative nest 
sites, then go and evaluate them. Over time, scouts progres-
sively cease dancing for nest sites, until there is only one 
nest site being advertised in the hive and a consensus is 
reached (Seeley, 2003). However, the recruitment method of 
A. mellifera poses a problem for implementation of the se-
lected action. Unlike T. albipennis, where a population of 
transporters is built up who can transport passive nestmates 
and brood items to the new nest site, members of the honey-
bee colony must make it to the new site under their own 
power. Once consensus is reached, the colony swarms, and 
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must fly as a whole to the selected new nest site. Again, as 
with T. albipennis, the colony is so well integrated function-
ally that the colony’s survival depends, in large part, on its 
ability to maintain cohesion and avoid being split between 
two or more nest sites. Thus, the problem is this: only a very 
small proportion of the colony have been actively scouting, 
and so know the way to the nest site, yet this minority of 
informed individuals must guide the entire colony there. 
While the existence of this behaviour is well known, the 
precise mechanisms underlying it have for some time been 
the domain of speculation only. Couzin et al. (2005) have 
now investigated a model of collective action selection dur-
ing navigation, applicable to A. mellifera, with interesting 
results. Specifically, Couzin et al. found that a small minor-
ity of informed individuals within the group could lead the 
entire group in the appropriate direction, without any indi-
vidual knowledge about: which other individuals are in-
formed, whether there are any other informed individuals at 
all, and whether there are other informed individuals with a 
different target. Couzin et al. found that for a group size of 
200 (much smaller than a typical honeybee colony) only 5% 
of the population need be informed, and also found that the 
size of this required minority decreased as group size in-
creased. Thus Couzin et al’s model explains how simple 
individual rules might allow a very small proportion of hon-
eybee scouts to guide the entire swarm to their preferred 
nest site. 

4 Prospects for Comparison of Collective and 
Individual Action Selection 

A student of the collective action selection mechanisms em-
ployed by insect colonies might, at first, believe that they 
are entirely distinct from the mechanisms used by individu-
als. However, on further inspection there are intriguing 
similarities between the two. Collective action selection in 
an insect colony arises from the interactions between sub-
populations of individual insects; in the same way, individ-
ual action selection in the brain arises from the interactions 
between sub-populations of neurons. Additionally, features 
of individual action selection, such as exploitation of speed-
accuracy trade-offs (Edwards, 1965), can also be seen in 
some collective action selection mechanisms (Franks et al., 
2003a). Some details may differ; for example, whereas a 
brain performing an action selection task such as saccading 
simultaneously integrates sensory information from a vari-
ety of sources, an insect colony must implement a sampling 
strategy to acquire information. Thus the insect colonies’ 
action selection problem is actually more closely related to a 
bandit problem (Marshall et al., 2005). Nevertheless, there 
remains the tantalising prospect that similar mechanisms 
may underlie both collective and individual action selection. 
Thus, lessons learned from collective action selection may 
inform understanding of individual action selection, and 
vice versa. 
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Abstract
[Creel, 1997] in a study of african hunting dogs
suggested that, where the maximisation of net en-
ergy gain from hunting requires cooperation, co-
operative hunting becomes an important part of
the sociality of the hunting dogs. When consider-
ing Lion cooperative hunting [Scheel and Packer,
1991] suggested, in contrast, that Lions do not form
groups to increase the intake of food for the group
but for the individual, implying that cooperative be-
haviour in hunting has very little impact on the for-
mation of prides. In using simulation to investigate
the role of visual location in the group hunting be-
haviour of Lions it is shown that a minimal com-
munication simulation can be derived if the domi-
nance of pride members is taken into account. We
conclude that agreed dominance permits the reduc-
tion of visual cues required to coordinate complex
cooperative simulated behaviour.

1 Introduction
Cross-disciplinary engagement between behavioural biology
and computer science has generated valuable insights and
new directions for both biological and computer science re-
search [Boden, 1996], such as in the understanding of flock
formation [Reynolds, 1987] or fish schooling [Tu and Ter-
zopooulos, 1994]. For example in [Zaera et al., 1996] bi-
ologists had proposed several different hypotheses regarding
schooling behaviour, but these presented contradictory opin-
ions about the reasons for schooling behaviour. Artificial life
models of fish behaviour and schooling have provided new
tools with which to evaluate the plausibility of biological hy-
potheses, and have provided computer scientists with valu-
able models of behaviour and control.
Considerable progress has been made in the modelling of

aspects of behaviour in animals with relatively limited cogni-
tive abilities (such as ants, spiders and fish). The modelling of
higher animals is more problematic. With lower animals lim-
ited cognitive capabilities rule out consideration of complex
models. The discovery of a simple mechanism to describe a
behaviour in a higher animal does not rule out the use of a
more complex mechanism by the animal, and the cognitive
capabilities of the animal provide a large search space for

plausible models. Nonetheless, the search for simple mod-
els of complex behaviour in higher animals is important not
only for the Behavioural Biologist but also for the Computer
Scientist. For example, in robotic control it is more likely that
few robots with considerable computing power will be avail-
able. Behavioural algorithms based on the behaviour of tens
or hundreds of simple animals will not necessarily scale down
in useful ways with orders of magnitude fewer robots. In con-
trast, behavioural models derived from the smaller groups of
higher animals may be a better fit.
[McFarland, 1994] distinguishes between ‘eusocial’ and

‘cooperative’ 1 behaviour where the latter is a behaviour se-
lected intentionally by selfish agents to maximise individual
utility in constrast to the former which is innate (genetically
encoded). Whilst many large predators are lone hunters, some
demonstrate selective behaviour – utilising lone hunting in
certain environmental situations and small group cooperative
hunting in others. However, there has been debate over when
seemingly cooperative behaviours can be considered cooper-
ative or are merely an extension of the selfish behaviour of
agents forced by circumstance to be part of a group.
In their study of the hunting behaviour of Serengeti lions,

[Scheel and Packer, 1991] noted that when cooperative be-
haviour does happen it appears more likely to occur in situa-
tions when the prey is larger, more difficult to kill or in long
distance hunts. Using success of the hunt as a criteria, they
suggest that lions do not form groups to increase the intake
of food for the group but for the individual, implying that co-
operative hunting does not exist but rather that opportunistic
hunting is being displayed. The observation that amongst the
lions there are some which take a less active role in hunting,
a behaviour they define “cheating”, is used to support this hy-
pothesis.
From a study of African hunting dogs [Creel, 1996; 1997]

have suggested that cooperative hunting should not be judged
on the success of the hunts, but on the food intake per day
against the energy spent during the hunt. Using this criteria,
[Creel, 1997] was able to show that the packs formed by the
African hunting dogs were optimal for pack sizes of 8 – 11.
They suggest that cooperative hunting plays an important part

1[Cao et al., 1994] defines “cooperative” behaviour as follows: ‘a
[multi-agent] system displays cooperative behaviour if, due to some
underlying mechanism, there is an increase in the total utility of the
system’.
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in the sociality of african hunting dogs. [Creel, 1997] extends
this argument to prides of lions. [Griffin, 1984] suggests that
there must be some form of conscious decision making be-
hind the hunting behaviour of the lions. Although this opin-
ion is largely based upon on a single observation, he argues
that it is difficult to believe that with the success that coop-
erative hunting brings the lions are not at some level aware
of the benefits of planning such attacks. In contrast [Scheel
and Packer, 1991] seem to hold the position that cooperative
hunting has little impact on pride formation. [Schaller, 1972;
Stander, 1991] do not commit to such an opinion. Stander
notes that the question exists, and that the research simply
shows the benefits of cooperative hunting. Schaller is sat-
isfied with a statement of two possible positions, either that
pre-planned cooperative hunting is taking place or that the li-
ons are simply making use of the opportunities afforded by
the presence of other lions.
We have conducted a preliminary investigation of these

claims using a simplified simulation of group predation.
From a review of lions’ group hunting behaviour (see sec-
tion 2) we hypothesised that the use of attraction / repulsion
dynamics would lead to emergent group dynamics that simu-
lates this behaviour. Our results demonstrate that to achieve
the observed behaviour in simulation the addition of a domi-
nance hierarchy between the simulated predators is required.

2 The Predators and their Prey
There are surprisingly few academic sources on the hunt-
ing methods used by lions, but those that are available pro-
vide a useful level of detail. The research available focuses
on two different lion societies; from the Etosha National
Park [Stander, 1991] and from the Serengeti National Park
[Schaller, 1972].

2.1 Prey
Lions from the Etosha National Park were observed to have
hunted and killed 16 different species of prey. Three species
accounted for 83% of the hunting activity . . . springbok, zebra
and wildebeest. The Serengeti lions were mainly observed
hunting warthog, zebra, gazelle wildebeest and buffalo. This
slight difference has an effect on the cooperative behaviour of
the lions at these locations.
There are two primary elements in the relationship between

lions and their prey that affect hunting behaviour – size and
speed. Schaller, in discussing the speed relationship between
a lion and its prey, notes that of all prey only the warthog has
a lower speed than the lion, whilst the buffalo can achieve the
same speed in escape as a lion. Schaller identifies the lion’s
top speed as 48 to 59 km/hr while Thomson’s gazelle average
70 to 80 km/hr and the wildebeest 80 km/hr. Thus, when
hunting the majority of prey, lions cannot rely on speed alone
to achieve their goal. Interestingly, the buffalo does not need
to use speed because a buffalo can cause a large amount of
damage to a lion.
In general the prey’s reaction to the presence of lions is not

one of fear and panic. Schaller observed that the majority of
the time when the lions were not hunting the prey was pre-
pared to keep a reasonable distance from the lions and keep

them under observation. The response to being attacked by a
lion is for the herd to simply scatter, which can cause general
confusion to lions. Schaller observed that sometimes the lions
were unable to select an individual from the scattering herd
resulting in the failure to achieve a kill. Lions use sight as
the primary sense during hunting, although sound and smell
may contribute to the initial location of prey in the Etosha
national park where the biomass of potential prey is consid-
erably lower. Schaller shows that group hunts that occur up-
wind from the prey have about 33% greater chance of success
than those that occur down-wind from the prey.
Since lions are at a disadvantage when chasing most of

their prey, they make use of the cover available to increase
their chance of success. Schaller’s observations of Serengeti
lions shows that, although the majority of kills are in the
open, prey are generally killed near areas that offer the great-
est cover. The Etosha National Park is a flat arid plain with
much less cover than the Serengeti plains, and yet even here
the short grass is essential for the lions, for without some ele-
ment of cover the lions have very little chance of gaining the
advantage of surprise or the ability to ambush possible prey.
The majority of hunts take place at night so that greater cover
can be gained by use of the darkness.

2.2 The Predators
There are a number of factors that determine the use of group
hunting in different prides of lions. For example, the envi-
ronment that the lions live in has an effect. On the Serengeti
plains, solitary hunts occur for approximately 48% of hunts,
whilst in the Etosha National Park solitary hunting only oc-
curred in 1% of hunts. This disparity is attributed to the dif-
ference in the environment and type of prey available in the
two areas. The Etosha National Park is a vast semi-arid plain
with little natural cover whilst the Serengeti National Park is
a rich habitat. Faced with a reduction in cover those lions
from Etosha seem to be forced into a situation were coopera-
tive hunting provided a greater kill rate. The type of prey also
has an effect on cooperative hunting. Over over 80% of the
diet of the lions of the Etosha nation park is made up of large
and/or fleet-footed prey. Serengeti lions have a greater variety
of prey that includes animals, such as the warthog (the great-
est occurrence of solitary hunting occurring in the Serengeti
was upon the small warthog). In the Serengeti National Park,
those prey which are hard to catch are hunted using group
methods.
The available studies of the methods and tactics of group

hunting adopted by lions give a similar basic plan of the hunt-
ing process. It starts when the group spots the prey, some-
times initiated by a single lion identifying the prey and look-
ing at it, to which the other lions respond by looking in the
same direction – the only clear form of “communication” ev-
idenced in the hunting process. The group fans out, with cer-
tain lions stalking at a greater distance to encircle the prey.
The encircling lions launch the attack, seemingly to drive the
prey towards the other lions who ambush the prey from their
cover position. A failed ambush may cause a rush after the
prey for a short distance.
Stander’s observations showed that, in general, lions fol-

lowed approximately the same patterns when hunting. He
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Figure 1: A schematic of generalised lion hunting behaviour.

divided the lions into seven different stalking roles, shown in
Fig. 1, grouping these roles into Left Wing, Centre and Right
Wing positions. Although no lions were exclusively fixed to
any position and most hunts involve fewer lions than posi-
tions, Stander noted that the lions did seem to have a pref-
erence for certain positions, with ‘wings’ having a preferred
angle of attack be it left or right. These positions would seem
to be determined by the physical nature of the individual li-
ons. The lions were measured and weighed, and it was dis-
covered that the ‘centres’ were generally bigger, heavier and
older than the ‘wings’. In general the ‘centre’ lions are more
capable of assuming different positions, but his research also
showed that in situations when the lions were hunting in their
preferred roles the success of the group increased by 9%. The
hunting success rate also increased with the size of the group
– the greater the size of the group the greater chance the lions
had of assuming their preferred positions. Recent video evi-
dence would suggest that the younger lions approach the prey
faster than the older lions, possibly due to lack of experience
of the younger lions or due to the younger lions needing to
move further to get into position.
In general Stander observed that the average distance that

the ‘wings’ stalk would be about 320m. Once the lions are in
position, the breakdown of the roles in the hunt occurs with
the ‘wings’ initiating the majority of the attacks. The ‘cen-
tres’ are more likely to be involved in ‘ambushes’ than the
‘wings’. If the prey is not caught in an ‘ambush’ it would be
the ‘wings’ that would become involved in the ‘rush’. The
‘rush’ part of the hunt is only a short distance – Schaller ob-
served that in general the lions could maintain a fast run for
only a few hundreds meters before having to stop and pant.

3 Hypothesis
Although the details of the behaviour are known, the mech-
anism by which such behaviour is coordinated (if it is at all)
is unknown. [Stander, 1991] suggests that the ‘wings’ could
keep, as a 3rd point, the prey on an imaginary straight line be-
tween them, enabling the Lions to ‘model’ the locations of the
other lions. Unfortunately, it is difficult to conceive that the
Lions should need to locate lions on the other side of the en-
circlement in order to coordinate behaviour, since this would
raise the possibility that the stalking lions could be spotted by
the prey. However, Stander’s proposals were the seeds of an

alternative possible mechanism.
[Reynolds, 1987] used links of attraction and repulsion to

produce the emergent group behaviour seen in flocking and
herding, since applied to many other forms of emergent be-
haviour. We hypothesised that, through initial repulsion from
the prey during stalking representing the need to remain un-
seen, attraction to the prey during stalking representing the
need to get within range of the prey to attack, repulsion from
other lions representing the need to obtain coverage of the
prey’s lines of escape, and attraction to other lions represent-
ing the need to close off possible escape between lions, an
encircling behaviour during stalking would be seen. This hy-
pothesised mechanism would require sight of the two neigh-
bouring lions and the prey alone. Thus, no global knowledge
and minimal local knowledge is required, and the behaviour
would be an emergent property of the interaction of the agents
involved.
The initial algorithm using this simple attraction-repulsion

approach can be expressed simplistically as follows:
repeat until movement > chaseDistance or kill:

if noticedMovement(sight) or lions.tracking < 2:
lions = closestTwoLions

if prey == null: prey = closestPrey
if lions.tracking != 0 or prey != null:

attractOrRepel(lions,prey)
else: wander
sight = vision(lions,prey)

4 Simulation
To investigate the proposed hypothesis a simulation was
built in which distributed algorithms describing the action-
selection and behavioural response of predators (the ‘lions’)
and prey could be investigated. The intent of the simulation
was to capture key aspects of the coordinated behaviour of the
lions in the approach, stalk, rush and kill. Thus the simulation
developed was intentionally simplistic, in marked contrast to
the realism obtained from a complex simulation such as that
of [Tu and Terzopooulos, 1994]. This decision is readily jus-
tified by recourse to a consideration of the nature and purpose
of simulation; the oft-discussed consequences that such a de-
cision implies are acknowledged.
In the simulation the following implementation decisions

were made:
• The predators and prey are represented by a point-and-
spread method, occupying a small circular area on a
large 2-D torus simulation surface.

• Vision is the primary means of location of prey and
other predators by the lions, and therefore must be mod-
elled more accurately than simple line-of-sight. Vision
is modelled as a cone extending forward from the loca-
tion of the predator with a predefined spread. An animal
in the cone is seen if d d

dmax
ge+( smax

2 °s+1)+ c < g,
where d is the distance to the target, g is the granular-
ity of vision, smax is the maximum speed of the animal,
s is the current speed, and c is a current cover value,
thereby trading-off visual acuity with distance, move-
ment and cover. Peripheral vision is modelled as a sec-
ond cone, overlaying the first, with less distance and a
wider spread. Peripheral vision is sensitive to move-
ment detection, but objects in peripheral vision will not
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be ‘recognised’. Prey have two main and peripheral vi-
sion cones directed 90 and 270 degrees from the direc-
tion the prey is facing. These are have less distance but
are wider than those of the predator.

• Although scent is a factor in the prey locating predators,
vision is the key component in identifying the close lo-
cation of a predator and avoiding an attack. Similarly,
scent is only a small factor in prey location by the preda-
tor and is not a primary factor in the final approach-stalk-
rush behaviours. Therefore, scent is not modelled in the
simulation.

• The predators are provided with four basic behaviours
— rest - wandering as a part of a group in search of
prey, approach - where the predator approaches a prey
to observe it, stalking - where the predator uses cover
and crouched movement to close the distance to the prey
without detection, and rush - where the predator chases
(for a short distance) and seeks to bring down the prey.

• A number of pre-determined triggers for behaviours are
included that correspond to known single animal behav-
iour. The approach behaviour will be triggered when a
predator spots a prey within attacking distance, or when
a predator sees another predator approaching the prey.
The rush behaviour will always be triggered when the
prey flees away from a predator ([Schaller, 1972] iden-
tifies that lions launch a ‘rush’ opportunistically if they
stumble upon a prey at close range or if the prey being
stalked spots the predator and flees).

• The prey are provided with two basic behaviours —
grazing - moving around a specific area looking for po-
tential predators whilst eating, and fleeing - if a lion is
spotted within a simulated distance of 50m [Schaller,
1972] or is spotted stalking or rushing, then the prey
will turn away from the predator and flee. Fleeing is
always away from the detected predators, although it is
recognised that more complex fleeing strategies could be
adopted [Cliff and Miller, 1996].

• It is assumed that the prey is always faster than the
predators.

• In order to provide a measure of attraction / repulsion
for use in the simulation the Lennard-Jones Potential
was employed. Normally describing the relationship be-
tween water molecules, it provides a useful means of ex-
pressing the degree of attraction or repulsion as a func-
tion of distance between two points and is expressed as:
y = a § ( b

d )12 ° ( b
d )6, where a is the rate of attrac-

tion/repulsion, b is the distance where the forces are in
balance and d is distance between the animals. Although
this could be used to vary the speed of approach to the
balance point, we simply use it for the binary decision to
approach or move away from an animal.

A simulation will start with predators placed spatially close
to one another and within range for at least one of the preda-
tors to immediately detect the prey (i.e. there is no require-
ment within the simulation for the larger task of prey loca-
tion). Each agent in the simulation (predator or prey) is inde-
pendant, without any global coordination once the simulation

starts and until the prey is killed or escapes. No global infor-
mation is available to any agent in the simulation.

5 Investigation of the proposed algorithm
The algorithm identified in section 3 uses peripheral vision to
identify when new movements are seen when the predator is
looking at the prey or another predator. In testing it was found
that since a predator has to turn to sight the prey or a predator,
it can lose sight of a predator it was aware of and find another
predator instead. This can cause the predator to spend its time
searching for and trying to align with neighbouring predator
(who are all moving) and seemingly lose interest in the prey.
A modification was made to the algorithm to prioritise

stalking of the prey and to provide memory of the prey’s
last position so that the lion can re-locate the prey after it
has turned. This version performed better, producing en-
circling behaviour at the desired attract/repel distance with
a good distribution of predators around the prey. However
these changes also introduced occasional problems. Where
a predator B was directly between predator A and the prey,
predatorAwould seek to move a back from predatorB whilst
being attracted towards the prey. Similarly predator B would
seek to move towards the prey to get away from predator A
whilst being repelled by the predator. This would result in a
deadlock.
Although partially successful, it was also clear that the al-

gorithm was not simulating some of the fundamental behav-
iour observed. The algorithm allowed predators no prefer-
ence for position in the circle and did not normally show
the younger predators covering larger distances. Rather than
continue to modify the initial algorithm with additional con-
straints, an alternative approach seemed possible.
Lions within a pride display a form of dominance hierar-

chy, with older heavier lions typically dominant over younger
lighter lions. In section 2.2 it was noted that [Stander, 1991]
observed a preference for positions, with the ‘wings’ usually
taken by the younger lions and the ‘centre’ taken by older
and heavier lions. We hypothesised that this structure could
be constructed using the same attraction / repulsion mech-
anisms if the mechanism included weighting for dominance
(which might be argued to correlate with either a fear of more
dominant lions, or a wish to avoid dispute over dominance)
within a stalking area around the prey. We further identified
that the faster movement of the wing lions was required to
encourage rapid resolution of the dominance order without
excessive ‘shuffling’ of positions.
Introducing this change in the algorithm not only demon-

strated the desired encircling behaviour, but it was discovered
that each predator only needs to be aware of the location of
one immediate neighbour at a time in order to create the encir-
cling behaviour. Since the maintenance of cover is important
during stalking, this reduction in the requirements of sight
suggests that the algorithm identified is plausible.
No information is available from the literature about how

the final attack is initiated. This is an important matter, since
early initiation will cause the prey to be chased into a loca-
tion before the ambush is set. However, with the less domi-
nant predators now being pushed to the wings and the more
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dominant predators settling into position first it becomes easy
to devise a trigger. The solution is in two parts. Firstly no
predator can rush until the correct attract/repel distance with
the prey and other predators is found, and secondly the dis-
tance away from the prey at which it is acceptable to initiate
the ‘rush’ is weighted by dominance. Thus, less dominant
predators will start the ‘rush’ as soon as they are in-place, at
which time the other predators will also be in place. The older
predators will not ‘rush’ until the prey is within a smaller dis-
tance, thereby creating the ambush. The final algorithm2 was
thus:
repeat until movement > chaseDistance or kill:
prey, lion = closest(sight,memory)
memory = [lion,prey]
if distance(prey) in stalkBoundary and (fleeing(prey)

or movement > stalkDistance(dominance)): rush
elsif prey != null and lion != null:

if collisionLikely(lion): moveAway(lion)
elsif distance(prey) in stalkBoundary:
attractOrRepelMax(lion,prey)

else: attractOrRepel(lion,prey)
elsif lion != null or prey != null:

attractOrRepel(lion,prey)
else: wander
sight = vision(memory)

6 Results
Initial tests ran the final algorithm simulating the lions hunt-
ing behaviour ten times to identify whether the encirclement
behaviour with appropriate distribution based on ‘dominance’
was consistently displayed. In these tests four lions were
simulated, the average number involved in Stander’s obser-
vations. In every test the predators were started in close prox-
imity to one another and within sufficient distance to sight the
the prey. Parameters were set as follows: dmax = 900 (lion),
140 (prey); g = 12; c = 5 (lion stalking), 1 (prey and lion
not stalking); smax = 5; s = 2 (lion wandering and stalk-
ing), 4 (lion rush), 1 (prey wander), 5 (prey fleeing), a = 5;
b = 100 (prey) and 150 (lions). The encircling and rush be-
haviour is illustrated in figure 2, with the (randomly gener-
ated) dominance setting for the predator identified beside the
corresponding plotted pathway.
The results in the plots show several different patterns de-

pending on the success of the hunts. Successful hunts tended
to look like those shown in plot (a) and (b). The correspon-
dance between the ‘dominance’ of the simulated predators
and the pathways shown on these plots illustrates the emer-
gent order of the lions in the encircling behaviour. The initial
rush behaviour by low dominance lions who drive the prey to-
wards the more dominant lions, one of whom makes the kill,
can also be seen in the plots.
A failed kill is illustrated by plot (c), which shows the situ-

ation where the prey notices the lions before any encirclement
could be performed so that the prey flees from the lions. This
example shows that a dominant lion does not give chase to
the prey but the less dominant lions chase the prey for a dis-
tance. This behaviour emerges as a result of the lower dis-
tance to ‘rush’ for more dominant lions that otherwise pro-
vides the lion ‘ambush’ behaviour, and is similar to observed

2For a detailed discussion of the algorithm and its development,
the reader is referred to [Dalrymple-Smith, 2003].

(a) (b)

(c) (d)

Figure 2: The encircling and rush of lions - (a) & (b) Success-
ful hunts; (c) A hunt where the prey spotted a stalking preda-
tor; (d) A hunt where the prey escaped the ambush. Only the
lion traces are shown, with the ‘dominance’ value indicated
by each lion trace.

Table 1: Percentage of hunts with kills (a) for each dominance
level, including the number of simulated hunts lions of that
dominance were involved in, and (b) for each group size.

(a)

Dom Hunts Kill%
11 34 56
10 40 48
9 42 43
8 41 34
7 39 49
6 39 56
5 31 42

(b)

Lions Kill%
6 53
5 60
4 27
3 40
Any 45

behaviour. Plot (d) also shows a failed kill. In this case the
low dominance lion starts the chase and the prey flees, as ex-
pected. However all the remaining lions have a similar high
dominance and therefore none will join the ‘rush’ until the
prey is close. This allows the prey to run away from the sin-
gle chasing lion, past the ambush and get away.
Another result (not shown on the plots) occurs on the oc-

casions when the lions are out of position with the dominant
lions on the ‘wings’ rather than the low dominance lions. In
this situation the low dominance lions ‘rush’ from the cen-
tral position enabling the prey to flee away from any ambush.
This behaviour is interesting in relation to the observations
discussed earlier that the probability of the lions having a
successful hunt is dependant on the lions encircling at their
preferred position.
A further investigation simulated 60 hunts with group sizes

ranging from 3 to 6 predators (chosen to reflect the average
group size of 4 lions, observed by Stander). The results are
shown in table 1a and 1b.
Table 1a also shows that the percentage of successful hunts

in relation to the hunts in which predators of a particular dom-
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inance are involved. No clear pattern can be identified. It was
hypothesised that this could be because the success or other-
wise of a group hunt is dependant on the mix of dominance
in the group. An analysis of the individual simulation results
revealed that groups with more low dominance or more high
dominance predators were less successful. This is readily ex-
plained by the observation that with a preponderance of low
dominance predators it is unlikely that an ambush would be
set up correctly, whilst with a preponderance of high domi-
nance predators the prey is more likely to find a pathway of
escape (see Figure 2d). Unfortunately no literature was avail-
able that would allow these findings to be compared with ob-
served behaviour.
There is no clear pattern in the results shown in table 1b. It

is interesting to note that [Stander, 1991] gives the success of
hunts in the Etosha National Park at 27%, which is the same
success rate seen in all simulations run with only four preda-
tors. Furthermore, Stander noted that the success of the hunt
is increased with the group size, which is also seen with the
overall kill rate in the simulation of 45%. However, in order
to obtain statistically valid results a larger experimental run is
necessary, and a fuller exploration of the parameter space of
the simulator is required.

7 Conclusions and Further Work
The results presented in this paper represent the output of pre-
liminary investigations of a highly simplified simulation to
test the hypothesis that the group predatory behaviour of li-
ons can be mimicked using attraction / repulsion between the
lions and their prey. Although a full investigation, particu-
larly of the parameterisation of the simulation, has yet to be
conducted, the results demonstrate that many of the observed
behaviours in the group hunting of lions are replicated in the
simulation.
It would be inappropriate to claim that the proposed mech-

anism is therefore the mechanism deployed by lions in group
hunting. However, it is important to note that the complex
cooperative behaviour demonstrated here emerges from the
deployment of very simple dynamic interactions. It is of par-
ticular interest that the introduction of dominance relations
was not only key to producing behaviour that correctly mim-
icked observed stalking, rush and ambush behaviour, but was
also key to an important simplification in the visual commu-
nication required for agent coordination. This finding opens
an avenue of further research for multi-agent coordination.
We hypothesise that such ‘cooperative’ behaviour within a

group hunting situation could arise from the ‘selfish’ behav-
iour of lions, and be deployed in a coordinated manner, when
use is made of group dominance relations. Verification of
this hypothesis from further live observations would help to
resolve the debate on the nature of the ‘cooperation’ seen in
lion hunting, and would provide further insights into the role
of dominance in animal groups.
Further work is required to investigate the parameterisa-

tion of the model used and then to use the simulator to obtain
a wider range of results to which statistical analysis can be
applied. Future work will seek to explore the role of dom-
inance in multi-agent coordination in distributed computer

applications, and the identification of dominance agreement
algorithms for fault tolerant systems.
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Abstract

The paper investigates the role of an affective sys-
tem as part of an ethologically-inspired action-
selection mechanism for virtual animals in a 3D
interactive graphics environment. It discusses the
integration of emotion with flocking and grazing
behaviour and a mechanism for communicating
emotion between animals; develops a metric for
analyzing the collective behaviour of the animals
and its complexity and shows that emotion reduces
the complexity of behaviour and thus mediates
between individual and collective behaviour.

1 Introduction

For much of its history, Artificial Intelligence (AI) had
stressed reasoning and logic and almost ignored the role of
emotion in intelligent behaviour. Minsky (1985) was one of
the first to emphasise the importance of emotion for Artifi-
cial Intelligence. Since then, affective systems for embodied
autonomous agents, robotic and graphical, have become an
expanding research area. Approaches divide roughly into
two: low-level accounts, focusing on animals in general,
sub-symbolic behavioural architectures and neuro-
physiologically inspired [Velasquez 1997, Canamero 1998],
and high-level accounts, focusing on humans, symbolic ap-
praisal-driven architectures, and inspired by cognitive sci-
ence [Ortony et al 1988, Gratch et al 2001]. In this work, we
concentrate on a low-level account, applied to exemplary
flocking mammals (sheep, deer), and demonstrate the role
of fear as a social regulator between individual and group
behaviour. We take the set of ‘primitive emotions’ namely:
anger, fear, disgust, surprise, happiness and sadness, [Ek-
man 1982] as a plausible set for other mammals than hu-
mans, and examine how they can be integrated into an
ethologically-based action-selection mechanism.

An evolutionary approach to emotions suggests that for
affective systems to have developed and remained under the
pressure of selection, they must play a definite functional
role within the overall architecture of animals. A number of
such functions can be identified in relation to the selection
of actions. One is to modify behaviour: a sheep that experi-
ences an anxiety-inducing stimulus may carry on grazing
but bunch up more tightly with the rest of the flock. A sec-

ond is to switch behaviours: a sheep experiencing a threat-
ening stimulus inside its flight zone will flee. A third is to
avoid dithering between competing behaviours by adding
weight to one of them [Blumberg 1994], and a fourth and
related function is to sustain a selected behaviour for an
appropriate interval – a fleeing animal can typically no
longer perceive the threatening predator, but fear keeps it
running, in effect acting like a cheap short-term memory.

However flocking animals do not behave merely as indi-
viduals, they engage in the collective behaviour known as
flocking. Reynolds [1987] showed that flocking behaviour
does not require a complex internal architecture but can be
produced by a small set of simple rules. In his model of so-
called boids, every individual (boid) tries to fulfil three con-
ditions: cohesion or flock centring (attempt to stay close to
nearby flockmates), alignment or velocity matching (attempt
to match velocity with nearby flockmates), and separation or
collision avoidance (avoid collisions with nearby flock-
mates). Flocking is thus a collective emergent behaviour.

This approach has produced sufficiently believable col-
lective behaviour to be used for stampedes in a number of
animated films. Nevertheless, mammals do in fact have a
complex internal architecture, unlike social insects, and a
wide range of individual behaviours: a motivation for this
work was to reconcile the generation of collective behaviour
by a small set of rules with the more complex agent archi-
tecture required for a mammalian behaviour repertoire.

An important behaviour in the ungulate repertoire is
grazing, requiring spatial orientation behaviours. Two such
mechanisms of particular relevance are described in Lorenz
[1981]. The first, kinesis can be summarized as a reactive
rule of slowing down when encountering favourable condi-
tions and speeding up for unfavourable ones: this can also
be related to escape behaviour. However most organisms do
not move in an absolutely straight line; when orienting to
favourable localities: the effect of kinesis can be improved
by increasing the angle of the random deviations from the
straight line, and these are inherent to locomotion in any
case. By these means, the organism is kept in the desirable
environment longer and is made to exploit an increased part
of its area, especially relevant to grazing. This second en-
hanced mechanism is termed klinokinesis and it is found in
grazing mammals, as well as in swimming protozoa and
higher crustacea. This represents an important example of
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individually-oriented behaviour which conflicts with the
rule-set for flocking.

2 An ethologically inspired action-selection

mechanism

The work discussed here has been implemented with
graphically-embodied flocking animals (sheep, deer) in a
3D interactive virtual environment. In order to test the hy-
pothesis that an affective system can act as a regulating
mechanism between individual and social behaviour, an
ethologically-motivated architecture was developed for the
virtual animals.

The basic task of a virtual animal brain has often been
split into the three sub-tasks of perception (sensing the envi-
ronment and interpreting the sensory signals to provide a
high-level description of the environment), action selection
(using the perceptual and emotional inputs to decide which
of the animal's repertoire of actions is most suitable at that
moment) and motor control (transforming the chosen action
into a pattern of "physical" actions to produce the animation
of the animal). To this we add a fourth subtask: generating
emotions (affecting the behaviour of the animals, exempli-
fied by the conspecifics flight-flocking), Figure 1 shows a
detailed diagram of the designed architecture developed as a
result, and the next sections describe its components.

While not claiming neurophysiological accuracy, the ar-
chitecture splits its overall functionality across biologically-
plausible subsystems. Thus the module hypothalamus is
used to store the drives (for example, hunger), the sensorial
cortex stores sensor data, the amygdala contains the emo-
tional systems such as Fear, Joy and Anger, and Basal Gan-
glia contains the hierarchical mechanism for selecting ac-
tions, similar to those described by ethologists. Each of the
listed modules is defined in XML giving the name of each
of the system/variables, the inputs associated to them, a
weight, and a function (acting as a filter, in most cases a
sigmoid) which in turn generated a feed-forward hierarchy
like the one described by Tyrrell [1993]

2.1 Communicating emotion

Taking the position that emotion partly functions as a com-
munication mechanism, a novel feature of this work is that
the perceptual component has been designed to support the
communication of emotion among conspecifics. In the real
world, emotional transmission is almost certainly multi-
modal, with certain modes such as the perception of motion
being particularly difficult to model. Thus we have limited
ourselves for now to a single mode, and the one we have
chosen is pheromones, perceived by a virtual olfaction sen-
sor.

Recent experiments [Grammer 1993] have shown that
mammals, including humans, emit pheromones through
apocrine glands as an emotional response, and as means to
communicate that state to conspecifics, who can adapt their
behaviour accordingly; research has found that odours pro-
duce a range of emotion responses in animals, including
humans [Izard1993]. This is adaptively advantageous be-
cause olfaction is part of the old smell-brain which can gen-
erate fast emotional responses, that is without the need of
cognitive processes.

Grammer [1993] argues that every living creature has a
distinctive molecular signature that can be carried in the
wind, variously showing it to be nutritious, poisonous, sex-
ual partner, predator or prey. Neary [2001] points out that
sheep, particularly range sheep, will usually move more
readily into the wind than with the wind, allowing them to
utilise their sense of smell.

Our architecture models the exteroceptors used by real
animals to detect the presence of chemicals in the external
environment as a virtual nose. An environmental simulator
has been developed: its tasks include changing the tem-
perature and other environmental variables depending on the
time of day and on the season, using statistical historical
data. An alarmed animal sends virtual pheromones to the
environmental simulator and they are simulated using the
free expansion gas formula in which the volume depends on
the temperature and altitude (both simulated environmental
variables). The expansion of the pheromone cloud at
timestep=9 can be seen in a graphical environment in Figure
6 below. To compute the distribution of the pheromones a
set of particles has been simulated using the Boltzmann dis-
tribution formula:

Here m is the pheromone mass;  g is the gravity; y is the
altitude; kb is the Boltzmann number; T is the temperature;
n0 is N/V where N is the number of molecules exuded from
the apocrine gland (related to the intensity of the emotion)
and V is the volume. The virtual nose detects pheromones
from a threshold of 200.10-16

 reflecting values taken from
the relevant literature.

2.2 Action-selection mechanism

The problem of action selection is that of choosing at each
moment in time the most appropriate action out of a reper-
toire of possible actions. The process of making this deci-

FIGURE 1: Complete architecture
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sion takes into account many stimuli, including in this case
the animal's emotional state.

Action selection algorithms have been proposed by both
ethologists and computer scientists. Models suggested by
the former are usually at a conceptual level, while those of
the latter (with some exceptions – see Tyrrell:1993, Blum-
berg:1994) generally do not take into account classical
ethological theories. Dawkins [1976] suggests that a hierar-
chical structure represents an essential organising principle
of complex behaviours: a view shared by many ethologists
[Baerends:1976, Tinbergen:1969].

Recent research has found that the Basal Ganglia plays an
important role in mammalian action selection [Montes-
Gonzalez 2001] and our mechanism is implemented in the
Basal Ganglia module in Figure 1 as a three-level tree. To
avoid sensory congestion, each of Top, Intermediate and
Bottom nodes receives sensor data directly as well as data
from a higher-level node. Actions are selected by Bottom
nodes, dispatching them via a UDP socket to the Animation
engine located in the Body module of Figure 1. Figure 2
shows the overall interconnections in the animal brain.

TABLE 1: Finite State Acceptor for klinokinesis

State Input Resulting state
start go-default stand-still

stand-still P(0.3) walking

stand-still P(0.3) starting-to-eat

stand-still P(0.2) rotating-left

stand-still P(0.2) rotating-right

stand-still in-fear end

stand-still do-nothing stand-still

walking P(0.3) stand-still

walking P(0.7) walking

rotating-left P(0.9) stand-still

rotating-left P(0.1) rotating-left

rotating-right P(0.9) stand-still

rotating-right P(0.1) rotating-right

starting-to-eat head-down eating

eating P(0.6) eating

eating P(0.4) finishing-eating

finishing-eating head-up stand-still

This mechanism is based on Tyrrell [1993] who in turn
developed Rosenblatt and Payton's original idea [1989] of a
connectionist, hierarchical, feed-forward network, to which
temporal and uncertainty penalties were added, and for
which a more specific rule for combination of preferences
was produced. Note that among other stimuli, our action
selection mechanism takes the emotional states (outputs of
the emotional devices) of the virtual animal.

Klinokinesis was modelled as a Finite State Acceptor
[Arkin1999], augmented with transitions based on probabil-
ity, as seen in Table 1.

2.3 The flocking mechanism

The basic Reynolds rules of cohesion, alignment and sepa-
ration have been extended with an additional rule (escape)
in which the virtual animal moves away from potential dan-
ger (essentially, predators) in its vicinity. More importantly,
the flocking behaviour itself is parameterised by the emo-
tional devices output, that is, by the values of the emotions
the virtual animals feel. Therefore, in our model each virtual
animal moves itself along a vector, which is the resultant of
four component vectors, one for each of the behavioural
rules.

The calculation of the resultant vector, V(elocity), for a vir-
tual animal A is as follows:

VA=(Cf · Cef · Cv)+(Af · Aef · Av)+(Sf · Sef · Sv)
+(Ef · Eef · Ev)   (2)

VelocityA=limit(VA, (MVef · MaxVelocity))  (3)

FIGURE 2: The connections of the animal brain
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where Cv, Av, Sv and Ev are the component vectors corre-
sponding to the cohesion, alignment, separation and escape
rules respectively. Cf, Af, Sf and Ef are factors representing
the importance of the component vectors Cv, Av, Sv and Ev

and allow weighting of each component vector independ-
ently. In our current implementation they can be varied, in
real time, from a user interface. Cef , Aef, Sef and Eef are
factors representing the importance of the respective com-
ponent vectors given the current emotional state of the vir-
tual animal. Each of these factors is a function that takes the
current values of the animal’s emotions and generates a
weight for its related component vector. MaxVelocity is the
maximum velocity allowed to the animal. In the current
implementation it can be varied from a user interface. MVef

is a factor whose value is calculated as a function of the
current values of the animal’s emotions. It allows the in-
crease and decrease the animal's MaxVelocity depending on
its emotional state as shown in Figure 3. limit is a function
whose value is equal to the greater of its two parameters.

The emotional factors (Cef, Aef, Sef, Eef, and MVef) reflect
ethological heuristic rules. For example, the greater the fear
an animal feels, the greater the weight of both its cohesion
vector (it tries to stay closer to nearby flockmates) and its
escape vector (it tries to stay farther from the potential dan-
ger). The resultant vector obtained by adding the four basic
vectors is then scaled so as not to exceed the maximum
speed. Note that maximum velocity is also parameterised by
fear: the greater the fear an animal feels, the greater the
speed it is able to reach.

3. Evaluating the emergent behaviour

3.1 Experimental data

Our hypothesis that fear can serve as a regulator between
individual and social behaviour was evaluated through an
experiment in which 5,10, 15 and 20 animals were plotted
over 600 timesteps for the following six conditions:
1. Rigid Flocking. The herd of animals was tightly packed
(maximum10 centimetres distance between each) and ani-

mals were all facing the same direction at all times. This is
the baseline condition for optimum coordination.
2. No Flocking No Escape. Each animal moved on its own
with no knowledge (perception) of other animals or preda-
tors. This is the baseline condition for individual behaviour.
3. Escape. Similar to the previous scenario except that ani-
mals perceive predators and individually move to avoid
them.
4. Standard flocking. Animals perceive each other, try to
avoid collisions between each other and try to stay close to
the herd.
5. Standard flocking with Escape. As the previous case but
animals perceive predators, and move to avoid them.
6. Escape with emotion. Emotion (fear) is elicited and com-
municated amongst animals via artificial pheromones when
predators are perceived.

Figure 4 shows the trajectories plotted for the 20 animals
case, and it is intuitively clear to the eye even at this very
low resolution that very different patterns of behaviour are
being produced. What is required is a way of assessing the
complexity of the emergent behaviour in each case.

3.2 An evaluation mechanism

We follow the approach of Wright et al. [2001] who pre-
sented a method for characterising the pattern of emergent
behaviour and its complexity using singular values and en-
tropy.

In the matrix A below, M = 600 (number of samples) and
N = 4 (degrees of freedom: position x,y and velocity x,y):

FIGURE 3: Influence of Fear on Flocking

Plots of 1.Rigid Flocking and 2.No Flocking/No Escape

Plots of 3.Escape and 4.Standard Flocking

Plots of 5.Standard Flocking/Escape and 6.Emotion/Escape

FIGURE 4: Plots of 6 cases, 600 timesteps, 20 animals
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To compute the singular values, the following equation from
linear algebra is used:

The singular values σi = Si are all non-negative and gener-
ally are presented in a decreasing sequence σ1 >= σ2 >=
…>= σΝ >= 0;  singular values can be used as an approxi-
mation of the matrix. We do not have space to display the
singular values for 5,10,15,20 animals for all six cases here,
but if they are represented in bar chart form they show that
each flocking case has its own distinctive shape.

The next step is to compute the entropy from the N sin-
gular values which are normalised, because by definition Σi

Pi = 1 [Bonabeau et al.1999]: in our case Pi is σ i. The fol-
lowing equation is used to calculate entropy:

where σ’
i.  is the normalised singular value. And since en-

tropy can be seen as a log2 count of the number of states in a
system [Bonabeau et al.1999], the effective number of states
and thus the complexity is given by the expression:

3.3 Results

Figure 5 above shows a plot of the complexities for different
types of flocking with different number of animals. It can be
seen that rigid flocking (bottom line) shows the least com-
plexity, intuitively supported by looking at Figure 4, top
left. Flocking; flocking with escape; no flocking, no escape;
and escape behaviours (top four lines) are more complex

than rigid flocking, but they are also almost always more
complex than flocking with emotion (second line up).

The exception is the 5-animal case where flocking with
emotion, is more complex than flocking with escape. This
can be explained by a further set of experiments carried out
in which it is shown that at least nine animals are needed to
maintain flocking behaviour. With fewer than this, when the
animals escape from a predator, some separate from the
flock and do not regroup at all during the 600 time-steps.

Thus we conclude that the introduction of an emotional
system into action-selection, where emotion can be trans-
mitted between animals, is to mediate between the com-
plexity of individual behaviour and the rigidity of collective
behaviour. It allows a dynamic trade-off between spreading
widely, advantageous in seeking new grass to graze - inher-
ent in klinokinesis - and staying together, advantageous in
the case of attack by predators. Emotion in this case acts as
a social regulator for flocking animals, demonstrating that it
has an important social function in addition to its already-
understood role in regulating individual behaviour.

In addition to the 2D-tracking of trajectory just described,
the virtual animals have also been implemented in a real-
time 3D graphical world, which can be run in a 4-sided im-
mersive display system (or CAVE). The implementation
consists of nearly 28,000 lines of C++ code of which 10,949
implement the brain. Figure 6 shows a screen-shot of a
sheep in a graphical world illustrating the spread of the
pheromone cloud at timestep = 9. A further  objective of the
work discussed elsewhere [Delgado-Mata et al 2003] is to
examine how far the presence of emotionally-driven
autonomous animals can increase the feeling of immersion
experienced by a human user in such environments.

4. Conclusions and further work

We have presented an ethologically-inspired virtual animal
architecture in which primitive emotions have been incorpo-
rated into action-selection and a method for communicating
emotion between animals using virtual pheromones has
been included, allowing the extension of the classic ap-
proach to flocking to incorporate emotion. We have shown                               Number of animals

FIGURE 5: Plot of complexity (Ω) against animal numbers for 6 cases

 FIGURE 6: Pheromone cloud visualised at timestep = 9

Ω
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that the effect of adding the emotional input to flocking to-
gether with the communication mechanism is to reduce the
complexity of individual behaviour without requiring rigid
lock-stepping. This substantiates the hypothesis that emo-
tion mediates social behaviour, underlining the functional
role of affect in action-selection.

Extensions to this work might include individual varia-
tion in animals, both across characteristics like fearfulness,
and across gender: there is evidence that ewes spend more
time grazing and rams significantly longer lying. The pres-
ence of lambs would also introduce an interesting element
of social heterogeneity, while animals with other behav-
ioural responses to predators – musk ox for example form
an outward facing ring – could be explored.

The use of 3D space in this implementation is limited to
the pheromone propagation algorithm: both perception and
locomotion were implemented as 2D mechanisms. Given
mammals have significantly less mobility in 3D than the
classic examples of fish or birds, a more realistic application
of manoeuvrability constraints would not only look more
natural but might also have practical implementations for
flock fragmentation in the face of predators. A classic
predator strategy is to peel off an individual flock member,
and including one or more intelligent predators would allow
predator-prey interaction to be investigated.

Finally, although the architecture developed targetted
animals such as sheep and deer rather than humans, the ex-
tension of the approach into emotionally-driven human
crowds would open up a much larger field of investigation.
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Abstract
This paper reports on an autonomous agent sim-
ulation of infant attachment behaviour. The be-
haviours simulated have been observed in home
environments and in a controlled laboratory pro-
cedure called the Strange Situation Experiment.
The Avoidant, Secure and Ambivalent styles of be-
haviour seen in these studies are outlined, and then
abstracted to their core elements to act as a specifi-
cation of requirements for the simulation. A reac-
tive agent architecture demonstrates that these pat-
terns of behaviour can be learnt from reinforce-
ment signals without recourse to deliberative mech-
anisms.

1 Introduction
This paper describes work which aims to further understand-
ing of infant attachment behaviour using an AI ‘design-based’
approach. This means explaining the structures that would be
required in a system’s design to enable attachment phenom-
ena to be produced. It follows from Petters (2004), which
explains how a generic ‘design-based’ approach was adapted
to the specific purpose of simulating attachment phenomena.
The particular attachment behaviour under investigation is
the pattern of infant response to separations from and sub-
sequent reunions with their carers in a controlled procedure
that occurs in an unfamiliar laboratory environment. This
procedure is known as the ‘Strange Situation Experiment’.
The simulation will be attempting to explain: the different
patterns of infant behaviour found in separation and reunion
episodes of the Strange Situation; why patterns of reunion be-
haviour match patterns of home behaviour most closely; and
why the Strange Situation and home behaviour, when con-
sidered across all subjects, cluster to give three main cate-
gories of attachment style in infancy. The elements needed
for a specification of requirements are abstracted from empir-
ically observed behaviours, and can be presented as a set of
mini-scenarios which the autonomous agent simulations need
to fulfil. Since autonomous agent techniques are based upon
simplified models of complete systems that endure over time,
infant and carer agents in the simulation can respond to each
other’s behaviours in a dynamic and adaptive manner.

An architecture has been implemented, which when placed
in appropriate training environments, can simulate the forma-
tion of the three attachment styles being investigated. This
architecture is entirely reactive, which means it possesses no
mechanisms that allow it to ‘look-ahead’ and predict the ef-
fect of its actions. It is implemented at a high, goal-oriented
level. In addition to the objective of explaining attachment,
this project aims to act as a ‘test-bed’, and compare the per-
formance of a variety of architectures. These will differ with
regard to the possession of a number of capabilities, such as
whether the architectures can perform evaluations of possi-
ble actions or whether they have access to, or can use explicit
forms of representation.
Internal validity is achieved for each candidate architec-

ture by ensuring that it fulfils the requirements set out by the
scenario. Any architecture that can reproduce the behaviour
required by the scenario has passed a form of sufficiency test
and is a ‘proof of concept’ for that theory (Cooper, 2002).
External validity is related to how well the specification of
requirements, in the form of a scenario, represents the be-
haviour we are trying to explain. Architectures that fully re-
produce the scenario can be assessed against each other, and
may differ in how they fulfil the scenario, whether by princi-
pled or ad-hoc means. Additional constraints can be derived
from a wealth of linked empirical data and theory from cross-
species, evolutionary, neurosphysiological and cross-cultural
branches of Attachment Theory.

2 The nature of the problem: behaviours to
be explained

The Strange Situation Experiment is not strictly an experi-
ment but rather it is a standardised laboratory procedure that
presents infants with a controlled and replicable set of ex-
periences. What the infant experiences over the eight short
episodes of this procedure is intended to activate and inten-
sify infant attachment behaviours, which might include the
infant looking more at the carer, moving towards the carer or
crying to gain the carer’s proximity. The effect of the Strange
Situation procedure is designed to be similar to situations
that infants commonly encounter in real life, with the impor-
tant qualifications that each infant taking part should experi-
ences the same environment and that the infants responses are
recorded by video through a one way mirror.
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The Strange Situation procedure was originally devised
to investigate differences in attachment behaviour observed
in a comparison of infants from rural villages in Uganda
and infants from suburban communities in Baltimore, USA.
When under observation, the Ugandan infants exhibited sig-
nificantly elevated levels of anxious behaviour, despite being
in familiar surroundings. Ainsworth et al. (1978) hypothe-
sised that the intense behaviours seen in the Ugandan study
might be evoked more incisively if the Baltimore infants were
put in an unfamiliar environment. The Strange Situation was
therefore created, and in the first study it was carried out on
one year old infants who had previously undergone extensive
observation in the uncontrolled and familiar environment of
their homes. Importantly, the presence of extensive observa-
tions at home meant that individual difference classifications
could be made not only based upon infant responses in the 24
minutes duration of the entire Strange Situation procedure,
but also in response to the 72 hours of home observations
made in the preceding year. The close matching of behaviour
in the Strange Situation and the home studies has allowed the
Strange Situation procedure to act as an indicator of the qual-
ity of the mother-child relationship that exists outside of the
laboratory (Goldberg, 2000).
In total, in the the home and Strange Situation observation

stages of the study, 23 different types of infant behaviour and
26 types of maternal behaviour were observed. The reported
aspects of infant behaviour included data on the prevalence of
specific behaviours such as: frequency and duration of cry-
ing; differing responses to mother’s comings and goings; be-
haviour relevant to contact; and anger with the mother. In
the Strange Situation additional infant data was gained on
the nature of the infant’s exploration and responses to the
stranger. Detailed data on the mother was recorded only for
behaviour at home and included data on specific measures
of behaviour and codings that captured more abstract pat-
terns of behaviour across superficially different types of in-
teraction. The specific measures of behaviour included: how
many times and for how long mothers did not respond to the
infant crying; the duration and affectionate quality of pick-
up episodes; the mother’s level of aversion to physical con-
tact; and the frequency of unpleasant physical contact being
provided. Abstracted patterns of maternal behaviour were
coded from across different types of episode and included
the level of emotional expression and general sensitivity. The
mother’s behaviour in the Strange Situation was controlled by
the testers and so was similar in all cases.
The eight episodes of the Strange Situation, which are all of

three minute duration, are: (1) mother and infant introduced
to unfamiliar room; (2) mother is nonparticipant while infant
explores; (3) a stranger enters; (4) mother leaves but stranger
remains, (the first separation episode); (5) mother returns and
stranger leaves, (the first reunion episode); (6) mother leaves
infant on its own, (second separation episode); (7) stranger
returns; and (8) mother returns and stranger leaves, (second
reunion episode). When the results were evaluated using a
Multiple Discriminant Function Analysis the infant responses
were found to be clustered into three major categories of at-
tachment style, labelled: Avoidant (type A), Secure (type B)
and Ambivalent/resistant (type C) (Ainsworth et al., 1978).

A meta-analysis of cross-cultural patterns for 2000 Strange
Situation classifications across 8 countries found that the
original Baltimore study, and most other studies (from coun-
tries including the US, China, West Germany, Great Britain,
Netherlands, Sweden and Japan) fitted into a group where
about two thirds of infants were assigned to the Secure (B)
category, a fifth assigned to the Avoidant (A) category and
an eighth to the Ambivalent (C) category (van Ijzendoorn and
Kroonenberg, 1988). Studies with statistically outlying distri-
bution patterns included: Israeli and US studies with elevated
proportions of Ambivalent infants; a West German study with
higher numbers of Avoidant infants; and a Japanese study
where the number of Avoidant infants was lower than the
international average and the number of Ambivalent infants
higher. Since the original studies, a fourth attachment cate-
gory has been formed, labelled the Disorganised/disoriented
(D) style. These infants are found in small numbers in non-
clinical samples, and usually come from home environments
with particularly inadequate care (Goldberg, 2000). At this
preliminary stage of the project the cross-cultural and type D
disorganised infant data will be set aside and the simulations
will concentrate on providing explanatory models of how the
other three attachment types come to be formed. However,
these studies are a rich source of constraints for future evalu-
ation of the architecture described here.
What we want to do is understand why styles of attachment

behaviour form as clusters, rather than being distributed more
evenly along some spectrum of behaviour. We also want to
understand the architectural mechanisms by which these be-
haviours come about, and to form a theory explaining the pur-
pose, if any, of these behaviours for the infant. We cannot use
every detail of all the behaviours recorded in any one study,
as this would result in overfitting of the data and poor gen-
eralisation. Also, trying to implement observations regarding
such things as a mother’s sensitivity to the infant’s food pref-
erences would result in arbitrary details of no relevance to our
central theoretical questions. We need to be selective and find
a level of abstraction, that captures the essence of the empiri-
cal results, and that can form a scenario that will then act as a
specification of requirements for the purposes of evaluation.
The separation behaviours are not a clear guide in this regard.
This is because separation behaviours in the Strange Situation
laboratory setting are not fully predicted by the carer’s and in-
fant’s behaviour in the home environment. Importantly, how-
ever, reunion behaviour in the Strange Situation is strongly
predicted by the home behaviour of the mother and the infant
(Meins, 1997).
Regardless of how they reacted in separation;

• the infants whose response to their mothers on reunion
in the Strange Situation was: to not seek contact or
avoid their mother’s gaze or physical contact with her,
are described as insecure-avoidant and labelled type A.
These children return quickly to play and exploration
but do so with less concentration than secure children.
Whilst playing they stay close to and keep an eye on
their carer. They received care at home which can be
summarised as being consistently less sensitive. In com-
parison with average levels across all groups: A type
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mothers were observed at home being less emotionally
expressive and having a greater aversion to close physi-
cal contact; they left infants crying for longer durations
and provided more physical contact of an unpleasant na-
ture; and at home these infants were more angry, they
cried more and were observed to ‘sink-in’ less during
physical contact.

• the infants whose response to their mothers on reunion
was: positive, greeting, approaching, making or accept-
ing contact with, or being comforted by her, are de-
scribed as securely attached and labelled type B. These
children returned to play and exploration in the room
quickly. They received care at home which can be sum-
marised as being consistently more sensitive. In com-
parison with average levels across all groups: B type
mothers were observed at home being more emotionally
expressive and having a smaller aversion to close physi-
cal contact; they left infants crying for shorter durations
and provided less physical contact of an unpleasant na-
ture; at home these infants were less angry, they cried
less and were observed to ‘sink-in’ more during physi-
cal contact.

• the infants whose response to their mothers on reunion
was: not being comforted and overly passive or showing
anger towards their mothers, are described as insecure-
resistant/ambivalent and labelled type C. These children
do not return quickly to exploration and play. They re-
ceived care at home which can be summarised as being
less sensitive and particularly inconsistent. In compari-
son with average levels across all groups: C type moth-
ers were observed at home being more emotionally ex-
pressive and having a smaller aversion to close physical
contact; they provided physical contact which was un-
pleasant at a level intermediate between A and B car-
ers and left infants crying for longer durations; at home
these infant’s were more angry, they cried more but were
observed to ‘sink-in’ more during physical contact.

• the infants whose response to their mothers on reunion
was: totally disorganised and confused, are described
as insecure-disorganised and labelled type D. The home
environment of behaviour for this very small proportion
of infants has been found to be dysfunctional, often with
depressed mothers or with maltreatment of the infant
(Meins (1997), Ainsworth et al. (1978), and Weinfield
et al. (1999)).

From empirical observation to scenario.
From these results we need to focus on those behaviours of
particular importance for the purposes of creating a scenario
that will act as a specification of requirements. Together
Avoidant and Ambivalent infants are termed Insecure infants.
Although infants of these types differ in a number of respects,
they have much more in common with each other than either
has in common with the Secure infants. The Secure versus
Insecure distinction is therefore the clearest distinction made
in this study. The second distinction concerns why some in-
fants end up classified as Insecure Avoidant whereas others
are classified as Insecure Ambivalent.

The differences between Secure and Insecure infant-carer
pairs that we want to include in mini-scenarios are:
• In reunion episodes of the Strange Situation, Secure in-
fants show some distress but get back to play quicker
and with more attention in their play.

• At home, Secure infants communicate with less intense
negative tone, show less angry protest, crying less fre-
quently and for shorter durations, and are more rewarded
by close physical contract.

• At home, the carers of Secure type infants respond in a
timely fashion to more communications from the infant.

The differences between Avoidant and Ambivalent infant-
carer pairs that we want to include in mini-scenarios are:
• In reunion episodes of the Strange Situation, Avoidant
infants show little angry protest but Ambivalent infants
show particularly resistant and angry behaviour.

• Both Avoidant and Ambivalent infants show more angry
protest at home, they both cry more frequently and for
longer durations. What separates their home behaviour
is that Ambivalent infants are more rewarded by close
physical contact than are Avoidant infants.

• At home, the carers of Avoidant infants reliably reject in-
fant signals indicative of a desire for closeness and when
they do make physical contact it is more often unpleas-
ant. The carers of Ambivalent infants also frequently re-
ject signals indicative of a desire for closeness, but this
pattern of behaviour is more inconsistent. These carers
vary in the quality of physical contact they provide.

Putting aside theories based upon innate
temperament.
This section will briefly set out the evidence that theories
of innate temperament make as a claim to partially explain
Strange Situation behaviour. However, these theories will
then put aside apart from as consideration for future work.
Strong evidence for innate temperamental traits as major
causal factors for the infant behaviour in the Strange Situa-
tion emerged after the first study by Ainsworth et al. (1978).
This first study found a strong correlation between maternal
behaviour at home and infant behaviour in the Strange Situa-
tion, and a weaker correlation between early infant behaviour
and infant behaviour in the Strange Situation. However, later
studies have failed to confirm the clear difference in the mag-
nitudes of these correlations. In a meta-analysis of thirteen
different studies Goldsmith and Alansky (1987) found that al-
though the correlation between home maternal behaviour and
infant Strange Situation behaviour was stronger than that be-
tween infant home behaviour and infant Strange Situation be-
haviour, the gap had narrowed from that found in Ainsworth
et al.’s study.
It has been suggested that the avoidant infants don’t show

distress in reunion episodes simply because they are not dis-
tressed, and this lack of distress is the result of innate tem-
peramental differences (Goldberg, 2000). Studies that mea-
sured the physiological correlates of stress for infants un-
dergoing the Strange Situation have been carried out (Herts-
gaard et al., 1995; Spangler and Grossman, 1993). Using
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heart rate and cortisol measurements as indicators of covert
stress these studies found that the stress levels of avoidant
infants were at least as high as the secure and ambivalent
groups. However, it might still be argued that avoidant in-
fants show less overt distress than secure and ambivalent in-
fants because of an innate difference in their ability to man-
age stress. In addition, from cross-species studies of attach-
ment, Suomi (1999) reports that innate differences similar to
human temperamental traits give rise to three categories of
attachment behaviour in Rhesus Monkeys. These categories
appear to fulfil some of the same roles and functions as that
of the Avoidant/Secure/Ambivalent distinction found in hu-
mans, and unlike with human infants these categories are in-
nately determined and invariant through-out ontogenetic de-
velopment.
The simulation must ultimately have the power to represent

the full range of likely phylogenetic and ontogenetic causal
factors. For now this work will focus on models that concen-
trate on caregiving influences on infant behaviour. These ef-
fects seem to be the largest and models of innate temperament
may also be better incorporated when the model is deepened
to include lower level implementational details.

3 An initial solution: a reactive architecture
The aim of this project is to build a number of infant and
carer software agents that reproduce the differing patterns of
home and laboratory behaviour found in studies of attach-
ment. The simulated agents should be designed in a manner
that increases our understanding of how and why the patterns
are formed in reality. The simulation needs to be as simple
as possible, whilst being powerful enough to represent plau-
sible competing mechanisms and possible causal structures
that underlie the patterns of behaviour. The simulations re-
produce the attachment behaviours in question at an abstract
level, and do not replicate the lower level details of sensory
modalities and motor actions.
Each simulation is split into a training period, correspond-

ing to the lengthy home observations, and a test period, cor-
responding to the much shorter Strange Situation assessment.
A mapping between input data (in the form of the carer’s
behaviour at home) to output data (in the form of the in-
fant’s behaviour in the Strange Situation stage of the simu-
lation) emerges from the dynamic interaction of infant and
carer agents in a 2-dimensional virtual world. In the training
period infants explore the space of behaviours open to them,
attempting to optimise their behavioural ‘policy’ in terms of
plausible adaptive benefits, and these learnt ‘policies’ are car-
ried forward to the Strange Situation stage of the simulation.
A reactive architecture has been implemented and repro-

duces the different attachment behaviours in the scenario.
The design of this system is inspired by structures, mecha-
nisms and functions described in Ethology and Attachment
Theory, particularly the Behavioural System architecture de-
scribed by Bowlby (1969 1982) and the analysis of avoidant
and ambivalent strategies outlined, respectively, by Main and
Weston (1982) and Cassidy and Berlin (1994).
The architecture has three major divisions: perceptual sub-

systems, a central selection and arbitration subsystem, and
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Figure 1: A Reactive Design. This architectural hypothesis
postulates that; at one year of age, all Strange Situation pat-
terns of behaviour are produced without resort to deliberative
mechanisms. This hypothesis does not preclude simple delib-
erative processes occurring in other behavioural domains.

action subsystems. (see figure 1). There are six perceptual
subsystems, which each have an implicit goal, and each pro-
viding proposals for action with a variable activation level.
There are also two action subsystems which are not mutually
exclusive, and can be active simultaneously. In between the
perceptual subsystems and the action subsystems is the selec-
tion and arbitration mechanism, which selects the group of
actions with the highest activation that do not exclude each
other being carried out.
The six perceptual systems have the implicit goals of:

maintaining physical requirements (an abstraction of food,
warmth and cleanliness); maintaining safety from unfamil-
iar objects; maintaining safety from remoteness of the carer;
learning about objects; learning about agents; and avoiding
harm from previously unpleasant objects, agents or events.
These subsystems will henceforth be termed, respectively,
the Physical-need, Fear, Anxiety, Exploration, Socialisation
and Avoid-pain perceptual systems, these terms being labels,
not definitions of properties. The two action subsystems are
Moving and Signalling, each of which has a target. When
the targets of the actions are included there are nine differ-
ent atomic actions possible, six movement actions and three
signalling actions: to move to the carer (Move-carer); to sig-
nal to the carer (Signal-carer); move to the stranger (Move-
stranger); signal to the stranger (Signal-stranger); to move to
a target toy object (Move-toy); to not signal (Not-signal); and
to move away from the carer, stranger or toy (Away-carer,
Away-stranger and Away-toy). Figure 2. lists the perceptual
subsystems alongside the actions that each may activate.
If the purpose of the simulation was to model attach-

ment behaviour in infancy without regard to individual differ-
ence data then the architectural mechanisms described above
would be sufficient. The simulation provides mechanisms for
how infants may adapt to their carer’s behaviour. Before we
describe the learning mechanisms present in the infant we
will summarise the three types of carer behaviour in the sim-
ulation.
Carers in the simulation have a small repertoire of actions,

and different patterns of caregiving are distinguished by the
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Physical-need Move-carer
Signal-carer

Fear Move-carer
Signal-carer

Anxiety Move-carer
Signal-carer

Exploration Move-toy
Not-signal

Socialisation Move-carer
Signal-carer
Move-stranger
Signal-stranger

Avoid-pain Not-signal
Away-carer
Away-stranger
Away-toy

Figure 2: Shows the mapping from the six ‘Behaviour sys-
tem’ perceptual modules to the actions that might possible be
activated by those modules.

timings, thresholds and effectiveness with which these ac-
tions are carried out. Carers are either concerned with for-
aging for energy or with attending to the infants in some
manner. Carers possess three key parameters that guide their
behaviour. These parameters are labelled: Feed-self-now,
Respond-to-infant and Panic-now. Carers use up energy as
they move around. If a carer has an energy level below the
Feed-self-now threshold then it will always choose foraging
instead of any signalling to, or energy provision for, the in-
fant. This threshold is low in the case of the carers of Secure
and Ambivalent infants, so that these carers rarely interrupt
or delay their caregiving to forage or harvest energy. This is
not the case with Avoidant carers, who possess a higher value
of the Feed-self-now parameter, and who therefore often in-
terrupt attending to the infants, whatever the infants level of
distress, to forage for energy to build up their own energy
levels. The available energy in the environment can be var-
ied. If energy levels are abundant then the carers of Avoidant
infants behave more like the other carers. However if en-
ergy is scarce the reverse happens, and all carers seem like
carers of Avoidant infants. This accords with an empirical
study that found low levels of support to caregivers predicted
a higher likelihood of infants receiving an Insecure classifica-
tion (Crockenberg, 1981).
Infants can emit signals with a range of affective tone, rep-

resenting both smiles and distress. The Respond-to-infant pa-
rameter is set so that the carers of Secure and Ambivalent in-
fants will ordinarily be very prompt in their responses to in-
fant signals. The carers of Avoidant infants respond to signals
at a higher threshold than the other carers. An important ex-
ception to these patterns of behaviour is caused by the actions
of the Panic-now parameter. This parameter sets the level at
which the carers’ behaviour switches to a different and less
efficient mode. The carers of Secure and Avoidant infants
have a very low probability of ‘panic’ being triggered, so that
the other three parameters provide a good summary of their
behaviour. The carers of Ambivalent carers often ‘panic’, and

this means that their behaviour is patchy, unpredictable and
overall much less responsive than that provided by the car-
ers of Secure infants. The notion of ‘panic’ is not a good
representation of the ordinary use of this term, but does re-
flect the qualities of the carers of Ambivalent infants found in
studies that have used the Adult Attachment Interview (AAI)
to assess the attachment status of infant caregivers (Hesse,
1999). The AAI analyses the discourse properties of adult
carers talking about attachment relations and describes the
carers of Secure infants as autonomous and ‘free to evaluate’
and the carers of Avoidant infants as dismissing. The carers
of Avoidant infants are described as preoccupied, enmeshed,
and often engaged with angry struggles with their own car-
ers. It is a pattern of caring which results from these states of
mind that the ‘panic’ behaviour is trying to capture.

In reunion episodes, why do secure infants return to
attentive exploration sooner?
Secure infants get back to attentive exploration earlier than
other infants because their Anxiety subsystem is less acti-
vated. In an unfamiliar environment the Exploration subsys-
tem will always posses at least moderate activation and when
the activation of the Anxiety subsystem drops below this level
the behaviour switches to exploration. Another way of saying
this is that, although they have just undergone a distressing
separation, Secure infants feel safer in the reunion episodes
than the other infants do. They feel free to explore because
they assess they are under less threat. This is because Secure
infants have learnt in their previous home experiences that
their carers are reliable providers of security.
All the infants assess security in their Anxiety subsystems

by reference to a parameter called the Safe-range distance.
When the distance to their carer is less than the Safe-range
the Anxiety system passes no activation and the infant can
be said to be feeling no insecurity. When the carer travels
beyond this threshold, so that the distance from carer to infant
is greater than the Safe-range distance, the Anxiety subsystem
starts to pass an increasingly high level of activation. The
longer the carer stays beyond the Safe-range limit the higher
the activation level goes. Eventually the Anxiety subsystem
gains control of behaviour and issues Move-carer and Signal-
carer actions that should bring the carer closer.
In the training stage of the simulation there are repeated

instances where the carer goes beyond the Safe-range limit,
is called back, and then responds promptly or otherwise. The
Safe-range limit is then updated by a re-inforcement signal
(R(t)), that is a function of the time (t) the carer takes to re-
spond from the infant’s first signalling, and is given by equa-
tion 1:

R(t) =
↵

1 + e�(t�(tm+tk))
� �t (1)

The constants ↵ and � control the maximum rewards and
punishments, respectively, that the infant receives. The con-
stant � sets the gradient of the decrease of the reward, a small
positive value for � produces a gradual decrease in the size
of reward each time step, higher positive values for � pro-
duce decreases in reward that approach a step function from
maximum to minimum reward over small periods of time.
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The time step where the steepest decline in reward occurs
is set by the terms tm and tk. The term tm is the mini-
mum possible time that a carer could respond, its inclusion
means that infants do not expect carers to respond faster than
the laws of the virtual world allow. The term tk is a con-
stant. When the time elapsed from bid to reward is less than
(tm + tk) the positive reinforcement is large. Another way
of saying this is, prompt responses give large reinforcement
signals and this results in the Safe-range distance being in-
creased. When responses take more time reinforcement sig-
nals become negative ‘punishment’ signals. In this context
‘punishment’ doesn’t mean that the actions that were taken
are less likely to be taken in future. Quite the opposite oc-
curs. The Safe-range limit is reduced by the value of the
punishment signal. Therefore distances that are previously
considered by the infant to be safe, are now beyond the Safe-
range distance. The carer still has to forage and may still need
to go as far afield in the future, so the chances are that after
a decrease in Safe-range the carer will be less responsive in
future.
If a number of decreases in the Safe-range distance oc-

curred without any intervening prompt responses, the in-
fant may become chronically untrusting of the carer’s perfor-
mance. The reverse obviously holds true for carers that carry
out a series of prompt returns. This positive feedback mech-
anism, operating over a long training period, may be what
drives the infant-carer pairs into the Secure/Insecure cluster-
ing seen in the Strange Situation studies. A carer whose per-
formance is initially intermediate between Secure and Inse-
cure may come to be perceived as at either extreme of care-
giving. Figure 3 illustrates the results of computational ex-
periments to find if there exists a level of carer responsive-
ness which is intermediate between secure and insecure forms
of caregiving. On first inspection it may seem that a carer
response threshold of 29 gives an intermediate Safe-range
value. But what actually occurs at this value is a bifurca-
tion between some experiments that show secure patterns and
some that show insecure patterns, with a resulting intermedi-
ate average with high standard deviation. This has implica-
tions for the kind of predictions we might expect this model
to produce. Figure 4 shows the results of ten experiments,
where identical carers, all with a response threshold of 29,
were matched with ten identical infants. In these experiments,
five infants ended up secure and five ended up insecure, the
difference due to small random variations that occured early
in each simulated run.
What affect does possesion of a small Safe-range value

have on an infant’s perception of its carer’s behaviour, and
therefore its own consequent actions? Figure 5 shows how
contrasting infant behaviours result from situations where
carers are currently making identical relative movements. In
the secure scenario, the carer is moving towards food but is
still within the infant’s Safe-range so the infant is not sig-
nalling and is moving towards an unexplored toy object. In
the insecure scenario, the infant’s past experiences have given
rise to a smaller Safe-range. The carer has already crossed
this boundary and the infant has switched goals from explo-
ration to bringing the carer back within its Safe-range by sig-
nalling and moving towards the carer.
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Figure 5: A secure infant moves towards a toy as its carer
moves away towards food. When an insecure infant experi-
ences the same event it moves and signals towards the carer.
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Sroufe and Waters (1977) introduced the term ‘felt-
security’ to emphasise infants are not merely measuring a one
dimensional distance between infant and carer. Other factors,
such as carer attentiveness, are used by the infant to mea-
sure security. We can view the Safe-range parameter as an
abstract representation of a much richer measure of security
than exists in reality. This does not change the core of our
theory, whereby incidences of high or low carer responsive-
ness change the criteria by which the level of future security
is assessed.

At home, why do Avoidant and Ambivalent infants
both get angry and cry more?
Individual episodes of anger are initiated in the training phase
of the simulation whenever three conditions are met. These
are that the infant experiences an undesirable event, this
event violates its current expectation, and the event has been
brought about by the infant’s carer. The key type of event that
repeatedly gives rise to anger is when the infant signals for the
carer’s attention and proximity but the carer does not respond
within the expected time-frame. Anger is not initiated imme-
diately, but commences after the expected time for response
has elapsed. The expected time for response is represented as
the sum of the tm and tk terms in equation 1. Therefore the
frequency of angry experiences is related to the learning of
the Safe-range distance. The infant experiences anger in each
separation episode where the time the carer takes in respond-
ing (t in equation 1) is greater than the sum tm + tk.

In reunion episodes, why do Avoidant infants show
less anger and crying?
Instead of protesting when reunited with their carer, Avoidant
infants return to exploration, but do so with less attention than
Secure infants. Behaviour of this type has been described as
a ‘displacement activity’(Main and Weston, 1982). An ex-
ample of displacement activity from animal behaviour might
be found when an animal is faced with a con-specific with
which it might fight with, or flee from, but instead starts to
groom itself (Bowlby, 1969 1982). Displacement activities
occur when two strongly activated behaviours ‘cancel each
other out’, and a seemingly inappropriate behaviour becomes
active. According to Ainsworth et al. (1978), Avoidant in-
fants act avoidantly in reunion episodes to avert close physi-
cal contact.
The ability to avert close physical contact of an unpleas-

ant nature has been implemented in the simulation by the in-
clusion of the Avoid-pain subsystem, which learns how re-
warding close physical contact has been for the infant. Se-
cure and Ambivalent infants receive rewarding experiences
when in close physical contact with their carers. Avoidant
infants receive less pleasant physical contact and are less re-
warded. However, Avoidant infants still seek contact when
their Physical-need and Anxiety activation levels are very
high. The perceptual systems have bounds to their activa-
tions, and these are set so that the Avoid-pain subsystem does
not override Physical-need or Anxiety subsystems when these
subsystems are highly activated. This explains why the be-
haviours in the reunion episodes are indicators of the quality

of the infant-carer relationship beyond the laboratory. Re-
union episodes provide Anxiety activations that are just low
enough that the balancing effect of the Avoid-pain subsystem
can be seen. Insecure Avoidant infants differ in their reunion
behaviour from Insecure Ambivalent infants because at close
distances to their carers the goal of avoiding close contact in-
hibits active expression of secure goal behaviour, leading to
behaviours linked to the exploration goal being activated as
displacement behaviours.
The Avoid-pain subsystem ‘solves’ the problem of

Avoidant reunion behaviour but creates a new problem of how
to represent physical contact in this high-level simulation. A
more satisfactory solution for future work would be for the
distinctions in behaviour to emerge from the functioning of
a theoretically grounded perceptual system, such as that re-
viewed by Polan and Hofer (1999). Rat studies have uncov-
ered mechanisms related to physical contact and attachment,
that are termed ‘hidden regulators’, and which are believed to
be the physiological basis of the state of ‘felt-security’. These
mechanisms are believed to produce low level expectations
regarding comfort and safety in rats and human infants.

4 Conclusion
This work uses autonomous agent techniques to create a psy-
chological model of social interaction in infancy. To the
author’s knowledge it is the first software implementation
that explains the three principal types of infant attachment
as adaptations to caregiving style. The simulation captures
fine grained and long term temporal properties of behaviour
at an abstract level of description, and it shows how dif-
ferent attachment styles are formed and can become self-
sustaining. The architecture might be implemented at a less
abstract level of description by incorporation of the mecha-
nisms of action selection found in the Basal Ganglia and de-
scribed by Gurney et al. (2001) and reinforcement learning
mechanisms described by Schultz et al. (1997). This simu-
lation differs from computational models of infant develop-
ment based upon stand-alone neural networks and production
systems because it models a whole system which includes
perception, action and internal processes embedded in a dy-
namic environment (Shultz, 2003). It also differs from many
developmentally oriented agent-based simulations and other
relevant work, such as social interaction in infant-like robots,
because of its concentration on central processing and impov-
erished perceptual capacity (Schlesinger, 2001; Breazeal and
Scassellati, 2000; Likhachev and Arkin, 2000).
Comparison with a model of adult Contention Scheduling

is instructive: the infant architecture can be viewed as more
abstract, more simple but also a broader version of the ar-
chitecture described by Cooper and Shallice (2000). Both
link perception to action, but the architecture for Contention
Scheduling does so via a hierarchically organised network of
action schemas, which represent goals and multiple levels of
subgoals. The architecture for infant attachment is flat, with
one level of goals activating a single level of atomic actions.
These actions are also more abstract than those found in the
model of Contention Scheduling. Future work may involve
augmenting the two infant actions of moving and signalling
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with the inclusion of less abstract and more numerous actions
which may need to be respresented at multiple levels of ab-
straction, and hence require hierarchical organisation. There
is a sense that the model of Contention Scheduling is aimed
at a narrower set of phenomena than the ultimate objective
for the infant architecture. Whereas Contention Scheduling
is intended to only deal with routine activities, the infant ar-
chitecture is intended to model responses to novel situations.
To more fully realise this aim a hybrid architecture is in the
process of creation, and this architecture is intended to inte-
grate deliberative capabilities with the reactive action selec-
tion mechanisms described above.
The main contributions that this work makes are that it de-

scribes and then abstracts a set of data observed from attach-
ment studies of human infants. A model of action selection
based upon a reactive architecture has been implemented and
evaluated against behavioural and physiological data. Further
systematic exploration of its design space will be carried out.
However, in analysing the simulation it is important to dis-
tinguish between its theoretical and its implementational as-
sumptions. For example, many of the parameters described in
the infant and carer architectures, such as the carer response
threshold, do not have a straightforward translation to phe-
nomena in reality. This work aims to contribute to multiple
disciplines and demonstrates that the domain of attachment
behaviour, in humans and other species, provides a valuable
‘test-bed’ for comparing the performance of different action
selection mechanisms.
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Abstract
Emotion plays an important role in thinking. In this
paper w e focus on the regulatory influence of
pleasure on information processing in simulated
adaptive agents. Our agent’s pleasure is a function
of its performance on the tasks it executes in the
environment. Our model is based on Reinforcement
Learning  and the Simu lation Hypoth esis. The main
hypothesis tested is: if action-selection-bias is in-
du ced by an amou nt of simu lated anticipatory be-
h avior, and if th is amou nt is dynamically con-
trolled by pleasu re feedback, th en th is provides
additional su rvival valu e to an ag ent compared to
a static amou nt of simu lation. Experimental results
illustrate that this hypothesis holds true. Dynamic
adaptation results in a learning performance that at
least equals static simulation strategies, and it re-
sults in a major decrease of mental effort required
for this performance. This is relevant to the evolu-
tionary plausibility of the simulation hypothesis,
for increased adaptation at low er cost is an evolu-
tionary advantageous feature. In addition, our re-
sults provide clues of a relation betw een the simu-
lation hypothesis and emotion.

1  Introduction
Emotion plays an important role in thinking. Evidence
ranging from philosophy [G riffith, 1999] through cognitive
psychology [Frijda, et al., 2000] to cognitive neuroscience
[Damasio, 1994; Davidson, 2000] and behavioral neurosci-
ence [Berridge, 2003; Rolls, 2000] show s that emotion!in
w hatever form!is both constructive and destructive to a
w ide variety of cognitive phenomena. Normal emotional
functioning seems to be necessary for normal cognition.

In this research w e focus on the low -level influence of
emotion on information processing in simulated adaptive
agents. We define emotion as a combination of pleasure and
arousal factors [Russell, 2003]. The agent’s arousal is based
on a metadescription of its memory, e.g., prediction accu-
racy. Pleasure is a function of the agent’s relative perform-
ance on the tasks it executes in the environment. The agent
uses Reinforcement Learning (RL) [Sutton and Barto,
1996]. In this paper w e focus on the influence of pleasure as

feedback to control the amount of simulated anticipatory
behavior the agent uses to bias action selection. This influ-
ence is measured in terms of learning performance and total
effort spent on simulated and overt interaction. Thus, w e
investigate the influence on learning if emotion is used to
control the cognitive mechanism (i.e., simulation) that bi-
ases action-selection. We do not model categories of emo-
tions nor use such emotions as information in symbolic-like
reasoning. Reasons for our low -level approach include:

First, because emotion is integrated at multiple levels of
processing and higher!conscious, reflective reasoning!
levels have not alw ays existed throughout evolution, one
w ould expect an evolutionary advantage to integration at
levels close to rew ard systems and behavioral control. On
higher levels, emotion reg u lates information processing.
Could emotion play such role at low er levels?

Second, from a computational point of view  low er levels
tend be more generic. Therefore, regulative mechanisms
found can be applied to a w ider area of disciplines including
cognitive science and machine learning, for example meta-
learning!how  to autonomously monitor and, if necessary,
adapt the learning mechanism used by the agent in order to
better cope w ith the current task. If emotion is considered as
a meta-learning system [Doya, 2000], it can be used to en-
hance artificial adaptive agents in a generic w ay. Regulative
mechanisms that operate on higher cognitive levels may
need a more complex concept of emotion or a dedicated
cognitive architecture, and are therefore less generic.

Third, a low -level interpretation allow s us to stay close to
behavioral control and action-selection mechanisms thereby
avoiding philosophical debates about emotion. Conse-
quently, w e use a modest!but broadly usable and less con-
troversial!concept of emotion as basis for the research.

Fourth, Montague et al. [2004] recently argued that com-
putational models of RL can be used to model and under-
stand behavioral control, and to gain insights into the neuro-
physiological aspects of psychiatric disorders. By computa-
tionally studying how  emotion relates to information proc-
essing and reinforcement w e hope to extend the analogy
betw een RL and behavior.

To study the low -level regulatory influence of emotion on
information processing, w e use a computational RL model.
Besides RL, our approach is based upon the follow ing hy-
potheses. 1 .) The Simu lation Hypoth esis, w hich assumes
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that thinking is internal simulation of behavior using the
same sensory-motor systems as those used for overt behav-
ior [H esslow , 2002] 2 .) interactivism, stating that thinking
emerges from continuous interaction w ith the environment
[Bickhard, 2001].

  These hypotheses have several important characteristics
in common  [Broekens, 2005b], amongst w hich the follow -
ing are particularly important for this paper:

a.) These hypotheses are primarily about neuronal sys-
tems, but do allow  connectionist but non-neuronal model-
ing, the basis of our model.

b.) Emotion plays a role in information processing.
c.) These hypotheses closely relate to Damasio’s [1994]

concept of thinking as an "as-if body loop", involving
simulated actions that are evaluated by their somatic mark-
ers, emotional impact estimators. Four systems are critically
involved: the body; the somato-sensory cortex (SSC), the
emotional marker system that receives information from the
body; the sensory and association cortexes (SC/AC); and the
ventromedial prefrontal cortex (VM-PFC), the system that
stores relations betw een factual representations stored in the
SC/AC and somatic markers stored in the SSC. Interaction
w ith the environment enables the VM-PFC to learn these
links. Tw o important processing mechanisms are the "body-
loop" and the "as-if body loop". When facts about a situa-
tion are recognized, the SC/AC activate the VM-SSC, and
links betw een the situational facts and emotional outcomes
are activated. In the "body-loop", the VM-SSC activates the
body, and the SSC that stores somatic-markers is organized
according to the body. This loop thus involves the emotional
evaluation of action. In the "as-if body loop", the VM-PFC
signals the SSC to reorganized itself directly w ithout sig-
naling the body. This loop thus involves the emotional
evaluation of simulated action. The "as if" loop produces
imagined future factual-emotional states, and the somatic
marker part of such states is the state’s predicted accumula-
tive emotional outcome (rew ard/punishment). This marker
signal is used to bias decision-making [Damasio, 1994].
Even though w e do not model the body of the agent, w e use
the somatic marker concept to understand the relation be-
tw een reinforcement learning (RL), emotion and decision-
making.

In this paper w e first introduce our computational ap-
proach w ithout emotional feedback. Next, w e introduce our
concept of emotion and pleasure in more detail, and w e ex-
plain how  pleasure is used to control the amount of antici-
patory simulation of the agent. Finally, w e discuss our re-
sults, related w ork and give directions for future research.

2  Computational Approach
Our experiments are performed in a gridw orld, a tw o-
dimensional grid w ith positively and negatively reinforced
locations, in our case, lava (negative reinforcement of –1),
roadblocks (–0.5), food (+1.0) and empty cells (Figure 1).
The agent can move everyw here, but is discouraged to w alk
on the lava (by a negative reinforcement). The agent's per-
ceptual field has either a chessboard, 8 neighbor  (Figure
1b), or a cityblock, 4 neighbor metric (Figure 1a, c). In, e.g.,

Figure 1c, the agent w ould perceive "eleee" representing the
(l)ava left of the agent and the (e)empty cells above, right,
beneath, and below  the agent.

Figure 1 (left) and 2 (right). Fig. 1: three different experimental
settings: agent (black), lava (dark gray, red), possible food (F),
roadblock (B), possible start location (S). Tasks from left to right:
find food, forag e, invest. Fig. 2: examples of the agent’s memory.

2 .1  Hierarchical-State Reinforcement Learning
We first explain the basic model w ithout emotional feed-
back. The agent's memory structure is modelled by a di-
rected graph. The memory is adapted w hile the agent inter-
acts w ith its environment (online learning) in the follow ing
w ay. The agent selects an action, a! A, from its set of po-
tential actions A={u , d, l, r}, executes the action in the grid-
w orld and perceives the result of that action, p. This is com-
bined into a situ ation, s=<a, p>, that is stored in the agent's
memory according to a basic rule: if a situ ation s occu rs, th e
ag ent creates a node in th e g raph  if and only if th ere does
not exist a node for s. For example in Figure 1c, if the agent
has moved dow n, "d", and perceives "eleee". In an initially
empty model a node is created to represent the situation
s1 =<d,eleee> (Figure 2a), because the graph does not yet
contains this node. N ow  the agent moves again, resulting in
a new  situation, e.g., s2 =<d,elele>, resulting in a new  node
that represents s2  (Figure 2b). To model that s2  follow s s1  (or
s1  predicts s2 ), the previous situation, s1 , is now  connected to
the current situation, s2 , by creating a new  node, an interac-
tron, betw een s1  and s2  w ith edges as show n in Figure 2c.
This process continues, never violating the basic rule. A lso,
the process is recursively applied to active interactrons. A c-
tive in this case means that an interactron corresponds to the
history of observed situations, e.g., node I1  in Figure 2c. If
situation s2  is follow ed by s3 , the resulting memory structure
is show n in Figure 2d, w ith active nodes s3 , I2  and I3 . If, on
the other hand s2  is follow ed by s1 , the resulting structure is
show n in Figure 2e, w ith active nodes s1 , I2  and I3 .

If at a later time the sequence of situations s1 s2  is again
observed then, according to the rule, I1  is not created again.
Instead, a counter , the u sag e of interactron I1 , that is ini-
tially zero is increased by one. This  can be used to calcu-
late the probability P(s2  | s1 ) using the follow ing more ge-
neric formula:

a

b

c
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,w here y is an active interactron or situation, x! Xy
={x1 ,…,xn} the set of predicted situations by y (represented
by their corresponding interactrons, e.g., I1  representing the
prediction of s2 ). This formula is true, for I1  is conditionally
active upon s1 , and  is only increased if an interactron is
active and multiple sequences other than s1 s2 , e.g., s1 s3 , s1 s4
etc., have their ow n interactron attached to s1  w ith its ow n 
increased if and only if the corresponding sequence is ob-
served. Furthermore, w e define a threshold, ", representing
the minimal "survival probability" for an interactron. If P(x |
y)<", the corresponding interactron is forgotten and re-
moved from the memory, including its dependencies. This
corresponds to Bickhards [2000] notion of interaction
(de)stability based on consistent confirmation of predicted
interactions, see also [Broekens and DeG root, 2004].

The memory maintains a distributed, hierarchical predic-
tion of the next situation. Every active interactron predicts
potential next situations, k of these interactrons can be ac-
tive, and the 1st till k-th interactron predict potential next
situations w ith a history of length 1 till k respectively (e.g.,
I3  is a k=2  interactron w ith history s1 s2 ). Learning in the
context of this memory can be seen as the online learning of
1…k-th order Markov Decision Processes in parallel.

In addition to a predictive probability, every interactron
has a reinforcement value, called a marker,! , w ith "#+$,
w here # is the interactron’s direct reinforcement value and $
is a back-propagated indirect reinforcement value. Thus, the
value of an interactron is a function of it’s ow n rew ard and
the rew ards of those situations it predicts. More specific,
first, all k active interactrons are reinforced by a signal from
the environment, rt, at time t. For every such interactron y,
#y, is adapted according to the formula:

, w here %  is the agent’s learning rate. Second, for every
interactron y, $y, is calculated as follow s:

, w here t(xi | y) is defined as the marker of interactron xi,
w ith xi predicted by y. This indirect part of an interactron’s
(say y) value is thus the w eighted average of the markers
belonging to the interactrons Xy that represent the situations
that y predicts, w here w eighted is according to the probabil-
ity distribution P(xi | y) over all i.

A ction-selection is based on the parallel inhibition and
exhibition of actions in the set of actions, A. The inhibi-
tion/exhibition originates from the k active interactrons and
is calculated using the formula:

, w here lt(ah ) is defined as the level of activation of an ac-
tion ah!A at time t, yi an active interactron, and xi

j predicts
action ah . This last clause is needed, for the memory stores

action-perception pairs and any of these pairs that are pre-
dicted by any of the k active interactrons should inhibit
(negative marker) or exhibit (positive marker) the corre-
sponding action, but not other actions. A dditionally, of all
good actions (any lt(ah )>0 ) the best action ah , i.e.,
lt(ah )=max(l(a1 ),…,l(a|A|)), is alw ays selected. If there are
only bad actions (all lt(ah )<0 ) a stochastic selection is made
based on (l(a1 ),…,l(a|A|); the action w ith the highest activa-
tion therefore has the highest chance of being chosen re-
sulting in a probabilistic Winner-Take-All action-selection.

The process described in this section is our agent’s "body
loop". Next, w e describe our agent’s "as-if" loop, its simu-
lation mechanism. For a discussion on the relation betw een
Damasio's somatic marker hypothesis and our computa-
tional model, see [Broekens, 2005b].

2 .2  Internal Simulation and Action-Selection Bias
To study anticipatory simulation w e add the follow ing ca-
pability to our model: after every real interaction w ith the
environment, the model simulates one time-step ahead. In-
stead of selecting an action based on past interactions the
follow ing process is executed:

1 .) Interaction-selection: at time t select a subset of to-be-
simulated interactions from the set of interactions predicted
by all k active interactrons.

2 .) Simu late: send the subset of selected interactions to
the model as if they w ere real interactions. The memory
advances to time t+1 .

3 .) Reset-state: to be able to select an appropriate action,
reset the memory's state (the active interactrons) to the pre-
vious timestep, i.e., time t.

4 .) Action-selection: select the next action using the stan-
dard mechanism described above. Thus, the propagated
markers of the simulated predicted interactions directly bias
action-selection. Our anticipation mechanism is best under-
stood as state anticipation [Butz et al, 2003].

5 .) Reset-markers: reset &, # and $ of the interactions that
w ere changed at step 2 (simulation) to the values of &, # and
$ of these interactions before step 2.

Step 1 selects predicted interactions to be simulated, and
is a critical component in our simulation mechanisms since
it defines the amount of internally simulated information. In
a previous experiment [Broekens, 2005] w e used four static
selection criteria (also referred to as simu lation strateg ies).

a.) No simulation (NON). The actions are selected as de-
scribed in the previous section and the 5-step simulation
procedure is not executed. b.) Simulation of the predicted
best interaction (BEST). The w inning interaction of the
WTA  selection resulting from step 1 is sent to the model for
simulation (step 2). A ny real interaction is accompanied by
a reinforcement signal. A s this is a simulation w e lack such
a signal. Instead, this signal is simulated using the & of the
w inning interaction as reinforcement. We simulate the pre-
dicted interaction and its associated value. c.) A  selection of
the predicted 50% best interactions, i.e., a more balanced
selection, (BEST50). A gain w e simulate the reinforcement
signal using the &’s of the simulated interactions. d.) A ll of
the predicted interactions (A LL).
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In essence, NON, BEST, BEST50 and ALL simulate dif-
ferent values for the selection th resh old of the WTA inter-
action selection ranging from infinite (NON) to high
(BEST) to medium (BEST50) to low  (ALL).  This threshold
filters the set of predicted interactions used to simulate. The
final result of simulation is a bias to the predicted rew ards of
the set of next possible interactions, w ith action-selection
based on these biased rew ards (Figure 3). This means that
our model of internal simulation influences action-selection
in a w ay that is compatible w ith the somatic marker hy-
pothesis [Damasio, 1994] and the simulation hypothesis
[H esslow , 2002]. For more on the compatibility betw een our
model and the simulation hypothesis see [Broekens, 2005].

 Figure 3. Architecture of the different components in our model.

2 .3  Differences in Performance of Static Simulation
Strateg ies Motivate the Feedback Control

In a previous study [Broekens, 2005] w e show ed that simu-
lation in general, and simulation of all possible next interac-
tions (ALL) in particular, has a clear adaptive advantage.
The agent learns the tasks quicker and converges better to
the solution. The agent had to learn three tasks (Figure 1):

1 .) Continuously try to find a randomly changing food lo-
cation, thereby learning the optimal route to both possible
food locations in the gridw orld maze (Figure 1a).

2 .) Learn to forag e (Figure 1b). Now , the agent is initially
placed in the environment, after w hich it should explore and
find food. Again, food locations are randomly selected.

3 .) The same as the first, but the agent additionally had to
learn to accept an initial negative reinforcement (roadblock
in Figure 1c) in order to get to a larger positive one (food in
Figure 1c). With this task w e w anted to test how  the differ-
ent simulation strategies handle investment, w hich is a rele-
vant problem for natural adaptive agents [Doya, 2002].

Intuitively it is not really a surprise that ALL "w ins", as it
is the heuristic using the most information. H ow ever, for
some experimental settings BEST or BEST50 do result in a
better performance (i.e., a smaller amount of simulation
results in a better performance). This suggested a relation
betw een the parameters of the experimental setting, and the
effect of the amount of simulation used by the agent.

Analysis of this relation revealed that the g oal oriented-
ness of the task and the complexity of th e task influence this
performance. When the agent is solving a goal oriented task

(find food, invest), it benefits from a narrow  (i.e., BEST)
simulation strategy w ith a high learning rate, w hile in an
uncertain or more exploratory task (forag e) it benefits from
a broad (i.e., BEST50 or ALL) simulation strategy.

Simple goal-oriented tasks are solved by quickly propa-
gating the delayed rew ard to the beginning, specifically if
there is "just one hill to climb". Local solutions converge to
a global solution. The faster the convergence the quicker the
global solution is found, as reflected by previous results.

If a task is complex, the agent benefits from broader
simulation, for this allow s it to mentally explore multiple
options and make a more balanced choice. This relates to
the exploration-exploitation problem [cf. Doya, 2002]. Es-
sentially our agent has to vary its simu lation strateg y (in-
stead of its action selection) betw een mental exploitation
and mental exploration.

These findings suggested that it is beneficial to the agent
to dynamically adapt simulation to accommodate the task.
Additionally, w e hypothesized that dynamic adaptation of
simulation could outperform any of the four static strategies
tested, for dynamic adaptation could be beneficial to the
agent at different stag es of learning  a task. The main hy-
pothesis addressed in this paper is: if action-selection-bias is
indu ced by an amou nt of simu lated anticipatory beh avior,
and if th is amou nt is dynamically controlled by pleasu re
feedback, th en th is provides additional su rvival valu e to an
ag ent, compared to a static amou nt of simu lation. Our ap-
proach is compatible w ith Cañamero's [2000] view  on w hy
and how  emotion systems should be designed.

3  Emotion as Pleasure and Arousal Factors
That Control Information Processing

Before describing how  w e add emotional feedback to the
simulation mechanism, w e present some rationale for our
concept of emotion. Emotion influences thinking. This in-
fluence is found at low  and high levels of information proc-
essing and is both positive as w ell as negative. For example,
at the neurological level malfunction of certain brain areas
not only destroys or diminishes the capacity to have (or ex-
press) certain emotions but also has the same effect on the
capacity to make sound decisions [Damasio, 1994] and on
the capacity to learn new  behavior [Berridge, 2003], w hich
indicates that these areas are linked to emotions as w ell as
"classical" cognitive and instrumental learning phenomena.
A t the cognitive psychological level a person's beliefs about
something are updated according to the emotion. The cur-
rent emotion is used as information about the perceived ob-
ject [Clore and G asper, 2000; Forgas, 2000], and emotion is
used to make the belief resistant to change [Frijda and Mes-
quita, 2000]. Emotions are "at the heart of w hat beliefs are
about" [Frijda et al., 2000]. For example, your belief about
roller coasters tells you something about the emotion at-
tached to your cumulative experiences w ith roller coasters.

More specifically, emotion is related to the regulation of
adaptive behavior and to information processing. Emotions
can be defined as states elicited by rew ards and punishments
[Rolls, 2000]. Behavioral evidence suggests that the ability
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to have sensations of pleasure and pain is highly connected
to basic mechanisms of learning and decision-making [Ber-
ridge, 1998; Cohen and Blum, 2002]. Behavioral neurosci-
ence teaches us that positive emotions reinforce behavior
w hile negative emotions extinct behavior, so at this low er
level one type of regulation of behavior has already been
established!i.e., approach versus avoidance. The emotion
resulting from an unconditioned natural stimulus is associ-
ated w ith the conditioned stimulus or w ith a specific action.
In the future, upon presentation of the conditioned stimulus
to the animal, this association results either in more actively
ch oosing  th e action that leads to the unconditioned stimulus
(rats’ lever pressing behavior) or in beh avior th at is associ-
ated w ith the unconditioned stimulus (Pavlov’s dog pro-
ducing saliva). At this low er level, emotion has a di-
rect!mostly associative!effect (but also other effects are
reported [Dayan and Balleine, 2002]).

At the higher level of cognitive psychology, evidence
suggests that the processes involved in emotion are crucial
for both evaluating the w orld around us at different levels of
abstraction [Scherer, 2001] as w ell as actually taking action
[Frijda, 2000]. Emotion also plays a role in the regulation of
cognitive processes. Scherer [2001] argues that emotions are
related to the continuous checking of the environment for
important stimuli. More resources are allocated to further
evaluate the implications of an event, only if the stimulus
appears important. This suggests that certain emotions are
related to regulation of the amou nt of information process-
ing . This finding provides an important clue to our approach
of adding emotional control to the amount of simulation
used by the agent. Furthermore, in the w ork of Forgas
[2000] the relation betw een emotion and information proc-
essing strategy is explicit: depending on the strategy used,
the influence of mood on thinking changes.

Although many different emotions (and emotion theories)
exist, and emotion consists of many different compo-
nents!e.g., facial expression, a tendency to act, subjective
evaluation of the situation!, the core-affect theory of emo-
tion states that emotion (mood) consists of tw o fundamental
factors, pleasu re and arou sal [Russell, 2003]. Pleasure re-
lates to emotional valence, w hile arousal relates to action-
readiness, or activity, of the organism. Many different situa-
tions can be emotionally described using these tw o factors,
for example, w inning the lottery (a high arousal high pleas-
ure emotion), or losing a friend (a low  arousal and low
pleasure emotion). Although Mehrabian [1996] argues for
dominance as a third factor, he agrees w ith, and show s con-
siderable evidence for, the pleasure and arousal factors.

Certain cognitive appraisal theories argue that pleasure
and arousal can be produced by very simple stimulus
checking functions. This suggests that low -level mecha-
nisms like intrinsic pleasantness checks and suddenness
checks are involved [Scherer, 2000].

The suggestion that pleasure and arousal factors are fun-
damental to emotion, that these factors can be produced by
simple mechanisms and that these factors can influence
further information processing inspired us to look at how
these tw o factors could result from low -level features of the

agent’s memory structure and its performance, and subse-
quently how  these factors could then influence information
processing in a w ay that is compatible w ith cognitive ap-
praisal theory. In this paper w e focus on the pleasure factor.

3 .1  Pleasure As a Measure for Relative Task-
Performance

According to cognitive appraisal theory positive emotions
are related to top-dow n goal oriented processing w hile
negative emotions are related to bottom-up stimulus ori-
ented processing [Fiedler and Bless, 2000]. Furthermore,
emotion is often seen as an indication of the current per-
formance of the agent [Clore and G asper, 2000]. To capture
these findings w e measure pleasure in the follow ing w ay:

The current pleasure, ep, of the agent is the short-term run-
ning average over the reinforcement signal, r, w ith a w in-
dow  size of star steps, normalized around the agent’s long-
term running average over the same reinforcement signal
w ith a w indow  size of ltar steps. This value is normalized
using f times the standard deviation of the long-term distri-
bution of reinforcement signals (ltar. So, ep is a continuous
measure for how  w ell the agent is currently performing on a
task, relative to w hat it is used to, according to the recent
past. A  large f results in smaller fluctuations around 0.5,
w hile a small f results in larger fluctuations around 0.5.
A lso, ep is clipped betw een 0 and 1. Information processing
can be influenced by ep in the follow ing w ay (Figure 3).
When ep=1 , interaction-selection (Step 1) selects only the
best interactions for simulation, i.e. a high selection thresh-
old. When ep=0  it selects all interactions, i.e., a low  selec-
tion threshold. The agent thus varies betw een BEST and
A LL depending on its pleasure. It can be argued that our use
of pleasure relates more to mood than to emotion, due to its
timescale. Moods typically occur at longer timescales, w hile
emotions are short complex reactions to events. Pleasure in
our case is measured over multiple interactions and does not
react to one interaction in particular. Even if ep is interpreted
as the agent's mood, the modeled effects of positive versus
negative emotion is consistent w ith the previously men-
tioned ideas about top-dow n versus bottom-up processing
related to respectively positive and negative emotions as
w ell as to the concept of emotion influencing the amount of
processing needed. If the agent goes w ell, little processing
(focussed attention) is needed, if it goes bad more process-
ing (broad attention) is needed.

4  Experimental Setup
To test our hypothesis w e created a combined task in w hich
simple and complex elements are present as w ell as goal
oriented and exploratory behavior is needed. The first half
consists of the find food task (Figure 1a), and the second
half consists of the invest task (Figure 1c). The agent is un-
aw are of this change; it is abruptly replaced in a slightly
different environment and has to learn about this change by
interacting w ith the environment. The hypothesized effect is
that the agent dynamically adapts the amount of simulation

ltarltarltarstarp ffrre (( 2))(( &&#
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according to the change in complexity and goal oriented-
ness. We predicted the follow ing changes to simulation
during the task: BEST!ALL!BEST. BEST performs best
on the goal-oriented find food task. The change to the invest
task induces a pleasure decrease, resulting in simulation
close to ALL: mentally explore the new  task. During learn-
ing of the invest task, simulation should return to one that is
close to BEST because the agent’s pleasure increases, re-
sulting in goal oriented behavior of the agent.

f: 1 1 .5 2
star: 5 0 1 0 0 5 0 1 0 0 5 0 1 0 0
ltar: 200 400 200 400 200 400

250 500 250 500 250 500
375 750 375 750 375 750
500 1000 500 1000 500 1000
750 1500 750 1500 750 1500

Table 1:  ltar, star, and f configurations used in the experiment.

One experimental setting is a combination of f, star, ltar,
" and %. These parameters are varied as follow s: the forget-
ting rate "=(0 , 0 .0 1 , 0 .0 3 , 0 .0 5 ), learning rate %=(1 , 0 .8 ) and
ltar, star and f according to Table 1. For every experimental
setting the agent had 255 trials (defined as one ru n) to get to
the food. It had to learn the task w ithin these 255 trials,
w hich show ed to be enough to conclude convergence.

For every experimental setting, w e recorded the agent’s
total number of actions needed to complete a run (i.e. 255
trials), and averaged over 15 runs. This resulted in averages
for 5 )6 =3 0  (f, star, ltar) configurations per (", %) configu-
ration. The goal of these experiments is not to find out w hat
the exact parameters are to get the best dynamic result, but
to investigate the potential benefit of pleasure controlling
simulation effort in general. We assume that there should be
an overall benefit to emotional feedback. Therefore, aver-
aging again aggregates these 30 averages. The result is one
value per (", %) depicted by the red (gray) lines in Figure 4.
Red lines should be interpreted as the average performance
of an agent that uses emotional feedback to dynamically
control the amount of simulation (DYN). Performance is in
terms of the total nu mber of interactions needed to complete
a run (Figure 4a and c), and mental effort in terms of the
total number of simulated interactions needed to complete a
run (Figure 4b and d). Black lines show  the corresponding
performance of the static strategies (NON, BEST, BEST50,
ALL) averaged over 30 runs per (", %) configuration.

5  Results
The performance of our dynamically adapting agent is com-
parable to (Figure 4a and c), and in several special cases
even better than (Figure 4e, result of one setting averaged
over 30 runs instead of 15), the performance of our static
agents. If this effect is put in light of total simulation (men-
tal) effort, it is even more dramatic. DYN uses about 33% of
the mental effort needed for ALL and about 70% of the ef-
fort needed for BEST50 but performs comparably. The pre-
dicted effect of the pleasure feedback is confirmed. Figure 5

depicts a typical pleasure flow  (15 run ep average) of an
agent that uses DYN. Just after the task sw itch (at trial 128)
a steep decrease of pleasure is observed, this results in more
simulated interactions, i.e., broader attention. While ex-
ploring, the agent improves at the invest task, and pleasure
gradually increases, resulting in goal-directed simulation.

Figure 4. Figure 4a and b % =0.8, 4c and 4d %=1 . Figure 4e,f, DYN
(star=1 0 0 , ltar=1 5 0 0 , f=1 ) performing better (one-tailed t-test,
n=30, )=0.05) than static strategies w ith %=0 .8  and "=0 .0 1 .

Figure 5. Pleasure flow  during one run, averaged over 15 runs.

6  Discussion and Conclusions
Under the assumption that total simulation effort positively
correlates w ith total energy consumption of the agent, de-
crease of mental effort reduces the energy need for informa-
tion processing, thereby saving energy for occupancies other
than foraging. If dynamic adaptation reduces mental effort
and if this is an hereditary feature, it becomes evolutionary
advantageous. This suggests that dynamic adaptation of the
amount of simulation has a strong evolutionary drive.

Our results show  that the relation betw een (1) positive
emotions and top-dow n goal oriented thinking, and (2)
negative emotions and bottom-up stimulus driven thinking
could result from the feedback of a simple measurement of

b

c d

a
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the performance of the agent to the selection threshold of
the simulation mechanism. These results show  one possible
relation betw een emotion and the simulation hypothesis, as
w ell as provide experimental evidence for the fact that even
simple emotional integration processes can be used to adapt
cognitive processes.

6 .1  Related Work
Our w ork is highly related to G andanho’s [2003] w ork on
the "Alec" architecture. H ow ever, in their RL based adap-
tive system, stochastic action-selection is biased by a fixed
value produced by a rule-based cognitive system. In our
system this value is dependent on the predicted states and
the cognitive process is not separated from the adaptive
system. We chose not to separate the cognitive system from
the reactive system, as this is important for the evolutionary
continuity betw een simulating and non-simulating agents
[Broekens, 2005; Cruse, 2002; H esslow , 2002].

The "Salt" model by Botelho and Coelho [1998] relates to
ours in the sense that the agent’s effort to search for a solu-
tion in its memory depends on, among other parameters, the
agent’s mood valence. Our approach differs in that w e focus
on simulation of behavior (not specifically targeted tow ards
search), w e use a dynamic influence to link emotion to the
cognitive system (not a rule-based system), and w e specifi-
cally define how  our agent’s mood is produced.

Our w ork relates to emotion and motivation based con-
trol/action-selection, in that it explicitly defines a role for
emotion in biasing behavior-selection [Avila-G arcia and
Canamero, 2004; Canamero, 1997; Velasquez, 1998]. The
main difference is that in these studies emotion directly in-
fluences action-selection (or motivation(al states)), w hile w e
have studied the indirect effect of emotion as a metalearning
parameter affecting information processing that on its turn
influences action-selection (cf. G andanho [2003]).

Up until now  our agent is unable to learn the representa-
tion of a goal (w hat is a goal) and thus is unable to consider
different goals in its final action selection. We learn from
behavioral neuroscience that rats adapt learned behavior
contingent on their drives (i.e., lever-pressing w hen hungry
versus button-pushing w hen thirsty) [Dayan and Balleine,
2002]. They argue that the rat’s motivation acts as a gate
betw een the learned predictive state and the incentive value
associated w ith it. Such a mechanism can be implemented
using a Markov Decision Process [Smith et al, 2003]. They
model a conditioning task w hereby the learned rew ard is
multiplied by an artificially varied "gating factor", i.e., a
simulated dopamine signal that is necessary for the agent to
see the consequences of its actions.

H ow ever, implementations such as [Smith et al, 2003] are
still limited since many animals develop multiple complex
goals, suggesting that they can learn to use many represen-
tations as gating factor for the predicted reinforcement sig-
nal in a certain situation. In this case, a learned goal can
influence behavior w ithout the behavior being directly asso-
ciated w ith a positive or negative reinforcement signal.
Learned goals could even become reinforcers by them-

selves. This approach relates to one proposed by Singh et al.
[2004], w here multiple different reinforcement techniques
are used to learn hierarchical collections of skills that func-
tion as intrinsically motivating actions for the agent. Fur-
ther, it relates to w ork by G adanho [2003], w here multiple
goals!related to homeostatic variables!determine the
reinforcement for the adaptive system, and to w ork on emo-
tion learning by, for example, Bothelo and Coelho.

6 .2  Future work
We have investigated one w ay in w hich pleasure can influ-
ences information processing. Combining arou sal and
pleasu re as feedback to control simulation might give addi-
tional insights into the relation betw een these tw o factors, as
w ell as introduce a second learning metaparameter.

To measure arousal, the agent could compare to w hat ex-
tend the predicted environment equals the actual environ-
ment. This measurement is called the stimulus predictability
check [Scherer, 2000]. We can implement this in our model
by comparing the probabilities of next interactions w ith the
actually occurring interactions.

Another w ay to measure arousal is the stimulus familiar-
ity check [Scherer, 2000]. This check measures how  much
of the environment is actually know n. In our model w e can
count the number of active interactions in the state hierarchy
(high number = familiar, low  number = unfamiliar).

These tw o arousal measurements can be integrated into
one signal, say ea that, e.g., influences the absolute amount
of effort put in simulation (information processing). A high
ea results in a large amount of effort put into simulation,
w hile a low  ea results in a low  amount of effort. The ea fac-
tor combined w ith ep results in a distribution of maximum
available simulation steps over the potential next interac-
tions. Along these lines, w e plan to adapt our model so that
it is able to simulate multiple steps ahead depending on a
cut-off depth based on the total amount of effort available
for that specific branch. This approach is highly similar to
planning and algorithms for depth-first, breadth-first and
iterative deepening search. We hope that techniques fol-
low ing from our research are generic in terms of their ability
to modify solution-search behavior in these kinds of algo-
rithms.

A different w ay to influence simulation is by letting ea
control the amount of randomness in the interaction selec-
tion process. This is analogous to the role of noradrenaline
as proposed by Doya [2002].

6 .3  Conclusions
Experimental results show  that if pleasure is used to dy-
namically adapt the amount of simulation, this results in a
learning performance that, at least, equals static simulation
strategies. Importantly, our results show  a major decrease of
mental effort required for this performance. This observa-
tion is relevant to the understanding of the evolutionary
plausibility of the simulation hypothesis, as increased adap-
tation at low er cost is an evolutionary advantageous feature.
In addition, our results provide clues of a relation betw een
the simulation hypothesis and emotion theory.
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Abstract 
Two current approaches to modelling naturalistic 
sequential routine action selection differ along two 
dimensions: (a) the number of systems required 
and (b) the nature of the underlying task represen-
tation. We present findings from a study that sup-
ports a combination of the two computational ac-
counts, namely a familiarity-dependent basic sys-
tem, interfaced with a higher-level supervisory sys-
tem to bias it at crucial points in a sequence. In or-
der to elaborate this position, we explore a connec-
tionist reinforcement model of routine action that 
(a) learns goal-directed action sequences through a 
combination of exploration and exploitation, and 
(b) offers the prospect of being interfaced with a 
supervisory system.  

1 Introduction 
The sequencing of actions in routine tasks, such as dressing 
or preparing tea or coffee, is prone to slips and lapses. In a 
series of diary studies, Reason [1984] found that such slips 
and lapses were particularly frequent when the actor was 
fatigued or distracted. The standard account of this finding 
is offered by the dual systems view of action control pro-
posed by Norman & Shallice [1986]. According to this 
view, action is controlled by the Contention Scheduling 
system (CS), which consists of schemas that compete for 
selection. This system is prone to error and its functioning 
can be “captured” by bottom-up input, but equally it may be 
biased in a top-down fashion by a second system, the Su-
pervisory Attentional System (SAS) that acts to prevent 
errors (by exciting appropriate schemas and inhibiting inap-
propriate ones) and to guide deliberate behaviour (by selec-
tively exciting appropriate schemas in sequence). Within the 
dual systems view, routine sequential behaviour can be con-
trolled by CS in the absence of input from the SAS, pro-
vided the task and situational context are fully routine, but 
slips and lapses may arise if the task and context are not 
fully routine, and the SAS is not engaged. 

This view is exemplified in a computational model of 
CS that employs hierarchically organized Interactive Acti-
vation Networks (IAN) in which symbolically represented 
schemas compete for selection. The model can account for 

slips and lapses of routine action, as well as more flagrant 
errors of action shown by patients with frontal brain damage 
[Cooper & Shallice, 2000]. 

In contrast, Botvinick & Plaut [2004] claim to capture 
both the normal and the neurological data with a single em-
bedded Simple Recurrent Network (SRN). The SRN learns 
to reproduce a corpus of well-ordered behaviour, but when 
noise of varying levels is added to units in the hidden layer, 
the SRN reproduces errors that range from minor slips and 
lapses to more serious disorganisation of action. An impor-
tant feature of the SRN account is that schemas are not ex-
plicitly represented. Rather, they emerge as continuous at-
tractors within the state space of the SRN. These task repre-
sentations “overlap structurally, sharing graded, multidi-
mensional similarity relations” [Botvinick & Plaut, 2002, p. 
299]. This, they argue, overcomes a problem of more tradi-
tional approaches that require one discrete representa-
tion/schema for each version of the task. 

The SRN model has some further appealing features. 
Most significantly, it addresses the issue of learning – some-
thing that is not addressed by the IAN model. However, the 
supervised learning regime employed by Botvinick & Plaut 
[2004] is implausible because it employs an explicit error 
signal that is rarely available. It is furthermore heavily de-
pendent on the exact composition of the training set. If that 
set is not balanced in a specific way, the SRN will not be 
able to reproduce all sequences in the training set [see Ruh 
et al., to appear, for further details]. 

A second criticism of the SRN model concerns its treat-
ment of goals. Botvinick & Plaut [2004] employ instruction 
units (such as make-coffee and make-tea) to coerce their 
model into the production of different learnt action se-
quences, but they deny that these units encode or represent 
goals. In our view these units do represent goals, but the 
representation is too impoverished for the control of sequen-
tial action in anything but routine situations. They cannot, 
for example, aid in detection and recovery from errors. 

Impoverished goal representations would not necessarily 
be a problem for the SRN model if it was conceived of as 
working in conjunction with a supervisory system to control 
behaviour in non-routine situations (although if that were 
the case, interfacing the SRN model in its present form with 
the SAS would present difficulties). Botvinick & Plaut 
[2004] appear, however, to also deny this. 
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The Botvinick & Plaut model therefore differs from the 
Cooper & Shallice model in two key respects: its representa-
tion of schemas and its appeal to a single system for the 
control of action. It is important to note that these differ-
ences are independent. In the next section we briefly present 
our findings in a recent study that investigates sequential 
routine behaviour of normal subjects. These findings sup-
port the dual-systems view, but suggest as well that the ba-
sic level system is gradually adjusted to familiarity. This 
feature is naturally captured within an SRN model. In the 
final section we therefore present a tentative exploration of a 
connectionist reinforcement model that is aimed at combin-
ing the respective strengths of the two existing computa-
tional accounts and that offers the prospect of accommodat-
ing our data.   

2 New data 
Our findings in a recent sequential routine action study with 
normal subjects [Ruh et al., submitted] suggest a combina-
tion of the two existing computational accounts. Subjects 
had to learn to perform the routine task of making a cup of 
coffee or tea in a simulated computer desktop environment. 
The required objects had to be manipulated on screen with a 
standard computer mouse by drag and drop, and by single 
and double clicks. Participants had to discover the order of 
steps required to make tea or coffee, subject to constraints 
imposed by the environment, the instructions and their pre-
vious knowledge. 40 subjects were tested in two sessions of 
approximately one hour. The first session was aimed at get-
ting familiar with the virtual environment and learning valid 
task representation. The data reported here are taken from 
the second session only. They are assumed to reflect, at least 
to a certain degree, routinised performance of the task. 

The task was held as closely as possible to the task em-
ployed in both of the above computational simulations. Task 
sequences were constructed by concatenating a subset of six 
invariant sub sequences: 

add coffee grounds (7 steps); add teabag (6 steps); add milk (7 
steps); add sugar from pack (7 steps); add sugar from bowl (8 
steps); drink (4 steps) 

Coffee always required adding both milk and sugar, whereas 
tea was always to be made with sugar only. This leads to 
four valid coffee sequences: 

c1:  grounds – sugar from bowl – milk – drink (26 steps) 
c2:  grounds – milk – sugar from bowl – drink (26 steps) 
c3:  grounds – sugar from pack – milk – drink (25 steps) 
c4:  grounds – milk – sugar from pack – drink (25 steps) 

and two variations in making tea: 
t1: teabag – sugar from pack – drink (17 steps) 
t2: teabag – sugar from bowl – drink (18 steps) 

In addition to preparing a beverage on screen, subjects had 
to perform a secondary task – counting how often a certain 
sound event occurred – in half of the trials. The secondary 
task served to load attentional resources that are hypothe-
sized to interfere with the function of a supervisory system. 

The dependent measure of interest was the response la-
tency at each step of each task, under each condition.  La-

tencies at branching points, i.e., at the first action of a new 
sub sequence, were of specific interest because the action 
control system or systems have to determine this step by 
taking into account (a) the context of task sequence (tea or 
coffee), (b) the history of getting there (sugar already added 
or not) and (c) the possible choice of valid sub sequences to 
enter at this point. Latencies at branching points were there-
fore compared with those at structurally similar actions 
within a sub sequence.  

The experiment yielded two main results (see fig. 1). 
Firstly processing times were generally higher at branching 
points as compared to non-branching points. This supports 
the hypothesized particularity of these steps in a task se-
quence. Importantly, though, the size of the effect was de-
pendent on the particular sequence subjects were about to 
enter. The difference in latencies between branching points 
and non-branching points depended on task preference. 
Thus, the difference was highest for the disfavoured case of 
adding sugar from the bowl, and almost nonexistent for the 
preferred case of adding sugar from the pack. 

Second, we found an interaction of step type and secon-
dary task. Performing the secondary task at the same time 
prolonged latencies at branching points, but not at non-
branching points (see fig. 1). This interaction supports the 
two systems view. An additional process dependent on at-
tentional resources seems to be involved in processing 
branching point, even in the preferred task sequences. The 
distributed representations in an SRN model, on the other 
hand, provide a more natural account of the fact that laten-
cies at branching points seem to be influenced by prefer-
ences and/or familiarity.  

3 Combining the approaches 
The method of reinforcement learning provides a potential 
solution to the difficulties with the SRN model identified 
above. Within reinforcement learning, learning is driven by 
reward obtained when a specified state is achieved. Rein-
forcement learning may be extended to sequence learning 
by also using the prediction of a reward to drive learning. 
This can be interpreted as implementing goal directed learn-

Figure 1: interaction of branching point and secondary task
(Fpack(1,78) = 4.055, p = 0.047; Fbowl(1,62) = 8.175, p = 0.006;
Fmilk(1,55) = 0.158, n.s.). The non-significance of the last in-
teraction is partly explained by the sparse data in this condi-
tion. When subjects who contributed only two examples or
less are excluded, the interaction is more evident, though not
quite statistically significant (F(1,20) = 3.581, p = 0.073) due
to small sample size. 
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An actor/critic architecture was employed with both compo-
nents implemented as neural networks. The actor was im-
plemented as an SRN with eight units in the input and the 
output layer, and seven units in the hidden and context 
layer. Four input units represented whether each of the four 
available objects (toast, butter, Nutella and the knife) was 
fixated and the remaining four represented whether the ob-
jects were held. The eight output units represented the pos-
sible actions (pick, put, use, eat, fixate toast, fixate butter, 
fixate Nutella, fixate knife). 

ing, because the model ultimately learns to approach the 
rewarded (goal) state while disregarding the means to get 
there. The same feature also could provide an interface with 
a supervisory system, as processing difficulties should be 
indicated by conflicting predictions as to which goals can be 
reached from a certain state. Enforcing one of the options at 
this point is exactly the task the hypothesized SAS serves. 

By implementing a reinforcement model as an embed-
ded actor/critic architecture with connectionist neural net-
works, it is possible to preserve the valuable features of the 
connectionist approach, namely the emergent distributed 
representations that allow for information sharing, generali-
sation, context sensitivity, etc. In the remainder of this paper 
we present a tentative exploration of such a model, showing 
that it can handle the complexity of a routine task.  

3.1 Task 
The Nutella task is a simplified version of the coffee/tea 
task discussed above. Two task sequences must be learned: 
Nutellatoast: fixate knife – pick knife – fixate nutella – pick 
nutella – fixate toast – use knife – pick nutellatoast – eat nutella-
toast (8 steps) 
Butternutellatoast: fixate knife – pick knife – fixate butter – pick 
butter – fixate toast – use knife - fixate nutella – pick nutella – 
fixate buttertoast – use knife – pick butternutellatoast – eat butter-
nutellatoast (12 steps) 

3.2 Architecture 

The critic was implemented as a multi-layer feed for-
ward network with the same 8 input units as the actor, 5 

hidden units and one output unit representing the value of 
the perceived state. A sigmoidal activation function was 
employed in all layers of both networks. 

The actor net was embedded in an environment that 
maps the chosen actions to the perceived changes in the 
environment, that is, the new input. If the actor activated the 
“fixate toast” unit, for example, the unit representing fixa-
tion on toast would be turned on in the next input. If an in-
gredient has already been added to the toast, subsequent 
fixating on toast would lead to perceiving the toast and the 
ingredient. The environment also supplied the reward signal. 
This may be interpreted as being provided by some other 
part of the cognitive system and not directly by the outside 
world. 

3.3 Learning algorithm 
The critic learned to predict the value of the state deter-
mined by the chosen action, that is, it approached either the 
reward it received in the terminal case, or its own prediction 
at the next step (so-called temporal difference, or TD, learn-
ing). By this mechanism, the anticipation of a reward at the 
end of a sequence is propagated backwards in the sequence. 
The difference between the prediction and the actual next 
value is used as an error signal in order to change the 
weights via backpropagation.  

The actor, on the other hand, learned to adjust the activa-
tion of the unit that represents the action chosen towards the 
value predicted by the critic. Only the weights that contrib-
uted to the activation of this particular output unit were 
changed by calculating the difference and propagating this 
error back through the net. 

Both nets learnt at the same time and online, the actor 
thus “chasing a moving target”. In addition, the learning rate 
was decreased linearly from 0.8 to 0.0 for both nets. The 
extremely high value at the start is needed for two reasons. 
Firstly, the nets must make the most out of the rare positive 
feedback while operating on a very imperfect policy (ran-
dom behaviour at the start). Secondly, the moving target 
provided by the critic will be very low, initially, so that a 
large step towards this value is not a big change in the ac-
tor’s weight matrix. The learning rate was decreased to al-
low for fine-grained adjustments towards the end of the 
learning process.  

 
 
Figure 2: Architecture of the reinforcement model 

3.4 Learning regime 
Both nets were initialised with small random weights (± 0.5) 
and none of the input units active. Activation was then 
propagated through both nets. Uniformly distributed random 
noise in the range [0.0, 0.5] was added to the activation of 
each of the actor’s output units so as to implement a certain 
amount of randomness in the network’s behaviour. This 
enables the model to explore the state space. The unit with 
the highest activation was chosen as the action executed, the 
new input was obtained via the environmental loop and the 
prediction of the critic calculated. At this point, the TD-error 
was calculated and used to adjust the weights of both nets, 
as described above. The next iteration was then started. 
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The model starts out with random behaviour, obtaining 
reinforcement only when it produces a valid (sub) sequence 
by chance. As the expectation of reward is propagated 
backwards in time and the actor learns to choose promising 
actions more often, the critic sees more and more examples 
of valid sequences and thus is able to establish an ever more 
accurate estimate of the value of an action, which in turn 
enables the actor to perform better, and so on. 

The model learned on a continuous stream of self pro-
duced actions, mediated by the environmental loop. If the 
actor chose an action that was physically impossible to ac-
complish (e.g. picking up an object that was already held) 
the target value for this unit was set to 0, the error propa-
gated back and the choice was repeated. After completion of 
a task, the context layer was reinitialised. 

3.5 Results 

Learning 
Training consisted of 100,000 iterations of the learning al-
gorithm. Within this period, the model typically produced 
between 700 and 1100 correct nutellatoast sequences and 
between 80 and 350 butternutellatoast sequences. The pro-
portion of correct sequences increased steadily until a point 
of saturation was reached. Similarly, the frequency of nega-
tive rewards decreased steadily until it plateaued. 

In the trained model, variations occurred in the order of 
picking up objects, e.g. nutella before knife. This is because 
the reward only depends on the final state (e.g. eat a nutella-
toast). If there are several ways to reach this state, all get 
rewarded and thus learned. Similarly, the model discovered 
that in most cases it is more efficient not to put down the 
knife between task sequences. We return to this important 
point in the discussion. 

Performance 
The performance of the model was tested by running 100 
iterations using the final set of weights and different levels 
of noise in the output layer. Without noise, the model typi-
cally produced between 12 and 16 correct sequences per 100 
iterations (see fig. 3). Minor deviations were observed, usu-
ally due to superfluous actions like fixating something else 
before fixating the required object (e.g. step 10 in fig. 3). 
Since it is the only non-deterministic feature in this mode of 
testing, the occurrence of these disturbances must be attrib-
uted to the influence of the context layer, which is reinitial-
ised after completion of a task. The fact that the model al-
ways finds its way back to the correct behaviour shows its 
ability not only to produce one fixed sequence, but also to 
recover quite flexibly from disturbances. Because of the 
way it is trained, the model has learned more than just one 
task sequence. In fact, it has acquired knowledge on many 
different ways that lead to the final aim of receiving a re-
ward, and these different ways include not only variations in 
the order of actions, but occasional wrong choices as well. 

This is even more evident when testing with a higher 
level of noise. Up to T  0.3, structured goal approaching 
behaviour was produced, although it took increasingly 
longer for the model to find its way back to completing a 

certain sequence. For even higher levels of noise, the model 
only occasionally found its way into a sequence attractor’s 
basin. It is interesting to note that disturbances occur more 
often at or before the beginning of a sequence than towards 
the end. This is because values of states early in a sequence 
are low, and the corresponding action units thus cannot gain 
a large advantage over the other output units. Secondly, the 
influence of the randomly initialised context layer is bigger 
shortly after resetting. Furthermore, the choices of actions 
that lead to a certain outcome are more tightly constrained at 
later stages. One might start in different ways to make 
nutellatoast, but picking it up and eating it will always be 
the unique possible end. This feature of the model’s 
behaviour leads to testable predictions on human action se-
quencing. Specifically it suggests that humans are more 
likely to commit errors near the beginning rather than the 
end of a sequence and that action selection will get faster 
towards the end of a task sequence. 

Figure 3: The value function of the critic when tested without 
noise. The regular patterns with two peaks correspond to the 
nutellatoast sequence. The three-peak pattern around step 90 is
an example of the butternutellatoast sequence. 

Representations   
Visualization of the trajectory in activation space of the ac-
tor by means of multi dimensional scaling (fig. 4) shows the 
“shadowing” typical for recurrent networks (see Botvinick 
& Plaut, 2004). The last six steps of the two sequences in 
figure 4 resemble each other closely, despite the fact that the 
Nutella is added to the plain toast in one case, but to the 
toast with butter already on it in the other case (i.e. different 
input). Also, the adding-butter subsequence (steps 1–4 in the 
dotted trajectory) is similar to adding Nutella (steps 5–8). 
This picture exemplifies the ability of the network to encode 
structural similarity in sub sequences and to share informa-
tion between them. 

Key Parameters 
While the model has several parameters, two are of particu-
lar importance [see Ruh et al., to appear, for more details]: 
 
Noise (T): Within all reinforcement learning models there is 
a trade-off between exploitation of acquired knowledge (the 
“policy”) and exploration of uncharted areas of the state 
space. Exploration is needed to improve the policy, but it 
leads to unnecessary mistakes in cases where behaviour is 
already adequate. In the present model the trade-off was 
implemented by adding random noise, uniformly distributed 
between 0 and T, to the activations of output units prior to 
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selecting the most active output unit as the next action. This 
implementation is equivalent to the temperature parameter T 
in a probabilistic softmax function. The choice is more ran-
dom if there are many equally highly activated units, and 
not random at all if only one unit is maximally excited but 
none of the others are. With T held constant, this still leads 
to an increasingly structured behaviour of the actor as its 
output activations become more differentiated.  

Decreasing T during learning leads to more correct se-
quences (up to 10 times more) in the learning phase, but not 
to better performance when tested without noise. In fact, 
these nets were easier to divert, presumably because they 
lacked experience in recovering from wrong choices. 

Note that in the standard case with T = 0.5, the model’s 
perfect behaviour when tested without noise arose out of an 
overall rather poor performance during learning. This so-
called off-policy learning shows the relative independence 
of critic and actor and has interesting implications for a psy-
chological view of learning. Specifically it suggests that 
there is much to be learned from doing things wrongly.  
 
Negative reward: When the actor attempted to perform a 
physically impossible action (e.g. picking up when nothing 
is fixated or too many objects are already held) the activa-
tion of the chosen output unit was adjusted towards zero 
(i.e., it received a negative reward). A naïve view would be 
that negative rewards, if used efficiently, should lead to a 
substantial restriction of the state space that the model has to 
explore. This was not the case in the present simulation, 
though, as values and activations of all actions are driven to 
near zero during the first few hundred iterations and rise 
only slowly afterwards. Hence impossible actions keep on 
getting chosen. The essential role of the negative reinforce-
ment term (without it learning was unreliable – some mod-
els did not learn to perform the task at all) proved to be 
more complex: When, at the beginning of learning, a reward 
is encountered, the weights in the actor that led to the cho-
sen action are changed to a large extent because of the high 
learning rate. This inevitably leads to the situation that dif-

ferent inputs inappropriately will also elicit a higher activa-
tion of that same action. This ability to generalize can be 
desirable if applied to “similar” situations, but because of 
the net’s initial inability to correctly categorize situations in 
combination with the high learning rate, generalization will 
be applied too widely. In the present model, valid experi-
ence is a valuable thing, because it is dependent on the cur-
rent behaviour of the actor. Furthermore, experience is 
mainly based on positive evidence (i.e., reward given or 
expected). In this learning regime it is very hard to discover 
that an overly valued state really is not so good after all. By 
introducing the negative reward term, the actor is given a 
new, more direct and more frequent source of experience 
that helps to correct the initial overgeneralization. Owing to 
this mechanism the net can take more information out of the 
occasional positive reward signal and at the same time is 
able to exhibit better behaviour and thus to provide more 
positive evidence.    

 
Figure 4: Multi-dimensional scaling plot of two task se-
quences performed by the model when tested without noise. 

4 Discussion 
The present routine task, by being naturalistic, involves 
many complexities beyond the standard theoretical tasks 
frequently considered in the reinforcement learning litera-
ture: a large state space (~ 88 states); many possible ac-
tions/output states; non-Markovian states (e.g. if butter and 
toast are held, is the butter on the toast or were they picked 
up separately?); and relatively long sequences and thus long 
distance dependencies. The simulations reported here show 
that it is possible to learn this structurally quite complex 
task within a relatively simple model with few a priori as-
sumptions in the comparatively short time of 100,000 itera-
tions. The power of this model arises from the interplay of 
different principles, each of which simplifies the learning of 
the task at hand in its own fashion: 

Because the model is embedded in an environment, 
some of the possible states in state spaces are not acces-
sible and thus do not have to be taken into account. 
Because of the recurrent connections in the actor, in-
formation of earlier states can be preserved and there-
fore can turn the decision at a later state into a Markov 
Decision Problem. 
The actor can use the knowledge acquired by another 
part of the model, the critic, as positive evidence that 
helps it to improve performance and thus leads to more 
correct examples to learn from for the critic. The rela-
tive independence of the two nets guarantees good 
learning even for imperfect policies. 
The use of negative evidence for one-step sequences 
can furthermore improve the actor’s behaviour. 
Reward for shorter sequences can bootstrap the model 
to the acquisition of longer sequences. Generalization, 
for valid, as well as for invalid actions, helps the model 
to learn different sequences with partial overlap more 
efficiently. 

The task representations the actor develops are comparable 
in many respects to the ones in an SRN that uses supervised 
learning: they overlap structurally (generalization), they 
allow for information sharing between similar (sub) se-
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quences, they are graded and context sensitive etc. How-
ever, in contrast to a standard SRN, a reinforcement model 
actively explores the whole state space and thus is able to 
recover flexibly from wrong choices along the way. As an 
additional advantage of this mechanism one might expect 
such a model to be less prone to catastrophic interference, 
because a certain amount of experience with all physically 
possible sequences is implicit in the final pattern of connec-
tion weights.  

The model is not dependent on a carefully balanced 
training set that provides it with an equal amount of experi-
ence for every task version it is to produce because the pos-
sible variations in a task are discovered by trial and error. 
Rather than forming attractors for the valid examples and 
organizing the remainder of the state space in terms of prox-
imity to them, a reinforcement model experiments with 
many different sequences and discovers which choices to 
make in order to get rewarded in the end. Even if the result-
ing representations resemble each other in many ways, in a 
reinforcement model they develop because it tries to reach 
rewarded states (i.e., goals), not because it adapts to the 
examples it is taught with.  

Evidently, more work needs to be done before the pre-
sent model can give a full-scale account of hierarchical rou-
tine action. Several adjustments could help the model to 
learn more efficiently, such as bootstrapping the learning 
process with a few valid examples of task sequences, or 
adjusting the learning rate and/or the exploration/exploitat-
ion ratio dynamically according to some measure of current 
performance. Botvinick et al. [2001] propose a measure of 
conflict that seems suitable to indicate how well the model 
is doing at a certain point in time. High conflict indicates 
inefficient behaviour and therefore might trigger an in-
creased learning rate, while low conflict would indicate that 
the policy is adequate and should not be changed. 

 Another issue seems to be more important though: so 
far, all the rewards given simply are numerical values along 
one dimension. If one sees the value maximizing behaviour 
of the nets as corresponding to goal directed behaviour in 
humans as suggested by the reinforcement literature, then, 
so far, there is only one single goal. The critic is unable to 
discriminate between the rewarded sequences, because they 
all influence its single output unit. The aim of our ongoing 
work is to implement multiple goals, as well as a way to 
dynamically switch between them. In a recent model of the 
Wisconsin card sorting task [Rougier & O’Reilly, 2002], the 
adaptive critic (AC) component plays this role by influenc-
ing the ‘sorting rule’ the network applies via lateral connec-
tions to the hidden layer. Transferred to our model this 
means a way to tell the net which one of several value func-
tions, each representing a different goal, is to be maximized 
at a certain point in time. Importantly, this would result in 
one goal per task, not one ‘instruction’ per task version.  

In summary we have shown that a reinforcement ap-
proach to modelling the basic system involved in hierarchi-
cal routine action selection is promising. The presented 
model shares the advantages of the emergent representations 
in supervised connectionist architectures, but has additional 

benefits in terms of plausibility of the process of learning, 
flexibility of representations and the ability to account for 
goal directed behaviour. The next step is to develop an acti-
vation based supervisory component, similar to Rougier & 
O’Reilly’s [2002] AC/PFC module that is able to enforce 
the pursuit of a certain goal by actively nudging/biasing the 
basic system’s hidden activations into the influence of a 
certain attractor’s basin. Importantly, the information of 
which goal can be achieved from the current state is readily 
available in the system in terms of the value function(s), 
thus potentially providing an interface between the basic 
system and a supervisory component. 
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Abstract 
The performance of everyday sequential tasks pre-
sents deep computational challenges which have 
been acknowledged both by computer scientists 
and by psychologists and neuroscientists.  Since 
the 1950’s a number of computational accounts 
have been put forth to account for routine sequen-
tial action, attending to varying degrees to the issue 
of neural implementation.  In general, such ac-
counts have involved hierarchies of schemas or 
processing units, mirroring the hierarchical struc-
ture of everyday tasks themselves.  In recent work, 
we have explored an alternative approach, accord-
ing to which hierarchically structured behavior 
emerges from a recurrent network architecture, 
mapping from perceptual inputs to action outputs.  
Implementations of the theory demonstrate that it 
can account for numerous central aspects of human 
sequential action, including patterns of error in 
both normal and apraxic performance.  A key find-
ing is that hierarchically structured behavior can 
emerge from a processing system that is not itself 
hierarchically structured.  Having established this, 
we explored, in further simulations, the conse-
quences of introducing architectural hierarchy into 
the framework.  The results of these simulations 
point toward a novel hypothesis concerning the de-
velopment of prefrontal cortex, linking its role in 
temporal integration to its position within a hierar-
chy of cortical areas. 

1 Introduction 
Washing the dishes, making the bed, getting dressed to 
go outside in the rain:  Familiar routines such as these 
occupy a great deal of daily life.  Because such action 
sequences are typically negotiated with relative ease, 
one tends to overlook their underlying psychological 
complexity.   In fact, everyday naturalistic behavior 
requires the highly coordinated use of hard-won per-
ceptual and motor skills, semantic memory, working 
memory, and attentional control.    Perhaps it is not 
surprising, given such complexity, that the neural 

mechanisms underlying routine sequential behavior 
remain only partially understood.   

A key challenge in everyday sequential behavior, 
which has been the focus of much theoretical discus-
sion, is the fact that many sequential routines display a 
roughly hierarchical structure, being composed of low-
level actions organized into goal-directed subtasks, 
which are in turn organized into larger overall tasks 
(Figure 1).   A key question is how the brain manages 
to deal with such hierarchical structure.   

In recent work, my colleagues and I have proposed a 
computational account of routine sequential action that 
seeks to address this basic problem in terms that can 
also be mapped, in a general way, onto neural cir-
cuitry.   According to this framework, routine sequen-
tial action arises from a massively parallel neural sys-
tem that maps from perceptual inputs to action outputs 
via learned, distributed internal representations.  This 
system, it is assumed, is further characterized by ex-
tensive recurrent connectivity, which allows informa-
tion about temporal and task context to be preserved 
over time.   

In what follows, we summarize the results of com-
puter simulations and empirical work, evaluating the 

ability of this framework to account for fundamental 
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Figure 1.  A hierarchical model of the task of making coffee.  
From Cooper and Shallice (2000).     
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properties of human behavior in routine sequential 
domains.   

2  A model of routine sequential action 
Botvinick and Plaut [2004] report a set of simulations 
in which our basic theory was implemented in the 
form of a recurrent connectionist network, applied to a 
set of specific everyday tasks.  Our interest in this 
study was in whether a recurrent network without ex-
plicit hierarchical structure could handle hierarchically 
structured sequential tasks.  This question was of par-
ticular interest, given that previous accounts of se-
quential action had traditionally assumed that the 
processing system itself must assume a hierarchical 
form, with discrete elements coding for entire task and 
subtask sequences [see Figure 1; Cooper and Shallice, 
2000].   An additional set of questions related to errors 
in routine sequential behavior.  In particular, it was 
asked whether the model could account for key prop-
erties of everyday slips of action, and for patterns of 
error seen in patients with action disorganization syn-
drome, a type of apraxia affecting performance in se-
quential routines [Schwartz et al., 1998].   

2.1 Model architecture and task domain 
The structure of the model is diagramed in Figure 2. 

Like all connectionist-style neural network models, it 
is comprised of simple processing units, each with a 
scalar activation value. These excite or inhibit one an-
other through adjustable, weighted connections. In the 
current model, units are organized into three groups. A 
group of input units serves to represent the perceptual 
features of objects in the environment. These units 
connect to an internal or ‘hidden’ group, which itself 
connects to an output group whose units represent 
simple actions (e.g., ‘pick-up,’ ‘pour’, or ‘locate-
spoon’). In order to capture the fact that actions affect 
perceptual inputs, the model communicates with a 
simulated environment, which updates inputs to the 
network contingent on selected actions.  

A crucial feature of the model is that there are recip-
rocal connections between each pair of units in its in-
ternal layer. The presence of these ‘recurrent’ connec-
tions means that activation can flow over circuits 
within the network, allowing information to be pre-
served and transformed over multiple steps of process-
ing. It also has important implications for the role of 
the model’s internal units. Given their overall pattern 
of connectivity, these units play two roles. First, they 
serve as an intermediate stage in the stimulus-response 
mapping performed on each processing step. Second, 

because they carry all of the information that will be 
conducted over the network’s recurrent connections — 
and thus all of the information that will be carried over 
to the next time-step — they are responsible for carry-
ing the model’s representation of temporal context.  

A number of studies have demonstrated the ability 
of recurrent networks to address aspects of human be-
havior in the domains of language [e.g., Elman, 1990] 
and implicit learning [e.g., Cleeremans, 1993]. Our 
simulations investigated whether similar computa-
tional principles could be used to account for human 
behavior in everyday, goal-oriented tasks involving the 
manipulation of objects. In order to facilitate compari-
son with the recent hierarchical model of Cooper and 
Shallice (2000), the task modeled was that of making a 
cup of instant coffee. Our implementation of the task 
is shown schematically in Figure 3. It comprises four 
subtasks, each containing between five and eleven ac-
tions: (1) adding coffee-grounds, (2) adding cream, (3) 
adding sugar (by one of two methods), and (4) drink-
ing. For reasons that will become clear in later discus-
sion, the training corpus also contained a second task, 
tea-making. The model was trained to perform these 
tasks using a version of the backpropagation learning 
algorithm [Williams and Zipser, 1995].  Training was 
analogous to observing and attempting to predict the 
sequence of actions of a skilled individual repeatedly 
carrying out specific versions of each task. Testing 
involved successively presenting the trained model 
with perceptual input and using its generated action to 

Figure 2.  Architecture of the model used by Botvinick and Plaut 
(2004).  Arrows indicate all-to-all connections.   The input layer 
contains 39 input units, each coding for an object descriptor.  
Multiple units are activated in this layer to describe the currently 
viewed and held objects (e.g., “packet,” “paper” and “torn”).  The 
output layer contains 19 units, each representing an action (e.g., 
“pour” or “fixate-spoon”).  The hidden layer contained 50 units.   

environment

action

perceptual input

environment

action

perceptual input
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modify the environment (and, hence, the model’s sub-
sequent perceptual input). 

2.2 Overview of simulation results 
In our simulations of normal performance, we asked 
simply whether the model could learn to perform the 
target tasks. Some action researchers have expressed 
doubt concerning the ability of recurrent networks to 
deal with tasks that are hierarchically structured, that 
is, tasks made up of subtasks and actions that also ap-
pear as part of other tasks [see, e.g., Houghton and 
Hartley, 1995]. Consistent with earlier studies apply-
ing recurrent networks in hierarchical domains, the 
model proved quite capable of learning the target se-
quences, and producing them autonomously following 
training. Our simulations of action slips and ADS were 
based on the assumption that both stem from disrup-
tions to representations of temporal or task context. In 
our model, as noted above, such context information is 
carried by the hidden units. With this in mind, context 
information was degraded by randomly perturbing the 
activation values in the hidden layer on each cycle of 
processing. When this was done mildly, the model 
produced errors resembling human slips of action. In 
line with empirical observations concerning slips 
[Norman, 1981; Reason, 1990], the model made errors 
at decision points, behavioral ‘forks in the road’ where 
the actions just completed bear associations with mul-
tiple lines of subsequent behavior. Also like typical 
human slips, the model’s errors took the form of sub-
task sequences performed correctly but in the wrong 
context. The model’s errors fell into the same catego-
ries as human slips: omissions, repetitions, and lapses 
from one task into another. With increasingly severe 
disruption to the model’s context representations, the 
model’s behavior became gradually more fragmented, 
coming to resemble the performance of ADS patients 

as characterized in recent empirical studies [e.g., 
Humphreys et al., 2000; Schwartz et al., 1998].  

Botvinick and Plaut (2004) point to a number of ap-
parent advantages of the model over traditional ac-
counts of routine sequential action. Some of these per-
tain to the model’s ability to capture particular behav-
ioral phenomena. Specifically, the model produced at 
least one type of error (recurrent perseveration) not 
observed in the simulations of Cooper and Shallice 
(2000); it reproduced a correlation between error rate 
and the distribution of error types reported by 
Schwartz et al. (1998), another effect not captured by 
Cooper and Shallice (2000); and, again unlike that ear-
lier study, the Botvinick and Plaut (2004) model dis-
played a smooth variation in behavioral fragmentation 
with damage, a feature of ADS. Botvinick and Plaut 
(2004) also discuss several other advantages of the 
model over traditional accounts, including its reliance 
on learning instead of extensive ‘hand wiring,’ its 
avoidance of the inflexible, ad hoc sequencing mecha-
nisms typically incorporated into traditional models, 
and its relative strength in dealing with context-
sensitive behavior.  

In order to understand how the model works, and 
why it makes the errors that it does, it is necessary to 
consider how the model represents task context within 
its internal or hidden layer.  We turn now to a discus-
sion of this issue.   

2.3 Representations of task context 
Whether the model is used to simulate normal per-
formance or errors, its behavior is linked directly to 
the patterns of activation over the units in its internal 
layer. As noted above, these units play two roles. Be-
cause they lie between input and output layers, they 
are responsible for facilitating the stimulus-response 
mapping being performed on each time-step. Second, 
because — via their recurrent connections — the in-
ternal units transmit information from one time-step to 
the  next, they also must serve to represent the current 
behavioral context. In this sense, the patterns of activa-
tion arising in the model’s internal layer play the role 
that is played, in traditional models, by task and sub-
task nodes; on each time-step, the information carried 
in this layer is integrated with information about ex-
ternal inputs in order to determine the context-
appropriate action. Note that every unit in the hidden 
layer participates in each context representation. 
Unlike hierarchical models of action, which use single 
units to represent entire task contexts, the present 
model employs distributed representations [see Hinton 

Figure 3. Structure of the coffee and tea tasks.   Arrow-
segments represent sequences of between 5 and 11 actions.  
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et al., 1986]; information is represented by an entire 
population of processing units, within which each unit 
participates in representing a variety of contexts.  

In order to understand the implications of the 
model’s way of representing context, it is useful 
to adopt a spatial metaphor. The model’s internal 
layer contains 50 units, each of which carries an 
activation between zero and one. If these activa-
tions are thought of as spatial coordinates, then 
each pattern of activation (context representation) 
can be thought of as specifying a point in a 50-
dimensional representational space. As the model 
steps through an action sequence, the successive 
patterns in its internal layer can be thought of as 
tracing out a trajectory in this space. Although it 
is impossible to visualize such trajectories in their 
original 50 dimensions, one can gain a sense of 
them using the technique of multi-dimensional 
scaling (MDS) [see Kruskal and Wish, 1978].  An 
example of the model’s internal representations, 
visualized in this way, is shown in Figure 4. The 
plot shows two trajectories, both representing the 
sequence of internal states produced by the model 
as it stepped through the eleven actions of the 
sugar-adding subtask, in one case during coffee-
making, and in the other during tea-making. The 
first thing to note is that the two trajectories are 
similar in shape. This indicates that the series of 
internal representations the model uses when add-
ing sugar to coffee are similar to those it uses 
when adding sugar to tea, an arrangement that 
makes sense since sugar-adding involves the same 
sequence of actions regardless of the overall task 
context.  However, the two trajectories are not 
precisely identical. The minor differences be-
tween the two reflect the difference in overall task 
context; the model’s internal representations on 
each step differ slightly according to whether it is 
coffee- or tea-making that is being performed. As 
earlier studies of recurrent networks [e.g., Servan-
Schreiber et al., 1991] have expressed it, the net-
work “shades” its internal representations to re-
flect differences in context.  It is in this way that 
the model manages to maintain important infor-
mation about temporal context, while at the same 
time dealing with immediate stimulus-response 
mappings.   

2.4 Testing a prediction of the model 
As noted above, errors in the Botvinick and Plaut 
model — as in human performance — tend to fall at 
decision points, i.e., the transitions between subtasks.   
The reason for this can be understood in terms of the 
representational 'shading' just discussed.  Transitions 
between subtasks typically require accessing informa-
tion about the larger task context.  For example, in the 
task of coffee-making, when one completes adding 
cream, knowing what to do next depends on knowing 
whether sugar has yet been added.  In the model, such 
information is preserved through the shading of repre-
sentations in the hidden layer.  However, because the 
model's hidden units are subject to a small amount of 
noise, context information can be lost before it is 
needed, resulting in an error.  

Importantly, according to the model, the degradation 
that leads to decision-point errors can occur at any 
time, not only at the boundaries between subtasks. In-
deed, a distinctive claim of the Botvinick and Plaut 
model is that context information is most susceptible 
to loss toward the middle of subtask sequences. The 
explanation for this relates to how differences in tem-
poral or task context are internally represented.   In the 
model, distinctions between different contexts are rep-
resented very robustly close to decision points, where 
such distinctions are directly relevant to action selec-
tion.   However, elsewhere, and in particular toward 
the middle of subtask sequences, differences in tempo-
ral context are represented less strongly.  This, in turn, 
makes it easier for the system’s representation of con-
text to become disrupted, setting the scene for a later 
decision-point error.  

Figure 4.  Multidimensional scaling analysis of the internal 
representations arising during performance of the sugarpack 
subtask, either in the context of coffee-making (black) or tea-
making (gray).  
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This aspect of the Botvinick and Plaut theory leads 
it to make a distinctive prediction about the effect of 
momentary distraction.  Specifically, the model pre-
dicts that distraction should be most disruptive when it 
falls toward the middle of a subtask sequence, even 
though the errors that result from such distraction do 
not occur until the end of the subtask.  This prediction 
is of some interest, because earlier theories of action 
slips would appear to lead to the opposite prediction.   
Previous accounts of decision-point errors have attrib-
uted them to the failure of specific memory-retrieval 
operations occurring at the decision point itself 
[Norman, 1981; Reason, 1990].  Such theories would 
presumably predict that distraction would be more dis-
ruptive when it falls near a decision point than when it 
falls further away.  

In order to test the predictions of the Botvinick and 
Plaut theory, Botvinick and Bylsma [in press] studied 
the performance of normal participants on an everyday 
task (coffee-making), under conditions involving in-
termittent distraction.  Distraction was imposed by 
momentarily interrupting subjects’ performance on 
this task, requiring them to perform a secondary arith-
metic task.   Interruptions were timed to occur either at 
the end of a subtask (i.e., just before a decision point) 
or at mid-subtask.  As predicted based on our compu-
tational work, the frequency of action slips, and, in 
particular, decision-point errors, depended on where 
the distraction occurred relative to subtask boundaries.  
A greater number of decision-point errors followed 
interruptions occurring midway through a subtask than 
following interruptions falling at the end of a subtask.     

3 Addressing a neuroanatomic division of labor  
3.1 Fuster’s hierarchy  
A distinctive aspect of the Botvinick and Plaut (2004) 
model is that information concerning task context is 
represented over the same population of units that me-
diates immediate input-output mappings.   The model 
thus demonstrates the point that performance in hierar-
chically structured domains does not require a hierar-
chically structured processing system, as has been as-
sumed in most psychological work on routine sequen-
tial behavior.   However, it is of course a separate 
question whether this point is relevant to the brain.  
Neuroscience clearly does provide some empirical 
evidence to support the idea that context information is 
represented at the same level as more immediate rep-
resentations of action.  For example, Aldridge and 
Berrige [1998] showed that neurons in rat striatum 
show different patterns of activity during grooming 

movements, depending on whether those movements 
occur in isolation or as part of a larger grooming se-
quence.  Nevertheless, there is also considerable evi-
dence for some degree of functional segregation in the 
brain.  In particular, the prefrontal cortex (PFC) seems 
to play a special role in representing task context in-
formation.   This role has been stressed in the context 
of naturalistic action by Grafman and colleagues 
[Grafman, 2002; Zalla et al., 2003].   On a more gen-
eral level, Fuster [1997] has characterized the repre-
sentation of temporal context information as a defining 
function of the PFC.   Interestingly, Fuster also por-
trays the PFC as occupying the apex of a hierarchy of 
cortical regions.  At the base of this hierarchy are pri-
mary sensory and motor areas, concerned predomi-
nantly with representing immediate inputs and outputs.  
Above this are secondary sensory and motor areas; 
above this association cortices; and above this the PFC 
(Figure 5, top).  

In modeling hierarchically structured behavior, Bot-
vinick and Plaut [2004] eschewed architectural hierar-
chy.  However, an interesting question arises in the 
light of Fuster's account:  What would happen if some 
degree of architectural hierarchy were built into the 
model, from the outset?   It would be interesting if a 
model structured in the form of Fuster's hierarchy 
(Figure 5, top) developed, through learning, a func-
tional division of labor, with units at higher levels 
playing a relatively more important role in maintaining 
context information.  

In order to evaluate this possibility, we constructed a 
neural network model containing seven groups of 
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Figure 5.  Top:  A hierarchy of cortical regions, based on the 
account of Fuster (1997).  Bottom: Architecture of a model 
based on Fuster’s hierarchy.  
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units, interconnected as shown in Figure 5 (bottom).  
The model was implemented as a fully recurrent at-
tractor network running in continuous time, and was 
trained using gradient-descent learning [recurrent 
backpropagation through time; Williams and Zipser, 
1995].  The task was chosen in order to allow a direct 
assessment of the degree to which units in the model 
coded for immediate inputs and outputs vs. temporal 
context information.  Specifically, we trained the 
model on the store-ignore-recall (SIR) task [O'Reilly 
and Munakata, 2000].  This involves presentation of a 
extended series of individual digits.  If the digit pre-
sented is shown in black, the task is simply to read the 
number aloud.  If the digit is shown in red, again the 
digit is read aloud, but it is also to be held in memory 
until the appearance — following a variable number of 
intervening digits — of a recall cue, in response to 
which the stored number is to be reported.   Digits 
were represented using individual input units.  Two 
additional units were also included, one to indicate 
"red" and the other representing the recall cue.   In 
training the model, target activations were applied at 
both input and output.  That is, the model was trained 
not only to produce the correct response, but also to 
send activation to the input layer consistent with the 
present input.  

Following training, the model showed perfect per-
formance on the SIR task.  However, our real interest 
was not in the model's overt performance, but in the 
representations underlying it.  In particular, we wished 
to evaluate the degree to which each group of units in 
the model was involved in representing stored context 
information, as opposed to representing immediate 
inputs and outputs.  To this end, we recorded the acti-
vation of each unit during processing of black digits 
that occurred between a red digit and the recall cue.  
We then evaluated the degree to which this activation 
varied depending on 1) the identity of the black digit, 
and 2) the identity of the earlier red digit.   The ratio of 
these two, which we refer to as the coding ratio, pro-
vided an index of the degree to which units were in-
volved in storing context information.   The average 
coding ratio was computed for each unit group.  

As shown in Figure 6 the coding ratio was found to 
vary rather widely across groups, growing progres-
sively larger with each step up in the architectural hi-
erarchy.   Thus, the model developed through learning 
a regional differentiation of function like the one de-
scribed by Fuster (1997), with processing structures at 
higher levels of the hierarchy — and in particular at its 
apex — coding preferentially for temporal context in-

formation.   This division of labor was apparent in the 
behavior of the model, as well.  When units in the api-
cal group were lesioned, the coding ratio at lower lev-
els fell, and the model's recall performance deterio-
rated.  

It is important to emphasize that the division of la-
bor illustrated in Figure 6 emerged quite spontane-
ously as a result of learning.   There was nothing in the 
construction of the model that prevented context in-
formation from being handled entirely at lower levels 
of the hierarchy; indeed, a version of the model that 
contained only the groups labeled "peripheral" in the 
figure was found to be entirely capable of acquiring 
the task.   The emergence of the division of labor in 
the model appears to reflect differing pressures on unit 
groups during learning, as a function of their synaptic 
distance from the periphery.  The groups directly con-
nected to the input and output layers are immediately 
responsible for generating the correct pattern of activa-
tion in those layers, and are thus under pressure to 
strongly represent current inputs and outputs.  With 
immediate input-output mappings handled by lower-
level groups, groups further from the periphery are 
freed up to represent context information.  Indeed, it 
makes sense to represent such information away far 
from the periphery, since there are many steps in the 
task during which context information is irrelevant to 
response selection.  

Despite its simplicity, this simulation reveals an in-
teresting possibility concerning the relationship be-
tween the function of the PFC and its connectivity 
with other parts of the brain.  Fuster (1997) stressed, 
on the one hand, the involvement of the PFC in repre-
senting temporal context, and on the other hand the 
position of the PFC at the apex of a hierarchy of corti-
cal areas.  Our simulation provides a motivation for 
the hypothesis that these two aspects of PFC are 
closely interrelated, and in particular that the connec-
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Figure 6.  Coding ratios observed in each unit group of the 
model depicted in Figure 6 (bottom).   
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tivity of the PFC may provide an explanation for why 
it comes to assume a role in representing temporal 
context.    

3.2 Application to naturalistic sequential behavior 
In a follow-up simulation, we tested the effect of in-
cluding a minimal architectural hierarchy in the Bot-
vinick & Plaut (2004) model of naturalistic sequential 
action.  To this end, an additional group of units was 
added to this model,  as shown in Figure 7 (top).  This 
group connected only to the original hidden layer, and 
was thus at a greater synaptic distance from the pe-
riphery (input and output layers) than the latter.   As in 
the SIR simulation, the question was whether units 
further from the periphery, i.e., the units in this new 
layer, would assume a special role in representing task 
context.  In order to evaluate this, the model was 
trained on the coffee and tea tasks used by Botvinick 
and Plaut.  Unit activations were then measured in 
each hidden layer during performance of the sugarpack 
subtask.  Sensitivity to immediate input-output map-
pings was measured in terms of the change in each 
hidden layer's pattern of activation with successive 
steps in the subtask (Figure 7, middle).   Sensitivity to 
task context was measured in terms of the degree to 
which the pattern of activation on each step of the sub-
task differed depending on the task context (coffee or 
tea; Figure 7, bottom).  As in the SIR model, the unit 
group further from the periphery was found to code 
preferentially for context information.   

4 Conclusion 
The present paper has summarized a set of simula-
tions, and a bit of empirical work, focused on a par-
ticular computational account of routine sequential 
behavior.   According to this account, highly familiar 
everyday tasks are accomplished by a system that 
maps from perceptual inputs to motor outputs, via in-
ternal representations that integrate and maintain in-
formation concerning temporal and task context.  The 
capacity of this processing system to preserve and 
transform context information over time inheres in 
massively recurrent connectivity.   The initial goals of 
the modeling project were to demonstrate how the 
computational properties of such a system might give 
rise to key aspects of human performance in hierarchi-
cally structured naturalistic domains.  Given the suc-
cess of this enterprise, it is of interest to consider how 
the computational principles involved in the model 
might relate to the neural structures underlying routine 
sequential behavior.   Clearly, there is an analogy be-

tween the massively recurrent connectivity involved in 
our models and the feedback loops connecting cerebral 
cortex with basal ganglia and thalamus [Middleton and 
Strick, 2000], loops that have been proposed to play a 
critical role in guiding sequential action [Houk and 
Wise, 1995; Tanji, 2001].   The simulations imple-
menting Fuster's hierarchy suggest how massive recur-
rence combined with specific patterns of regional con-
nectivity might also contribute to the specific role pos-
ited for prefrontal cortex in guiding sequential behav-
ior.  

Acknowledgments 
The present work was supported by National Institute 
of Health award MH16804. 

References 
[Aldrige & Berrige, 1998]  W. J. Aldridge, and K. C. 

Berrige. (1998). Coding of serial order by neostri-
atal neurons: a "natural action" approach to move-
ment sequence. Journal of Neuroscience, 18, 2777-
2787. 

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Step in sugarpack sequence

D
is

ta
nc

e

Proximal layer
Distal layer

0

0.5

1

1.5

2

2.5

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10
Steps in sugarpack subtask comSteps in sugarpack subtask compared

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Step in sugarpack sequence

D
is

ta
nc

e

Proximal layer
Distal layer

0

0.5

1

1.5

2

2.5

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10
Steps in sugarpack subtask comSteps in sugarpack subtask compared

Distal hidden

Perceptual
input

Action
output

Proximal
hidden

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Step in sugarpack sequence

D
is

ta
nc

e

Proximal layer
Distal layer

0

0.5

1

1.5

2

2.5

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10
Steps in sugarpack subtask comSteps in sugarpack subtask compared

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Step in sugarpack sequence

D
is

ta
nc

e

Proximal layer
Distal layer

0

0.5

1

1.5

2

2.5

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10
Steps in sugarpack subtask comSteps in sugarpack subtask compared

Distal hidden

Perceptual
input

Action
output

Proximal
hidden

Figure 7.  Top: reimplementation of the Botvinick and Plaut 
(2004) model, with a new hidden layer.  Bottom:  Cartesian 
distances between pairs of internal representations. 

186



[Botvinick and Bylsma, in press] M. Botvinick, and L. 
M. Bylsma. (in press). Distraction and action slips 
in an everyday task: Evidence for a dynamic repre-
sentation of task context. Psychonomic Bulletin and 
Review. 

[Botvinick and Plaut, 2004]  M. Botvinick, and D. C. 
Plaut. (2004). Doing without schema hierarchies: a 
recurrent connectionist approach to normal and im-
paired routine sequential action. Psychological Re-
view, 111(2), 395-429. 

[Cleeremans, 1993] A. Cleeremans. (1993). Mecha-
nisms of implicit learning: connectionist models of 
sequence processing. Cambridge, MA: MIT Press. 

[Cooper and Shallice, 2000] R. Cooper, and T. Shal-
lice. (2000). Contention scheduling and the control 
of routine activities. Cognitive Neuropsychology, 
17, 297-338. 

[Elman, 1990]  G. Elman. (1990). Finding structure in 
time. Cognitive Science, 14, 179-211. 

[Fuster, 1997]  J. M. Fuster. (1997). The Prefrontal 
Cortex: Anatomy, Physiology, and Neuropsychol-
ogy of the Frontal Lobe. Philadelphia, PA: Lippin-
cott-Raven. 

[Grafman, 2002]  J. Grafman. (2002). The structured 
event complex and human prefrontal cortex. In D. 
T. Stuss & R. T. Knight (Eds.), Principles of frontal 
lobe function (pp. 292-310). London: Oxford Uni-
versity Pressq. 

[Hinton et al., 1986]  G. E. Hinton, J. L. McClelland, 
and D. E. Rumelhart. (1986). Distributed represen-
tations. In D. E. Rumelhart & J. L. McClelland 
(Eds.), Parallel distributed processing: Explora-
tions in the microstructure of cognition. Cam-
bridge, MA: MIT Press. 

[Houghton and Hartley, 1995]  G. Houghton, and T. 
Hartley. (1995). Parallel models of serial behav-
iour: Lashley revisited. Psyche, 2. 

[Houk and Wise, 1995]  J. C. Houk, and S. P. Wise. 
(1995). Distributed modular architecture linking 
basal ganglia, cerebellum and cerebral cortex: its 
role in planning and controlling action. Cerebral 
Cortex, 5, 95-110. 

[Humphreys et al., 2000]  G. W. Humphreys, E. M. E. 
Forde, and D. Francis. (2000). The organization of 
sequential actions. In S. Monsell & J. Driver (Eds.), 
Attention and Performance XVIII (pp. 425-472). 
Cambridge, MA: MIT Press. 

[Kruskal and Wish, 1978]  J. B. Kruskal, and M. Wish. 
(1978). Multidimensional scaling. Beverly Hills, 
CA: Sage Publications. 

[Middleton and Strick, 2000]  F. A. Middleton, and P. 
L. Strick. (2000). Basal ganglia and cerebellar 
loops: motor and cognitive circuits. Brain Research 
Reviews, 31, 236-250. 

[Norman, 1981]  D. A. Norman. (1981). Categoriza-
tion of action slips. Psychological Review, 88, 1-14. 

[O'Reilly and Munakata, 2000]  R. C. O'Reilly, and Y. 
Munakata. (2000). Computational explorations in 
cognitive neuroscience: understanding the mind by 
simulating the brain. Cambridge: MIT Press. 

[Reason, 1990]  J. T. Reason. (1990). Human error. 
Cambridge, England: Cambridge University Press. 

[Schwartz et al., 1998]  M. F. Schwartz, M. W. Mont-
gomery, L. F. Buxbaum, S. S. Lee, T. G. Carew, 
and H. B. Coslett. (1998). Naturalistic action im-
pairment in closed head injury. Neuropsychology, 
12, 13-28. 

[Servan-Schreiber et al., 199]  D. Servan-Schreiber, A. 
Cleeremans, and J. L. McClelland. (1991). Graded-
state machines: The representation of temporal con-
tingencies in simple recurrent networks. Machine 
Learning, 7, 161-193. 

[Tanji, 2001]  J. Tanji. (2001). Sequential organiation 
of multiple movements: involvement of cortical 
motor areas. Annual Review of Neuroscience, 24, 
631-651. 

[Williams and Zipser, 1995]  R. J. Williams, and D. 
Zipser. (1995). Gradient-based learning algorithms 
for recurrent neural networks and their computa-
tional complexity. In Y. Chauvin & D. E. Rumel-
hart (Eds.), Backpropagation: Theory, architec-
tures and applications (pp. 433-486). Hillsdale, NJ: 
Erlbaum. 

[Zalla et al., 2003]  T. Zalla, P. Pradat-Diehl, and A. 
Sirigu. (2003). Perception of action boundaries in 
patients with frontal lobe damage. Neuropsycholo-
gia, 41, 1619-1627. 

 

187



Modelling Primate Task Learning Requires Bad Machine Learning

Joanna J. Bryson
University of Bath

Artificial models of natural Intelligence
Bath, BA2 7AY United Kingdom

j.j.bryson@cs.bath.ac.uk

Jonathan C. S. Leong
Harvard University

Primate Cognitive Neuroscience
Cambridge MA 02138, USA
jleong@fas.harvard.edu

Abstract
We present a model of transitive inference which is
able to account for the performance of monkeys and
children on three-item transitive inference tasks.
We do this using a modular multi-layer neural ar-
chitecture which does not integrate error across lay-
ers. This system gets trapped in local minimae, and
in so doing, generates errors much like those seen
in monkeys and children.

1 Introduction
Transitive inference (TI) is the process of reasoning whereby
one determines that if, for some quality, A > B and B > C,
then A > C. In some domains, such as integers or heights,
this property will hold for any A, B or C. For other domains,
such as sporting competitions and primate dominance hierar-
chies, the property does not necessarily hold (Wright, 2001).
Transitive inference has become a significant benchmark task
for psychologists of both animal and human cognition and
has also attracted a large number of modelling attempts.
While it is well-known that the errors we make often tell

us more about the nature of cognitive processes underlying
behaviour than active performance does, relatively few mod-
els of transitive performance account for failures to learn this
task. There are two sorts of failures to be accounted for. First,
many subjects (both human and animal) fail to meet criteria
on these tasks despite careful training. Second, though more
controversially, there is a set of data due originally to Mc-
Gonigle and Chalmers (1977) showing that both children and
animals fail in systematic ways to generalise their ability to
perform transitive ‘inference’ in the context of two items to a
context of three items.
This paper presents a model that explains both types of er-

rors, and proposes testable predictions on its own validity.
Ironically, our work indicates that the problem with previous
AI models of transitive inferences is that they learn too well to
be appropriate models of animal behaviour. Machine learn-
ing has developed techniques that conquer a problem known
as finding local minima – the problem of being attracted to a
solution that, while better than the most similar and therefore
obvious alternative solutions, is not actually the optimal solu-
tion. However, our research indicates that real primates may

have more trouble ignoring these attractive locally-optimal
solutions than many of their models do.
Our research supports the suggestions of (Buckmaster

et al., 2004) and others that transitive inference relies on two
separate learning processes: one to associate a stimulus with
an action, and another to prioritise which of these paired as-
sociations is most salient in a context where more than one
could be applied. We call our model the two-tier model, be-
cause we dedicate one tier of associative learning to each
problem. The difference between our model and previous
multi-layer models of transitive inference (e.g. De Lillo et al.,
2001; Frank et al., 2003) is that these models use a technique
called backpropogation for ensuring optimal learning across
the full system. Our system keeps the two learning systems
relatively independent, and so succeeds in failing where the
other systems have learned too well to fully explain the data.

2 The Task
2.1 Transitive Inference and Performance
Piaget first described TI as an example of concrete opera-
tional thought (Piaget, 1954). That is, children become capa-
ble of TI when they become capable of mentally performing
the physical manipulations they would otherwise use to deter-
mine the correct answer. For TI, this manipulation involves
ordering the objects into a sequence using the rules A > B
and B > C, and then observing the relation between A and
C.
Yet Piaget was also aware of an ‘automatic’ transitive per-

formance, distinguished from true TI by the subject’s ability
to explain their performance (Piaget, 1928; Wright, 2001).
Since the 1970s, TI has been demonstrated in young chil-
dren (Bryant and Trabasso, 1971) and a variety of animals —
monkeys (McGonigle and Chalmers, 1977), rats (Dusek and
Eichenbaum, 1997) and even pigeons (Fersen et al., 1991)
— not normally ascribed with concrete operational abilities.
Siemann and Delius (1993) have shown that human adults
who learned to choose between pairs of doors during an an
exploration-based computer game, showed no performance
difference between individuals who formed explicit transitive
models and those who did not (N = 8 vs. 7 respectively).
These results cast doubt upon the belief that all transitive per-
formance (TP), choosing A over C given the knowledge that
A > B and B > C, is dependent on logical inference.
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2.2 Characteristic TP Effects
Besides the ‘inference’ itself, transitive performance is char-
acterised by a number of attributes which have generally been
taken to indicate something about the processing underlying
the ability (Bryant and Trabasso, 1971). Some researchers
have called some of the effects into question, particularly the
temporal aspect of the symbolic distance effect (McGonigle
and Chalmers, 1992; Rapp et al., 1996). Nevertheless, the fol-
lowing effects have been shown broadly across experimental
subjects, including children, monkeys, rats, pigeons, or adult
video-game players (Wynne, 1998).
• The End Anchor Effect: subjects make an evaluation
faster and more accurately when a test pair contains one
of the ends. This is usually explained by the fact they
have learned only one behaviour with regard to the end
points (e.g. nothing is > A).

• The Serial Position Effect: even taking into account the
end anchor effect, subjects do more poorly the closer the
items displayed are to the middle of the sequence.

• Symbolic Distance Effect (SDE): even compensating for
the end anchor effect, the further apart on the series two
items are, the faster the subject makes the evaluation.
This effect is generally taken to contradict any step-wise
chaining model of transitive inference (i.e. Piaget’s con-
crete operations) since distant items would require more
steps and therefore a longer reaction time (RT), not a
shorter one.

2.3 Training Subjects for TP
Training a subject to perform transitive inference is not trivial.
Subjects are trained on a number of ordered pairs, typically
in batches. Because of the end anchor effect, there must be
at least five items (A . . . E) to clearly demonstrate transitiv-
ity on just one untrained pair (BD). Seven or more items
would give further information, but training for transitivity is
notoriously difficult. Even children who can master five items
often cannot master seven. This is true even for simple sort-
ing of conspicuously ordered items such as posts of different
lengths (McGonigle and Chalmers, 1996). Normally, though,
stimuli are labelled in a deliberately non-ordinal way, such
as by colour or pattern, and controlled by varying the assign-
ment of rank by subject (e.g. one subject may learn blue <
green < brown while another brown < blue < green).
The subjects are first taught to use the testing apparatus;

they are presented with an object and rewarded for selecting
it. Next, they are trained on the first pairDE, where only one
element, D is rewarded1. When the subjects reach criterion,
they are trained on CD. After all pairs are trained, there is
generally a phase of ordered repeated training on all the pairs,
but with fewer exposures per pair, which is then followed by
a period of random presentations of training pairs (See phases
P1–P3 in Table 1).
Once a subject has been trained to criterion, they are ex-

posed to testing pairs. In testing, either choice is rewarded in

1The psychological literature is not consistent about whether A
or E is the ‘higher’ (rewarded) end. This paper uses A as high.

an effort to minimise the effects of further training. The rea-
son either stimulus should be rewarded is because whatever
item is chosen is the one the subject is most likely to have ex-
pected to be rewarded for, and since learning tends to occur
when expectations are violated, it is less disruptive to meet
those expectations than to adopt some other reward scheme.
However, the original (adjacent) training pairs are often inter-
spersed with testing pairs during the testing phase, with the
training pairs still being differentially rewarded.

2.4 Trigram Data Sets
Table 1 finishes with a set of trigram testing. These tests are
to date apparently unique to the laboratory of McGonigle, al-
though in that lab they have been applied several times and
to children as well as to monkeys. A trigram test presents
three rather than two items drawn from those in the implicit
sequence the subjects have been trained on. Most subjects
show systematic degradation of transitive performance when
exposed to trigrams.
Trigram testing has been criticised on the grounds that the

sudden presence of three items might confuse the subjects
and degrade their performance in itself. This criticism was
addressed by McGonigle and Chalmers (1992) when they re-
peated their 1977 experiments to gather more data on reac-
tion times. In 1992 they also tested their subjects on pseudo-
trigrams. In pseudo-trigrams, only two classes of elements
are present, one of which (chosen at random) is a duplicate
(e.g. A,A, C or B,D,D). Subjects showed no performance
degradation in this case. The quality of the dataset is fur-
ther supported by the fact it was accounted for extremely well
by the model of Harris and McGonigle (1994), which is de-
scribed next.

2.5 The Production-Rule-Stack Model
Our model was originally inspired by the current best model
of the trigram data set. This model is due to Harris and Mc-
Gonigle (1994). They present a static, non-learning model
of fully-trained subjects which accounts for the trigram data,
both in aggregate and as an explanation of individual dif-
ferences between subjects. The model was originally devel-
oped by Harris to account for the McGonigle and Chalmers
(1977) data. This work helped motivate the the McGonigle
and Chalmers (1992) study, which was in turn modelled by
Harris and McGonigle.
The Harris model is based on a production-rule stack. The

term production rule comes from artificial intelligence. It is
a representation which tightly associates a particular context
or sensory precondition with an action. A stack is a common
representation from computer science. As the name suggests,
it is a set of objects which have to be visited in order: the top
item must be looked at before you can see the second-from-
top item and so on. With a production-rule stack, productions
are checked in order beginning from the top of the stack. If,
when checked, a production’s precondition is met by the en-
vironment then the second half of that rule — the action as-
sociated with the stimulus — is expressed. For example, a
precondition might be able to see A and an action might be
grab the item holding your visual attention.
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Table 1: Phases of training and testing, taken from Chalmers and McGonigle (1984, pp. 359–360).
Training and Criteria

P1 Each pair in order (ED, DC, CB, BA) repeated until 9 of 10
most recent trials are correct. Reject if requires over 200 trials total

P2a 4 of each pair in order. Criteria: 32 consecutive trials correct.
Reject if requires over 200 trials total

P2b 2 of each pair in order. Criteria: 16 consecutive trials correct.
Reject if requires over 200 trials total

P2c 1 of each pair in order. Criteria: 30 consecutive trials correct.
No rejection criteria.

P3 1 of each pair randomly ordered. Criteria: 24 consecutive trials correct.
Reject if requires over 200 trials total

T1 Bigram tests: 6 sets of 10 pairs in random order.
Reward unless failed training pair.

T2a As in P3 for 32 trials. Unless 90% correct, redo P3.
T2 Trigram tests: 6 sets of 10 trigrams in random order, reward for all.
T3 Extended version of T2.

The Harris and McGonigle production-rule-stack model
requires the following assumptions:
1. The subject knows a set of rules of the nature “if A is
present, select A” or “if D is present, avoid D”.

2. The subject has a prioritisation of these rules.
For an example, consider a subject with the stack:

1. (A present)⇒ select A
2. (E present)⇒ avoid E
3. (D present)⇒ avoid D
4. (B present)⇒ select B

Here the top item (1) is assumed to have the highest priority.
If the subject is presented with a pair CD it begins working
down its rule stack. Rules 1 and 2 do not apply, since neither
A nor E is present in the presented pair. However, rule 3 in-
dicates the subject should avoidD, so consequently it selects
C. Priority is critical. For example, for the pair DE, rules 2
and 3 give different results. However, since rule 2 has higher
priority, D will be selected.
Harris and McGonigle make one more critical assumption:
3. When there are more than two items (as in the trigram
test cases), an ‘avoid’ rule results in random selection
between the items not currently attended to.

For example, consider the situation where there are three
blocks available B,C,E. If the agent is applying the rule
2 above, and has found and attended to a block E, the ‘avoid’
action means that it is equally likely to actually grasp eitherB
or C. This assumption explains the performance degradation
of children and monkeys on the trigram data. This is why tri-
grams can be used to discriminate ordered-action-associative
models from conventional sequential models on the basis of
expressed behaviour.
Harris and McGonigle model the conglomerate monkey

data so well that there is no significant difference between
the model and the data. For example, over all possible tri-
grams, the rule-stack hypothesis predicts a distribution of 0,
25% and 75% for the lowest, middle and highest items. True

inference of course predicts 0%, 0% and 100%. The squir-
rel monkeys in McGonigle and Chalmers (1977) showed 1%,
22% and 78%. Further, Harris was able to match the individ-
ual performance of most monkeys to a particular stack.
Without trigram data, there would be no way to discrimi-

nate which rule set the monkeys use. However, with trigram
data, the stacks are distinguishable because of their errors.
For example, the stack:

1�. (A present)⇒ select A
2�. (B present)⇒ select B
3�. (C present)⇒ select C
4�. (D present)⇒ select D

would always select B from the trigram BCD by using rule
2�, while the previous stack would select B 50% of the time
and C 50% because it would base its decision on rule 3.
There are 8 discernible correct rule stacks of three rules

each which will solve the initial training task. There are ac-
tually 16 correct stacks of four rules, but trigram experiments
cannot discriminate whether the fourth rule selects or avoids
(Harris and McGonigle, 1994, p.325).

3 Model
Our model is a two-tier system: one tier to learn the appro-
priate action associated with each stimulus, and one to learn
the ordering (or prioritisation) of these associated ‘rules’ (see
Figure 1). For both these learning tasks, priority is repre-
sented with a weight, the value of which is learned through
reinforcement. Larger weights correspond to higher priori-
ties. Which ‘rule’ is fired is determined first by which stimu-
lus present is associated with the largest weight, and then by
which actions in that stimulus’ associated action list has the
largest weight.
The two-tier model contains of a list of perceptual cate-

gories corresponding to the different stimuli seen. Half of the
agent’s task is to prioritise this list. The other half of the task
(the second tier of the model) is prioritising the associations
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Figure 1: The two-tier model.
When the agent observes a set
of stimuli (a), a weight vec-
tor (b, the first tier) deter-
mines which item present is
most salient. This attracts vi-
sual attention (c) and deter-
mines which rule vector (d, the
second tier) selects the appro-
priate action (select or avoid).
This determines what item the
agent grasps (e). The two vec-
tors that were most recently ac-
tive (b and one of d) are then
updated in response to the re-
ward as per Equation 1.

B

A

E

C

D

s

a

s

a

s

a

a

s E

C

B

ad b

e

c

associated with each stimulus. The same learning rule is ap-
plied to both (see below.)
Figure 1 illustrates how a subject chooses a stimulus under

the two-tier model. At the beginning of a trial, the subject
is presented with some number of stimuli, generally two or
three. If any of the stimuli are novel, they are added to the
first tier by a process described below. Next, the subject fo-
cuses visual attention on the stimuli present in the scene with
the highest priority. The highest-priority stimulus is the one
associated with the largest weight. Next, the subject applies
the highest priority action in the action array from the second
tier which is associated with that stimulus. The subject either
selects the object it is attending to, or ‘avoids’ that object by
grasping another object. If there is more than one other ob-
ject present and the subject is avoiding, then the unattended
object chosen is determined at random. For either tier, in the
case where more than one eligible tier element has the same
priority, one of these options is selected at random.
After a stimulus is selected, the subject is either rewarded

or not. Weights for both tiers are updated independently after
every trial. We use a simple step function which roughly ap-
proximates known conditioning models (Waelti et al., 2001;
Rescorla and Wagner, 1972).
The same learning rule is used for both tiers. All of the

weights in a single list are normalised, that is they always
sum to 1. When a new stimulus is seen, it receives the weight
1/N , where N is the current number of distinct stimuli cate-
gories so far seen. New items in the stimulus list are further
associated with a new action list, which is initialised with two
actions, select and avoid, both of which are given a starting
weight of 0.5.
The weights for any particular list (the stimuli list in the

first tier or one of the action lists associated with a single
stimulus in the second tier) are represented as a vector w.
Consider the pairXY , whereX is the list element the subject
attended to and Y is a near alternative2, then wX and wY are
the weights associated with X and Y respectively. The update

2If X is a stimulus, Y is one of the other stimuli present chosen
randomly, unless the rule was avoid in which case it is the item actu-
ally grasped. If X is an action then Y is the second-highest priority
action for that stimulus.

rule for these weights is this:

If X is correct and wX−wY < τ), add δ to wX ;
else, if X is incorrect, add δ to wY . (1)

where τ and δ are free parameters, held constant for any par-
ticular subject, but varied across subjects for the experiments.
τ is a threshold, over which reward is so expected that it no
longer prompts learning (Waelti et al., 2001). δ is the amount
a weight is changed by a single bout of learning. If weight
change occurs, w is subsequently renormalised.
The goal of this model is not to try to to improve on

the Harris and McGonigle (1994) outcome for modelling the
trained monkeys, since that is already excellent. Rather, the
goal is to build a model which learns such a model in a bi-
ologically plausible way, and to thus better understand what
sort of representation might be underlying the transitive per-
formance shown in squirrel monkeys and young children.
Thus our model succeeds if it can learn from the same ex-
perience the primate subjects are exposed to a model which
behaves exactly as the production-rule-stack model does.

4 Methods
4.1 Modelling through Artificial Life
The experiments in this paper were performed in artificial
life (ALife) simulations. ALife is often a very intuitive way
to express a cognitive hypothesis. In addition, it can allow
researchers to evaluate algorithms that are too complex to
analyse formally (Axtell, 2000). ALife evaluations operate
by running simulations, then performing standard hypothesis
testing to see whether the simulated results are a good match
to the original data.
An ALife model can be thought of as a very well specified

hypothesis. Once a model has been built, the process of sim-
ulation also allows one to search broad parameter spaces that
would be relatively difficult or expensive to test in the labo-
ratory. These runs then serve as predictions from the model.
If desired, a relatively sparse set of these predictions, perhaps
those that are most surprising or vary most between different
versions of the hypothesis, can then be tested against experi-
ments with living subjects.
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Further validation of an ALife model occurs when simula-
tion results unexpectedly converge with previously-observed,
real-world phenomena. This was the case for our experi-
ments.

5 Results and Discussion
5.1 Experiment 1
Procedure
The first experiment was essentially a pilot experiment. In
this condition we did not use the full two-tier architecture, but
rather tested the learning algorithm shown in Equation 1 on a
single-tier model. For this experiment, there was only a single
vector with one element for each stimulus. The agent would
choose the stimulus corresponding to the vector element with
the highest priority weight.
We also did not use the full training regime shown in Ta-

ble 1, but rather simply exposed the subjects to all training
pairs in a random order for approximately 400 trials. This
training regime is sometimes used with rats (Wynne, 1998).

Results and Discussion
The single-tier system learns to order the stimuli perfectly
100% of the time, provided that 1/N ≥ τ . The last error
by these systems is normally made by the 100th trial, while
weights stop changing (or stabilise3) about 50 trials later.
This perfect ability to pass criteria is very unlike primates,

which normally need a training regime. Further, this model
performs perfectly on trigrams, again unlike real primates,
since once the ordering is leaned it will always select the
highest priority stimulus.
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Figure 2: A typical result for a one-tier learning agent. X-
axis: trial number; Y-axis: weights of the stimuli vector (sum
to one). Free variables are set to Parameters: τ = .08, δ =
.02. Key: A•, B−, C∗,D�, E�.

Figure 2 shows a single exemplar of a typical result where
1/N ≥ τ . If τ > 0.1, then a stable solution for five items
cannot be reached. This is because there is no way that five
weights can be more than 0.1 different from each other, yet

3Normally in AI, agents are considered to have fully learned a
task only when their weights have stabilised. This of course can’t
map directly to the animal research, where learning must be judged
by expressed behaviour.
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Figure 3: One-tier learning in an agent with a ‘stupider’ pa-
rameter set: τ = .12, δ = .02. This cannot find a stable
solution (see text) thus occasionally gives wrong responses.
Key: A•, B−, C∗,D�, E�.

sum up to 1 (see Equation 1 and the discussion of normalisa-
tion.) If τ = 0.1, then it is possible that the weights can be
[0, 0.1, 0.2, 0.3, 0.4] which does sum to 1. For any value of
τ < 0.1 there are many possible stable solutions.
If learning can’t stabilise, the model is open to a ‘hot

hands’-like phenomenon (Gilovich et al., 1985), where a so-
lution that has recently been very successful may get more
favour than it deserves. When there is a chance reiteration of
one particular pair, the higher element of that pair can accu-
mulate so much reinforcement that its weight surpasses the el-
ement that should be above it. Thus the agent over-estimates
the value of an item because of its recent “winning streak”.
This is illustrated in Figure 3. However, notice that even so,
these agents learn the task very quickly and make very rare
mistakes, so would easily pass behavioural criteria.
These results do provide one possible explanation for indi-

vidual differences in transitive task performance. Individual
differences in stable discriminations between priorities can
affect the number of items that can be reliably ordered.

5.2 Experiment 2
Procedure
In the second condition we used the full two-tier model, but
still trained it simply by presenting training pairs in random
order. We tested learning in the two-tier model across a range
of parameter values: every combination of τ drawn from
.08, .1, .12, .14 and δ drawn from .01, .02, .04, .08, .12, .16.
12 subjects were run with each possible parameter combina-
tion for a total of 288 subjects.

Results and Discussion
Without a training regime, only a fifth of two-tier agents learn
the training pairs entirely successfully (56 of 288, see Table 2,
column 2 below.) Those agents that do learn the training pairs
successfully perform on trigram testing exactly as described
by (Harris, 1988), because a snapshot instance (that is, one
with learning frozen) of a successfully trained two-tier model
is logically equivalent to a production-rule stack.
Figure 4 illustrates a typical (failing) exemplar outcomes

for this case. Rule selection is made very early in training
and remains stable once established, so is not represented
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in these figures except in the captions. Nevertheless, the
added complication of rule learning defeats the simple train-
ing regime used in the one-tier experiments. With this train-
ing regime, the two-tier model generally learns either the so-
lution shown in Figure 4 or a symmetric one with the select
(B) and avoid(C) fighting for top priority.
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Figure 4: Two-tier learning with no training regime. Rules
learned in descending order of priority: select D�, avoid
C∗, avoid B−. The system cannot stabilise because it is far
from a complete solution, but it behaves correctly for every
training pair except CD. Parameters: τ = .08, δ = .02.

There are only a limited number of accurate solutions
the two-tier model can have, corresponding the correct rule
stacks enumerated by Harris (1988). A correct solution must
be either an ordered sequence of selects [s(A)s(B)s(C)], a
reverse order sequence of avoids [a(E)a(D)a(C)] or an or-
dered cross of these (e.g. [s(A)a(E)s(B)]). See Table 2,
column 1 below for a complete list.
Although the rules learned by the typical (failing) two-tier

agents without training regimes have a very different order,
they still perform well on the training task. For each fail-
ing agent, only one training pair is incorrect: that contain-
ing the two top-priority stimuli. For example, in Figure 4,
the only training pair which cannot be handled is BC. No-
tice that although the weights in Figure 4 has not stabilised,
the behaviour has. Whether a(B) or s(C) is highest priority,
when presented with B,C, the agent will (incorrectly) grasp
C. These agents display something like the Serial Position Ef-
fect by confusing only central pairs. Taken in aggregate, the
agents display the full SPE: the most frequent errors involve
the two central pairs, but there are occasionally errors involv-
ing other elements.
All the agents show the End Anchor Effect. Agents quickly

learn rules which avoid making errors involving the two end
points. The agent in Figure 4 may appear to neglect the two
endpoints, since the weights of the stimulus-rule pairs asso-
ciated with those stimuli are very low. But in fact, this agent
gets the end pairs (AB andDE) correct 100% of the time by
associating the rule avoid with B and select with D. By re-
ducing the values of the A and E rules, the agent that learned
the ‘correct’ behaviour in the end-point cases. Associating
this knowledge with the inner member of the end pair protects
the agent from a possible incorrect rule associated with the
outer member. However, this association leaves such agents

with no possible means to correctly learn both middle pairs.
The learning system winds up fixated on trying to solve an
impasse in the middle of the sequence, but the learning algo-
rithm, based on gradual change, cannot solve that quandary.
19% of the time two-tier agents without a training regime

do learn a correct solution. If successful learning was the sim-
ple consequence of the agents being at chance for learning a
rule about either the inner or the outer element of the two
end pairs, we would expect that the agents would learn both
ends correctly 25% of the time, each end 25% of the time,
and neither end 25% of the time. We can dismiss this as the
full explanation for the agent’s failure: χ2(3, N = 288) =
35.68, p < .001. The fact that the inner end-pair elements, B
and D occur in twice as many pairs as the end element leads
the two-tier model to both inner cases 40% of the time (166
in 288), not 25%. When correct solutions were learned, they
came evenly from all parameter values, and seemed evenly
distributed across all possible correct solutions (Table 2, col-
umn 2).
We would obviously like to compare these results with the

outcomes of primate subjects who fail to meet criterion on the
initial training for transitive learning. Although no trigram re-
sults were reported for monkeys or children that missed cri-
terion, one monkey subject, Roger, passed criterion but still
showed a consistent error between the 3rd and 4th item (Har-
ris and McGonigle, 1994, p. 332). Roger’s errors are in keep-
ing with the results of this model.
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Figure 5: Rule Learning with Phased Training. Labelled lines
indicate the end of training and testing phases (see Table 1).
This agent arrives at different stable solutions at different
points, but they are all correct. Here the rules are: select A•,
avoidE�, avoidD�. The agent succeeds with very ‘stupid’
parameters: τ = .12, δ = .06.

5.3 Experiment 3
Procedure
In the third condition, we trained two-tier models using the
regime in Table 1. We ran these test over the same range
of parameters as for the previous condition, again with 12
instances of each, for a total of 288 subjects.

Results and Discussion
Results, shown in Table 2, are that 88% (254 of 288) of agents
successfully learn the training pairs and therefore the TP task.
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Table 2: Production-rule-stack equivalents to solutions by monkey subjects and by two-tier agent subjects undergoing various
forms of training. The distribution of solutions is strongly determined by the order training pairs are presented. The analysis of
the monkeys’ correlated stacks was performed by (Harris and McGonigle, 1994).

Regime starting w/ E,D Regime starting w/ A,B Starting w/ A,B
Correct Stacks No Regime after after after after McGonigle &

training testing training testing Chalmers
s(A) s(B) s(C) 8 51 41 – – –
s(A) s(B) a(E) 12 68 26 – – –
s(A) a(E) a(D) 3 – 1 4 2 2
s(A) a(E) s(B) 7 4 16 3 1 2
a(E) a(D) s(A) 9 – 1 57 50 –
a(E) a(D) a(C) 8 – – 59 47 1
a(E) s(A) a(D) 7 3 – 4 11 –
a(E) s(A) s(B) 2 1 13 – 3 –
Total Correct 56 127 98 127 114 5

Total 288 144 144 144 144 7

The two-tier model is somewhat more like the squirrel mon-
keys than the children in that it more reliably learns TP than
children given the same training regime. Nearly all successful
agents converge quickly, and the ones that fail to meet criteria
fail early, usually by Phase 2a.
Successful learning for agents with phased training is

highly dependent on δ; when δ was large (values in
.08, .12, .16), one in four agents failed, otherwise there were
only a very few failures (3), all of which had the lowest tested
δ, δ = .01 (Nδ=.01 = 48). Since δ determines the rate of
change after training, it is unsurprising that a very low δ re-
sults in a slow learner. Even when such agents make criterion,
they may never learn a stable solution (see e.g. Figure 6).
Interestingly, agents do sometimes learn when δ > τ , which
means that for any trial on which learning occurs, the attended
item will change places in the priority stack.
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Figure 6: Phased Training where learning slips during trigram
testing. Rules are: selectA•, selectB−, and either avoidE�
or select C∗. Parameters: τ = .12, δ = .02

One advantage of the two-tier model over a single learn-
ing tier can be seen in fact that, during initial training, stable
representations are learned that involve rules with nearly the
same priority. This is because some rules will never be com-
pared. For example, items E and A do not occur together
in any of the training pairs, so there is no pressure to differ-

entiate their weights prior to TI testing (see Figure 5, phases
P2b–P3). This is significant if neural systems have limited
capacities to discriminate different stable orderings (see dis-
cussion for Experiment 2, and Cowan, 2001; Bryson and
Lowe, 1997; Gallistel et al., 1991). For tasks involving stim-
uli which never co-occur, the rule representation allows for
stable learning with either more items or larger values of τ .
A more natural example of such a task than TI would be nav-
igation, where some landmark features might never occur in
the same place.
Another thing to notice in the phased learning results is

that significant learning occurs during testing. This phenom-
ena was also reported with monkeys (Harris and McGonigle,
1994). Learning occurs because rules that previously were
never compared (e.g. those triggered by any two non-adjacent
items) will be now. If their weights do not already happen to
be at least τ apart, learning is triggered, regardless of whether
they were correct or how they are reinforced. This explains
the utility of continuing to differentially reinforce training
pairs, a common procedure during the testing phase of the
TI task.

6 Conclusions and Predictions
The results of our model have not only met but exceeded
the goals of our simulation. We have achieved our goal by
showing that a system like that of Harris and McGonigle
can be learned, and with learned with a simple, biologically-
plausible learning algorithm. The model exceeds our origi-
nal goals by displaying the End Anchor and Serial Position
effects, and by requiring the same phased training that chil-
dren and squirrel monkeys require to have a similar number
of agents pass criteria. That these features of the model were
unintended consequences of the two-tier structure further val-
idates both our model and the work of Harris and McGonigle
(1994).
Our model makes a number of testable predictions:
• Visual attention should settle on the item associated with
a rule just before the grasp is made. In the case of an
avoid, this would not be the item that is selected.
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• In general, reaction times and visual scanning behaviour
should be different for select and avoid rules.

• If individuals who fail to pass criteria on training pairs
are given trigram testing, most should show a misor-
dered priority stack with high priority rules for neigh-
bouring pairs of non-endpoint stimuli.

• For individuals, the ordering of a newly presented item
(as in de Boysson-Bardies and O’Regan experiment 3)
should be determined by the existing rule stack. For ex-
ample, if the rule stack is all selects as in Eq. 2.5, a new
item would be positioned last or second to last, if they
were all avoids it would be positioned first.

Testing these predictions requires running trigram experi-
ments after TP pair training in order to discriminate which
rules were learned by individual subjects. Our current work
includes a collaboration intended to test most of these pre-
dictions. We are also working on furthering the biological
plausibility of the two-tier model, including extending it to
account for the Symbolic Distance Effect.
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Abstract

We present Temporal Abstraction Networks, a
novel cognitive architecture which can be used to
model a variety of perceptual phenomena. The ar-
chitecture is based on processes operating on col-
lections of time-limited buffers in a parallel model
of cognition and draws on aspects of the Multi-
ple Drafts theory [Dennett and Kinsbourne, 1992].
We briefly describe the architecture and show how
it can be used to model two relevant experiments
from the literature: colour phi [Kolers and von
Grünau, 1976], and the cutaneous “rabbit” [Gel-
dard and Sherrick, 1972].

1 Introduction
Modelling cognitive phenomena in which the time of percep-
tion plays a role is an important challenge for cognitive sci-
ence. A perceptual event is by its very nature transient. In
order to reason about perceptual events we either have to ex-
tract information from them as they occur, or try to recre-
ate details from causal evidence after the fact. A number
of experimental studies, e.g., [Kolers and von Grünau, 1976;
Geldard and Sherrick, 1972] have suggested that interpreta-
tions of events can override direct sensory evidence. For some
sequences of perceptual events of short duration, the inter-
pretation of individual events in the sequence depends on the
characteristics of the sequence as a whole. This ‘backwards
referral in time’, in which later events influence the percep-
tion of earlier events, is difficult to account for within a serial
model of cognition without incorporating implausible delays
(basically delaying sensory experience “until all the data are
in”).

Dennett and Kinsbourne [1991; 1992] have proposed the
Multiple Drafts theory as a way of modelling such cognitive
processes. The Multiple Drafts theory is based on a paral-
lel, distributed view of cognition, in which large numbers of
processes work independently on multiple interpretations of
data simultaneously. These are the multiple drafts. Eventu-
ally a single draft may become dominant, but no draft is ever
entirely safe from revision.

In this paper we present Temporal Abstraction Networks, a
cognitive architecture for perceptual processing which draws

on aspects of the Multiple Drafts theory. A Temporal Ab-
straction Network (TAN) consists of a network of inference
processes working in parallel on collections of data over dif-
ferent temporal intervals (see Figure 2 for an example). TANs
can be used to model a variety of perceptual phenomena
which present difficulties for more conventional serial models
of cognition, such as ACT-R [Anderson and Lebiere, 1998]
or Soar [Newell, 1990; 1992]. As an illustration, we show
how TANs can be used to model two perceptual phenomena
that have been claimed to cause problems for serial models
of cognition [Dennett, 1991]; namely, colour phi [Kolers and
von Grünau, 1976] and the cutaneous ‘rabbit’ [Geldard and
Sherrick, 1972; Geldard, 1977]. The architecture and models
have been implemented using the SIM AGENT toolkit [Slo-
man and Poli, 1996].

The remainder of this paper is organised as follows. In the
next section we give a brief overview of the Multiple Drafts
theory, focusing on its implications for modelling perceptual
phenomena in reactive agents. In section 3 we introduce the
time-limited buffers and buses which form the key compo-
nents of the Temporal Abstraction Network architecture and
describe how these can be combined to give models of re-
active perceptual processing in simple agents. In section 4
we present models of Kolers and von Grünau’s ‘colour phi’,
and Geldard and Sherrick’s ‘cutaneous rabbit’ experiments.
In section 5 we briefly discuss related work before consider-
ing the implications of our approach for the Multiple Drafts
theory in section 6.

2 The Multiple Drafts Theory

The Multiple Drafts theory of consciousness proposed by
Dennett and Kinsbourne [1991; 1992] is an attempt to ex-
plain general cognitive processes, and how they can give rise
to consciousness, without appealing to a Cartesian theatre
— a central process where everything “comes together”. In-
stead, the Multiple Drafts theory posits a highly parallel view
of cognition where processing and interpretation are carried
out in a distributed manner. Different interpretations consti-
tute the multiple drafts which compete for (temporary) dom-
inance. A draft which survives long enough can become rel-
atively uncontested, and so become the dominant interpreta-
tion of events. However, no draft is ever entirely safe from
further revision or reinterpretation.
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The advantages of a parallel architecture over more tra-
ditional serial theories of cognition are most apparent when
time is taken into account. An agent situated in an envi-
ronment must act in a timely fashion in order to respond to
events occurring in the world. However, as events continue
to be perceived during the selection and performance of an
action, there is often a need to revise the interpretation(s) of
events to take account of new information. Rather than com-
mit to a single interpretation of an event, and then later pos-
sibly have to backtrack or revise the interpretation in the face
of new evidence, it is quicker to keep track of multiple pos-
sible interpretations of an event (multiple drafts) in parallel
and simply drop those which are no longer supported by evi-
dence. It is also preferable to be able to make decisions with-
out delaying processing until all possible data has arrived, but
without having to commit to a single interpretation of events
too early. By allowing multiple drafts to exist simultaneously
we can select actions based on the current dominant inter-
pretation, while still allowing future information to revise or
create new drafts which may then influence future action se-
lection. A serial model of cognition commits us to either
delaying processing or facing possible costly back-tracking
(the two alternatives are characterised by Dennett as “Stali-
nesque” and “Orwellian” revisionism, respectively. [Dennett,
1991] p.116–24).

The cognitive architecture presented in this paper draws on
several aspects of the Multiple Drafts theory. The architec-
ture allows the formation of networks of parallel processes,
with no single central process in ultimate control. Different
processes work on (potentially) conflicting interpretations of
events, and these drafts may persist for different lengths of
time, depending on whether they are considered useful by
other processes. No direct revision of drafts occurs; instead
new interpretations are generated which outlast the obsolete
drafts.

In this paper we focus on reactive models of perception,
and do not attempt to model higher deliberative processes, or
to demonstrate how reports of perceptions are assembled. In
addition, we do not model long-term memory or persistence
of drafts beyond the short time-scales of immediate percep-
tion.

3 The Temporal Abstraction Network
Architecture

The Temporal Abstraction Network architecture consists of a
set of processes that make inferences based on symbolic data
within a certain temporal window. The processes are con-
nected via a bus architecture, allowing the conclusions drawn
by one process to form the inputs to other processes (includ-
ing themselves), see Figure 1.

3.1 Time-limited Buffers
Each inference process has an input buffer with specified ca-
pacity and duration. The capacity of a buffer is the number of
items that may be present in the buffer at any given time. The
buffer’s duration is the maximum length of time elements can
remain in the buffer before they are forgotten. The duration
and capacity of a buffer are independent of each other, e.g.,

Production Rules

BufferInputs Lost memories

Conclusions

Figure 1: Conceptual model of an inference process.

a buffer may have large capacity but short duration or small
capacity but longer duration. New inputs are added to the
buffer in first in first out fashion — items arriving at a full
buffer cause the oldest items in the buffer to be overwritten.

Each process can draw conclusions based on the current
contents of its input buffer, using an inference procedure as
detailed below. Each inference process may have a different
buffer duration, allowing different process to draw conclu-
sions based on events occurring over different lengths of time.
At any given point, the contents of the buffers constitute the
entire state of the perceptual system.

3.2 Inference
The system as a whole runs in cycles. Each inference pro-
cess contains an inference engine, a set of production rules
that are used to spot patterns in input data, and draw conclu-
sions based on these patterns. At each cycle each inference
process’s production rules are matched against the contents of
the input buffer and a single rule fired. The inference engines
all operate at the same rate, and the production rules have a
chance to fire at each cycle regardless of whether any new in-
puts have arrived at the corresponding buffer. Each rule can
generate a single output which is automatically transferred to
the output bus of the process (see below).

More precisely, at each cycle each process:

1. Removes expired items from the buffer. An expired item
is one which has been present on the buffer for longer
than the buffer duration.

2. Adds any new items that have arrived since the last cy-
cle, over-writing the ‘oldest’ items if the total number of
items exceeds the capacity of the buffer.

3. Matches rules against current contents of the buffer.
4. Selects a single rule and runs it (if possible).
5. Transfers the output of the rule to the output bus.

Inference processes can be categorised into three main
types based on the kinds of inferences they perform: pro-
cesses that filter information; those that apply transforma-
tions; and those that integrate features of many items in a
buffer and produce conclusions based on the properties of the
composite grouping. An individual inference process may
perform some combination of the above three categories of
abstraction.
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3.3 Buses and Information Propagation
The production rules within each process are used solely to
draw conclusions based on the current state of the input buffer
— they cannot alter the buffer in any way. Instead, output
from the rules are passed on to a bus, that transmits them to
the input buffers of other processes. In this way, data can be
abstracted as it progresses through the network of connected
processes, with different abstractions persisting for different
lengths of time. We envisage that processes further up a chain
(further from the initial percepts) would have buffers span-
ning a longer duration of time than the lower level processes,
allowing the system as a whole to remember more abstract
conclusions, while most of the details are forgotten.

To use the terminology of the Multiple Draft theory, the
output of a process would represent a draft interpretation of
events, and there may be multiple simultaneous drafts exist-
ing in multiple buffers at any given time. In addition, the bus
connection architecture means that a single conclusion from
a low-level process can be delivered to multiple higher-level
processes, allowing for multiple drafts to be formed based on
the same data, potentially producing different conclusions or
interpretations. The many-to-many connections of the buses
mean that the architecture is not limited to a rigid hierarchy
with all conclusions eventually converging on a central pro-
cess. There may be local bottlenecks where some combina-
tion of outputs are brought together for integration, but this
does not imply that further integration must occur: the flow
of information may diverge as well as converge.

The survival of a particular draft depends solely on its rel-
evance to higher-level processes; drafts that are irrelevant to
higher-level processes (in other words, do not match any pat-
terns in the rules) will simply expire from the buffers or be
overwritten by more recent drafts.

The architecture assumes that buses propagate information
instantaneously—that no time is spent transferring informa-
tion from one process to another, even over several buses.
In practice, this means that an output from one process on a
particular cycle will be present on the buffers of connected
processes by the start of the next cycle. In the current imple-
mentation conclusions are transferred immediately (i.e., dur-
ing the current cycle) but only made visible to rules at the
start of the next cycle—this means order of execution of the
processes is not important.

3.4 Feedback Loops and Alarms
While each process cannot write to its own buffer directly, it
can do so in a round-about way, by making use of a feedback
loop. Each process is connected to two buses; one for input,
another for output. However, any bus can be connected to
an arbitrary number of other processes, and other buses. This
allows the output bus of a process to be connected to the input
bus, creating a feedback loop. Feedback loops are useful for
a variety of reasons, the most important of which is keeping
track of information over a longer period of time than the
input buffer allows. By using a feedback loop, a process can
periodically (e.g. every cycle) send itself a message keeping
track of important information, for instance keeping a running
total of events that have occurred.
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Inference Engine

Buffer

Inference Engine

Buffer

Inference Engine
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Figure 2: Network for the colour phi experiment

In addition to feedback loops, buses can be connected to-
gether in other ways, in order to provide different functions.
One such function is to provide an alarm mechanism [Nor-
man and Long, 1996; Sloman, 1998], by which particularly
important events detected at a low level could bypass inter-
mediate levels of processing and be passed directly to higher
level processes for immediate action. This can be accom-
plished by connecting the low level bus to the high level bus
via a process that acts as a filter, to determine which events re-
quire immediate attention (for instance, acting as an attention
filter [Logan, 2000]).

4 Models
We have developed Temporal Abstraction Network models of
a number of perceptual phenomena. In this section we briefly
describe two such models: the colour phi phenomenon, and
the cutaneous “rabbit”, and show how the TAN architecture
was used to model them. The models were implemented us-
ing the SIM AGENT toolkit [Sloman and Poli, 1996].

4.1 Colour Phi Phenomenon
Kolers and von Grünau’s [1976] colour phi phenomenon
demonstrates an interesting aspect of how visual stimuli are
perceived over time. In the experiments subjects were briefly
shown a coloured shape at a certain position. The shape then
disappeared and was swiftly replaced by another shape of a
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different colour in a different position. The stimuli were typi-
cally presented for 150ms with a 50ms gap between them. A
number of variations on the experiment were performed, with
some keeping the colour constant and changing the shape,
some changing the colour but not the shape, and others chang-
ing both. Subjects were asked to indicate how the colour and
shape changed. The results show that subjects perceive shape
as changing continuously between the two points, whereas
colour is perceived as changing abruptly somewhere between
the two points. Moreover, the colour “filled-in” the interme-
diate shapes.

The model that we have created discriminates colour (a
property of surfaces) separately from shape (a property of
edges) and also discriminates changes in colour separately
from changes in shape. The colour processes interpret a
change in colour as an abrupt change (or rather, make no
interpretation at all of changes in colour), while shape pro-
cesses perceive changes as continuous (a single object chang-
ing shape). We believe this is a reasonable dichotomy, as
objects in the natural world often vary in apparent shape over
time (e.g. as a result of relative motion), but rarely change
in hue. This is also consistent with findings that colour plays
only a small role in perception of movement and other proper-
ties of objects [SFN, 2005]. Further processes then try to inte-
grate this change data into a conclusion of the form “shape s1

changing to s2 AND colour c1 followed by c2”. No “filling-
in” of intermediate stages is performed at all by the percep-
tual processes. Again, this is reasonable, as we have reached
a level of abstraction at which the agent reasons about be-
haviour of objects over time, rather than the properties of
individual perceptions of the objects. This is a more useful
level of abstraction for making predictions about the future
behaviour of objects. By identifying objects and making pre-
dictions about their movements, an agent can anticipate and
plan ahead rather than simply responding to events as they
occur. The use of short-duration buffers allows the agent to
aggregate information from several events in succession and
spot overall trends in data, while the bus architecture means
that the use of these buffers does not preclude the propagation
of such information to other processes for immediate action.
Once an overall trend is spotted, it is not necessary to recall
the original data for revision, or to spend time “filling-in” the
missing pieces. Instead, it is sufficient to generate a conclu-
sion describing the overall trend. It is only when explicitly
asked to describe the events (when asked to form a report)
that an attempt is triggered to recreate the (phantom) inter-
mediate stages.

Figure 2 shows the network of inference processes used to
model this experiment. The two lowest-level processes ex-
tract shape and colour information from low-level visual sen-
sory data. The details of how these processes operate is de-
pendent on the underlying representations of visual data, and
are omitted. The next layer of processes are also split into a
colour/shape divide. Each process in this layer has a longer
duration buffer than the lower level processes, and aggregates
information about colours/shapes over that time period. The
buffers can vary in duration independently of each other, but
the results from colour phi suggest that a duration of at least
50ms is required for both. The outputs of these intermedi-

ate levels express a change in the underlying property. This
change is encoded as a start and end state together with an in-
dication of the sort of change (continuous transition or abrupt
change). The final process at the top of the figure integrates
shape and colour information to describe the recent changes
in properties of an object. This information can then be used
by further processes to make predictions and decide upon ap-
propriate actions. The intermediate processing and raw sen-
sory data are not typically made available to other processes
(although they could be), and so this information disappears
when it expires from the short-duration buffers in the low-
level processes. Thus, when a higher-level process wishes to
generate a report of the episode, it only has the high-level in-
terpretation of a continuously changing shape and an abrupt
colour change.

4.2 Cutaneous “Rabbit”
Geldard and Sherrick’s cutaneous “rabbit” experiments
[1972; 1977] offer evidence for another perceptual phe-
nomenon called sensory saltation. In the experiments a se-
ries of short ‘taps’ (of about 2ms duration) were delivered to
the arm of a subject. The taps are delivered with intervals of
between 0–500ms. In the original experiment the taps were
delivered in sequences to different locations on the arm —
for instance, five taps at the wrist, followed by five between
wrist and elbow, and then five more at the elbow. Subjects re-
ported that the taps had been more or less evenly spaced along
the arm — as if a little rabbit was hopping up the arm. This
effect is illustrated in Figure 3. Variation in the interval be-
tween taps (inter-stimulus interval, ISI) causes differences
in the effect felt. If the ISI exceeds approximately 200 ms
then the effect is not felt; the taps are felt at their correct lo-
cations. With an ISI of 20 ms or less the number of taps felt
becomes illusory, for example, 15 taps may be perceived as
just 6. Inter-stimulus intervals between these extremes cause
variations in the apparent spacing and intensity of the dis-
placed taps, but an overall sensation that the taps were more
or less evenly spaced between the location of the first tap and
that of the last.

A model of this experiment is shown in Figure 4. The
model uses a feedback loop to aggregate information about
individual taps into information about a sequence of taps. As
in the colour phi model, this aggregation allows the agent to
reason about and predict the actions of an object over time,
rather than being concerned with the details of individual per-
ceptions. The lowest level process in the figure simply pro-
cesses low-level information to determine the presence of a
single tap. This process has a buffer duration of 20 ms and a
capacity of just a single element (in this case, the ‘element’
is actually a collection of low-level data). If more than one
tap occurs within this time-frame, then the newer tap simply
overwrites any previous tap. This is consistent with the ex-
perimental results that taps occurring within 20 ms of each
other are merged in this way with the location of the newer
tap dominating.

The next layer of processing consists of a single process
with a buffer of duration 200 ms and a capacity of 2 elements.
When a tap arrives at an empty buffer (which can happen at
most once every 20 ms) a new aggregate conclusion is gener-
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Figure 3: Actual vs. reported position of a series of taps. A
train of taps is delivered with regular time interval to three
positions on the arm. The subject reports that the locations of
the taps are evenly distributed.

ated, taking the position of the tap as the start and end position
of the ‘run’, and initialising the count of taps in this run to 1.
This conclusion is passed to the output bus, where it is trans-
mitted to other processes, but also, via a feedback loop, back
to the input bus of the intermediate process. If a subsequent
tap arrives before this aggregate fact expires from the buffer
(i.e., within 200 ms) it overwrites the data about the previous
tap (as this is older than the aggregate conclusion) and a new
conclusion is formed which adjusts the end point of the run
to the new tap position and increases the tap count by 1. The
buffer duration ensures that any gap of 200 ms or more causes
the previous ‘run’ to be forgotten, and thus any subsequent tap
will be perceived as the start of a new run, which is consistent
with the experimental data. It is important to note that al-
though the buffer has a duration of 200 ms it is not necessary
to delay conclusions for 200 ms. Instead, the process pro-
duces a conclusion whenever a new tap is felt (at most, once
every 20 ms), and these conclusions can be acted upon imme-
diately. For instance, Dennett [1991] suggests that a subject
would be able to press a button after perceiving two taps at
the wrist, but then still later report that the taps were evenly
spaced. The process at the top-right of Figure 4 is waiting to
do just that: it looks for a sequence of two taps at the wrist
and then initiates the button press. The process on the left,
however, is more conservative: it waits for a tap sequence to
end before drawing a conclusion. (Detecting the end of a tap
sequence can be done by employing a two-element capacity
buffer and comparing the start position of sequential tap-run
inputs). It is the output from this process that is eventually
used to generate a report of the experience.

The model presented above suffices to explain the basic
data of the cutaneous ‘rabbit’ experiments. Later work by
Geldard [1977] appears appear to show that individual tap
timings are preserved while the locations are displaced in in-
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Figure 4: Network for cutaneous “rabbit” experiment.

verse relation to the interval between the tap and a subsequent
offset tap. An initial model of these results can be created by
converting the count of taps in a run into a list of timings
of individual taps. However, it is not clear if the results of
these later experiments are entirely consistent with the origi-
nal findings in [Geldard and Sherrick, 1972]. The initial find-
ings that the train of taps is felt more or less evenly spaced
would produce a situation as shown in Figure 3 where each
tap location is adjusted towards an average. In the later ex-
perimental results, the adjustment is always towards a subse-
quent tap, which would suggest a report of bunching of taps
towards the end of the train. While it is not clear at this stage
which model is to be preferred, the architecture developed is
capable of accommodating either.

5 Related Work
There has been considerable work on formal representations
of time both by philosophers and Artificial Intelligence re-
searchers (e.g., see [Allen, 1991] for a survey). However,
there has been relatively little work on cognitive models of
how humans represent and reason about events occurring over
time at the reactive level. Most of the popular cognitive archi-
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tectures such as Soar [Newell, 1990] and ACT-R [Anderson
and Lebiere, 1998] concentrate on a primarily serial model of
cognition which is less suited for modelling the sorts of ex-
periments discussed in this paper. There has been some work
done on modelling temporal perception in ACT-R [Taatgen
et al., 2004]. However this work concentrates on the per-
ception of the passage of time itself, and uses a Temporal
Module that can keep track of a single timer that can be used
to measure and reproduce the interval between two events.
In contrast, our work concentrates on the perception of phe-
nomena in which the timing and sequence of events plays a
crucial role. That is, we are studying the effects of time of
perception rather than perception of time. In our architecture
there are no explicit timers, or measurements of the passing
of time; instead, the duration of buffers and the cycle time
of inference processes can be used to make judgements about
the temporal relationships between events.

The Multiple Drafts theory offers an alternative view of
a highly parallel system with less of an overarching struc-
ture to cognition. However, to the best of our knowledge,
there is no implemented cognitive architecture which cap-
tures all the features of the Multiple Drafts theory. Some
parallel models of cognition come close to the “feel” of the
Multiple Drafts theory. For example, the CopyCat architec-
ture [Mitchell, 1993] is based on a Pandemonium-style col-
lection of competing and cooperating stochastic processes.
However, in contrast to the Multiple Drafts theory (and our
architecture) which allows for both parallel processing and
multiple simultaneous drafts, the CopyCat model employs
many parallel processes working on a single solution (a sin-
gle draft). The EPIC architecture [Kieras and Meyer, 1997]
is also parallel, with multiple production rules executing si-
multaneously. However, unlike the Multiple Drafts theory,
there is an explicit executive process in EPIC responsible
for conflict resolution, resource arbitration and other meta-
management tasks. The Global Workspace Theory [Baars,
1997] proposes a parallel, distributed architecture, but in con-
trast to the Multiple Drafts theory it explicitly advances the
notion of a central workspace as a mechanism for sharing in-
formation and coordinating the parallel processes.

We are not aware of any previous attempts to model per-
ceptual phenomena such as colour phi or saltation using these
architectures. The architecture we have presented is capable
of using separate processes to achieve the sort of integration
found in the CopyCat, EPIC and Global Workspace models
locally without requiring a single, global process, although it
would be possible to construct a “central workspace” process
within the architecture.

6 Discussion
The Multiple Drafts theory argues for replacing a central ex-
ecutive process in the brain with a parallel, decentralised view
of processing. We agree with this view. A number of ex-
periments, including the two discussed in this paper, suggest
that a parallel view of human cognition is to be preferred,
at least at the level of reactive perception. However, aban-
doning a single central executive process does not mean that
information cannot be brought together locally for integra-

tion. The TAN architecture we have presented in this paper is
a middle-road between serial central processing architectures
and parallel Pandemonium architectures. The architecture is
based on parallel networks of simple processes drawing con-
clusions based on individual snapshots of events occurring
within a short time-span, connected via buses and feedback
loops. TANs are capable of local (serial) integration while
maintaining multiple simultaneous drafts: information flow
can diverge as easily as converge. This conclusion is in con-
trast to that of Dennett and Kinsbourne who suggest that the
only alternative to the Cartesian theatre is a strictly parallel
architecture, where local integration is replaced by a more
chaotic Pandemonium approach (e.g., [Kinsbourne, 1994] pp.
1324). The architecture and models we have presented allow
for both separate analysis of aspects of a stimulus and local
integration, without appealing to a central executive process
where everything comes together.

The Temporal Abstraction Network models that we have
developed demonstrate the ability of the architecture to model
a variety of perceptual phenomena at the reactive level in
which time and the temporal ordering of events plays a key
role. In future work we plan to concentrate on extending the
architecture to account for action selection, as well as expand-
ing on the details of how reports are generated. One interest-
ing area for future research will be to look at Libet’s contro-
versial experimental results [Libet, 1985] on voluntary action.
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Abstract
In this paper we propose a theoretical framework
based upon hidden Markov models for describing
goal-oriented animal behaviours. These models are
optimised in a virtual environment using a genetic
algorithm, in order to assess the performance (such
as energy efficiency or reward stability) of the natu-
rally evolved behavioural strategy of the animal. In
general the optimal solution does not depend triv-
ially on the global properties of the environment,
since the sensory information available locally to
the animal is characterised by non-stationary statis-
tics determined by the history of the animal’s ac-
tion selection. Here, we apply our framework to the
problem of chemotactic search in the moth within
naturally turbulent chemical plumes, and find that
behavioural states emerge from the optimisation
procedure which closely resemble those observed
in real moth flight trajectories (“cast” and “surge”).
Moreover, we find that the transition dynamics be-
tween these states also match qualitatively with bi-
ology. Thus, stereotypical chemotaxis behaviour
in moths is correctly predicted by our framework,
which we conclude provides an energy efficient so-
lution to chemical source localisation.

1 Introduction
A common approach to understanding the behaviour of ani-
mals within their natural habitat involves breaking down com-
plex behavioural sequences into simpler components termed
behavioural units [Lenhner, 1998; Martin and Bateson, 1993;
Harris and Foster, 1995]. Complex behaviours can be con-
sidered to consist of these behavioural units executed in some
sequence to achieve an end goal. Important questions are how
should these different behavioural units be characterised, and
in what way should these be executed in order to optimise
some overall performance criteria, such as energy minimisa-
tion, reward maximisation or stability. Answering these ques-
tions might account for qualitative and/or quantitative aspects
of empirical data derived from behavioural experiments.
In the general case of an animal embedded within its envi-
ronment these questions are complex, since the animal may

change its own observed sensory statistics through its own ac-
tions, for example, by moving to another area or following a
group of prey. This we term the principle of locality. Conse-
quently, the optimal behavioural unit for the animal to execute
at any given time can potentially depend upon the entire his-
tory of observed environmental states local to the observer,
as well as the history of its interactions with that environ-
ment. Therefore any general theory of interaction between
an agent and its environment must take into account the non-
stationarity of sensory statistics, which are under some level
of control by the agent through the sequence of behavioural
primitives executed over time due to the principle of locality.
In this study we propose a theoretical framework which is

based upon a stochastic model of agent-environment interac-
tion that satisfies the principle of locality. Animal memory is
represented here by having a variety of internal states. This
contrasts with systems with no memory (one internal state)
whose actions do not depend on the history of interactions
with the environment. This arrangement is sufficient to sat-
isfy the principle of locality, since the actions that the model
performs depend not only on the internal state of the model,
but also on the sensory input that it is currently sensing. The
sensory input has the potential to change the internal state of
the agent, whereas the actions change the state of the envi-
ronment as well as the state of the agent with respect to that
environment.
We will demonstrate that this framework allows us to

predict and understand the structure of animal behaviours,
by illustrating with a well characterised animal behaviour –
chemotaxis in the moth – which is well characterised and per-
formed robustly in turbulent chemical plumes. In this exam-
ple we will see that the optimisation of a two-state model in
a virtual plume generates a behavioural strategy which is di-
rectly comparable to that classically described in the animal.

2 Chemotactic search in turbulent plumes
The example we choose to illustrate our approach is moth
chemotaxis in turbulent plumes (see Figure 1). Chemotaxis
in moths is classically described by an alternation between
two different behavioural states called cast and surge respec-
tively [Baker, 1986; Vickers and Baker, 1994]. In the surge
state the insect moves forward approximately against the di-
rection of the oncoming wind, whereas in the cast state the in-
sect oscillates perpendicularly to the wind with little forward
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Figure 1: Model of the odour plume. The plume may be
modeled as a number of discrete pockets, which move with
fixed velocity away from the source (star at {x = 0, y = 0})
along the longitudinal axis (centreline) of the plume at the
rate of one unit per time step, whilst dispersing away from
the centreline as a random walk. At each time step an odour
pocket moves one unit in the direction of the wind (x + 1)
and either (y + 1), (y − 1), or y, each with fixed probability
p = 1/3.

movement. Yet there are several questions which are not well
understood in this context such as: How well adapted is the
natural two-state solution to the problem ? Given that the
behaviour is classically described by two behavioural units,
how should each of them be defined in order to efficiently
solve the task ? Finally, how should the transitions between
them be determined by the external stimuli ?
In this context we consider sensorimotor rules that min-

imise the number of steps to locate the source (energy crite-
rion). As in the general case, it is important to note that also
in this context the statistics of the sensory input are not fixed
- since at any given time step the sensory input depends upon
both the state of the environment (in this case the plume struc-
ture) and the spatial position of the animal with respect to its
environment. As such, an optimally efficient solution to the
moth chemotaxis problem is likely to require some memory
in the moth so that the history of its past interaction with the
environment is taken into account in its future actions.

2.1 Model of the plume
We model the odour plume following [Balkovsky and
Shraiman, 2002] (see Figure 1). The fluid dynamics of chem-
ical plumes at behaviourally relevant flow velocities and vis-
cosities generate high concentration “pockets” (filled circles),
interspersed by air with almost no target odour [Murlis, 1986;
Murlis et al., 1992; 2000]. The plume may be modeled as a
number of discrete pockets, which move with fixed velocity
away from the source (star at {x = 0, y = 0}) along the
longitudinal axis (centreline) of the plume at the rate of one
unit per step, whilst dispersing away from the centreline as a
random walk (Figure 1). At each time step an odour pocket
moves one unit in the direction of the wind (x + 1) and either
y + 1, y − 1, or y, each with fixed probability p = 1/3. This
simple stochastic process generates a plume with pockets that
are confined to an apex (lines starting at the star), but where
the probability of finding a pocket in the y dimension is ap-

U

R

D

F

{x,y}

{x-1, y+1}

{x-1, y}

{x-1, y-1}

behavioral state descriptioninput state

Figure 2: Moth basic actions. The moth has a specific {x, y}
location relative to the source at step n and is assumed to de-
tect a pocket if a pocket moves into sector {x, y} from sector
{x − 1, y + 1}, {x − 1, y} or {x − 1, y − 1}, otherwise no
pocket is detected. At each step the moth must decide to exe-
cute one of four behavioural primitives based upon available
sensory data (current input state and potentially its history):
U - move up (to sector {x, y + 1}); F - move forward (to
sector {x − 1, y}); D - move down (to sector {x, y − 1}); or
R - rest (remain in sector {x, y}).

proximated by a Gaussian distribution with mean positioned
at the centreline (dashed curve), and variance which depends
upon the longitudinal distance from the source.

2.2 Moth basic actions
The moth has a specific {x, y} location relative to the source
at step n and is assumed to detect a pocket if a pocket moves
into sector {x, y} from sector {x − 1, y + 1}, {x − 1, y} or
{x − 1, y − 1}, otherwise no pocket is detected (Figure 2).
At each step the moth must decide to execute one of

four behavioural primitives based upon available sensory data
(current input state and potentially its history): U - move up
(to sector {x, y+1}); F - move forward (to sector {x−1, y});
D - move down (to sector {x, y − 1}); or R - rest (remain
in sector {x, y}). The simulation ends when either the moth
moves into the sector containing the source, in which case a
hit is recorded, or moves past the source (x < 0), in which
case a miss is recorded. The problem is then to control the
behavioural state transitions based upon the sensory input in
order to minimise the number of steps required to locate the
source, such that the hit rate is maximised.

3 Behavioural stochastic model
We model the dynamics of the animal as a hidden Markov
model. It consists of a fixed number of internal states
(in our case 1 or 2). In each one of them the prob-
abilities p(action|state) define the policy of the ani-
mal (which actions to perform in those states). Note
that action ∈ {Up,Down,Forward,Rest} and state ∈
{1,2}. On the other hand, the transition dynamics be-
tween those internal states is defined by the probabilities
p(new state|old state, input) with the variable input being
“no pocket”, “pocket from y”, “pocket from y+1” or “pocket
from y − 1” (with y being the current moth vertical loca-
tion), as explained in Section 2. Thus the two sets of prob-
abilities p(action|state) and p(new state|old state, input)
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Figure 3: Optimal solution found by the genetic algorithm.
A: Probability of performing the different actions in each of
the two internal states. B: Transition probabilities between
the internal states.

completely define the behavioural dynamics of the moth in
our simulation, and they constitute the free parameters of our
problem. We use a genetic algorithm [Levine, 1998] to find
their optimal values which minimise the average time needed
to reach the odour source. Thus, we calculate the optimal be-
havioural dynamics which minimises the time needed to find
the source, whilst only imposing the total number of internal
states and the behavioural primitives.

4 Results
When only one internal state is considered, there is no sin-
gle strategy which efficiently finds the odour source (data not
shown). However, for two internal states, there exists a strat-
egy which finds the source with high probability. In Figure 3
we show the optimal solution found by the genetic algorithm
in this case. Remember that the free parameters are the tran-
sition probabilities between the internal states (which we will
call “grey” and “black”), and the probabilities of performing
the different actions in those states.
When the Markov model is in the “grey” state the action

performed is “Forward” with probability 1, so the model
moves forward against the wind. In the “black” state the
actions performed are “Up” and “Down” with probabilities
equal to 1/2, so the model oscillates perpendicularly to the
wind. Thus the dynamics of these two very different states
closely resemble the surge and cast behavioural units ob-
served in behaving moths (grey and black respectively).
Let us analyze now what the found transition probabili-

ties imply. When there is input from any direction, the moth
changes to “surge” state with probability one. On the other
hand, when there is no input the moth remains in the “cast”
state in case it was already in it. In case the moth was in the
“surge” state, it has some tendency to remain in it (p = 0.6),

wind

cast castsurge
Figure 4: Top: Example of a path followed by the optimal
solution. The path starts at the right circle and finally finds
the source (white circle). The probability of finding an odour
pocket is represented as the grey level of the pixel. Circles in-
dicate locations at which the moth finds odour pockets in this
particular simulation. The internal state of the moth at each
stage of the path is represented by the path color: grey for
“surge” state, and black for “cast” state. Bottom: real moth
trajectory demonstrating cast/surge/cast behaviours. Adapted
from [Mafra-Neto and Cardé, 1994].

having a probability of 0.4of changing to the “cast” state.
These two probabilities determine how long the moth is on
average in the “surge” state in the absence of input.
In Figure 4 we show an example of a path followed by the
optimal solution. This can be compared to real flight trajec-
tories in the moth in response to chemical plumes (Figure 4,
bottom), where contact with a single pheromone pulse was
followed by a sharp turn upwind, and a faster and straighter
upwind flight. In the absence of a second pheromone pulse,
males returned to casting flight. All these features qualita-
tively match the optimal solution predicted by our framework.

5 Discussion
We have presented a framework that can be used to predict
real behaviours for complex behavioural tasks, constrained a
priori only by the total number of internal states and selec-
tion of behavioural primitives. . It consists of simulating the
environment-animal interaction with the animal being mod-
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eled as a Markov process. The parameters of this model are
found through optimisation of a global behavioural cost func-
tion using a genetic algorithm.
We have illustrated this framework with a specific complex

behaviour – moth chemotaxis. Our results show that when
only one internal state is considered (which corresponds to a
system with no memory), there is no single strategy which
efficiently finds the odour source. However, for two internal
states, there exists a strategy which finds the source with high
probability, showing the importance of multiple states (mem-
ory) in this behavioural task.
It is clear how the optimal parameters of our solution re-

late to the behavioural strategy adopted by natural selec-
tion. In particular, the two internal states map qualitatively
onto the observed behaviour of moths conducting chemotaxis
- in that one state generates exploratory cross-wind search
(“cast”) behaviour and is preferred when no input has been
detected, whilst the other state generates forward movement
(“surge”) behaviour which is preferred when input is de-
tected. Thus our model suggests that, at least for dynamics
with up to two internal states, the surge and cast behavioural
units performed by the moth provide an efficient solution
to chemical search in complex odour plumes. For our pur-
poses, no further quantification of moth flight trajectories is
required, since our aim is to explain the optimality of the
chemotaxis strategy in the moth in terms of the two classi-
cal behavioural units identified by ethologists [Baker, 1986;
Vickers and Baker, 1994].
We expect that the optimal parameters will depend on the

physical properties of the environment - such as wind speed
and dispersion in the plume. It would be interesting to predict
the values of these parameters for different conditions.
The ultimate objective in building such models is to link

behavioural requirements to solve a particular task effi-
ciently with the corresponding mechanistic/architectural re-
quirements of the behaviour and the underlying nervous sys-
tem – for example, degree of memory, degree of behavioural
complexity and even what degree of temporal coding of the
sensory dynamics might be required.
Although illustrated with a behavioural case study, the
framework outlined here is however general, in that it can
be useful for defining the basic behavioural states needed for
performing any complex behavioural task where the environ-
mental dynamics are well defined. The model is compatible
with the principle of locality in that the actions generated de-
pend on both the state of the environment and the state of the
model with respect to that environment. Thus, in this model
the actions have direct consequences for future reinforcement
and input from the environment which is directly relevant to
the task solution. The framework we have described here can
be applied to other well-defined behavioral sequences in com-
plex environments with non-stationary statistics. Thus, we
can extend this to address key questions related to natural ac-
tion selection, such as

1. How complex does a behaviour need to be in order to
efficiently solve a given task? In other words, what is
the trade-off between number of behavioural units and
task performance?

2. What is the memory requirement to solve a particular
task? That is, to what degree is the past history of the
sensory input and motor output crucial to solving the
task efficiently?

3. How should the execution of specific behavioural units
within a complex behaviour programme depend upon
the sensory input? In other words, how should the tran-
sitions between behavioural units depend upon the sen-
sory input?

4. How should different sensory modalities be integrated
at different stages of the complex behaviour in order to
efficiently solve the task?
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Abstract
Humans encounter a huge variety of problems
which they must solve using general methods.
Even simple problems, however, become compu-
tationally hard for general solvers if the struc-
ture of the problems is not recognized and ex-
ploited. Work in Artificial Intelligence Planning
and Problem Solving has encountered a similar dif-
ficulty, leading in recent years to the development
of well-founded and empirically tested techniques
for recognizing and exploiting structure, focusing
the search for solutions in certain cases, and by-
passing the need to search in others. These tech-
niques include the automatic derivation of heuristic
functions, the use of limited but effective forms of
inference, and the compilation of domains, all of
which enable a general problem solver to ‘adapt’
automatically to the task at hand. In this paper, I
present the ideas underlying these new techniques,
and argue for their relevance to models of natural
intelligent behavior as well. The paper is not a re-
view of AI Planning – a diverse field with a long
history – but a personal appraisal of some recent
key developments and their potential bearing on ac-
counts of action selection in humans and animals.

1 Introduction
In the late 50’s, Newell and Simon introduced the first AI
planner – the General Problem Solver or GPS – as a psycho-
logical theory [Newell and Simon, 1958; 1963]. Since then,
Planning has remained a central area in AI while changing in
significant ways: it has become more mathematical (a variety
of planning problems has been clearly defined and studied)
and more empirical (planners and benchmarks can be down-
loaded freely, and competitions are held every two years), and
as a result, new ideas and techniques have been developed that
enable the automatic solution of large and complex problems
[Smith, 2003].
AI Planning studies languages, models, and algorithms for

describing and solving problems that involve the selection of
actions for achieving goals. In the simplest case, in classi-
cal planning, the actions are assumed deterministic, while in
contingent planning, actions are non-deterministic and there

is feedback. In all cases, the task of the planner is to com-
pute a plan or solution; the form and cost of these solutions
depending on the model; e.g., in classical planning, solutions
are sequences of actions and cost is measured by the number
of actions, while in planning with uncertainty and feedback,
solutions map states into actions, and cost stands for expected
or worst-possible cost.
Planning is a form of ’general problem solving’ over a class

of models, or more precisely, a model-based approach to in-
telligent behavior: given a problem in the form of a com-
pact description of the actions, sensors (if any), and goals,
a planner must compute a solution, and if required, a solu-
tion that minimizes costs. Some of the models used in plan-
ning, as for example Markov Decision Processes (MDPs), are
not exclusive to AI Planning, and are used for example in
Control Theory [Bertsekas, 1995], Reinforcement Learning
[Sutton and Barto, 1998], and Behavioral Ecology [Hous-
ton and McNamara, 1988; Clark, 1991] among other fields.
What is particular about AI planning are the languages for
representing these models, the techniques for solving them,
and the ways these techniques are validated. Techniques
do matter quite a lot: even simple problems give rise to
very large state spaces that cannot be solved by exhaus-
tive methods. Consider the well known Rubik Cube puz-
zle: the number of possible configurations is in the order
of trillions, yet methods are known for solving it, even op-
timally, from arbitrary configurations [Korf, 1998]. The key
idea lies in the use of admissible heuristic functions that pro-
vide an optimistic approximation of the number of moves
to solve the problem from arbitrary configurations. These
functions enable the solution of large problems, even en-
suring optimality, by focusing the search and avoiding most
states in the problem. Interestingly, recent work in plan-
ning has shown that such functions can be derived auto-
matically from the problem description [Bonet and Geffner,
2001], and can be used to drive the search in problems in-
volving uncertainty and feedback as well [Bonet and Geffner,
2000]. Such functions can be understood as a specific and ro-
bust form of means-ends analysis [Newell and Simon, 1958;
1963] that produces goal-directed behavior in complex set-
tings even in the presence of large state and action spaces.
In this paper, we review some of the key computational

ideas that have emerged from recent work in planning and
problem solving in AI, and argue that these ideas, although
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not necessarely in their current form, are likely to be rele-
vant for understanding natural intelligent behavior as well.
Humans encounter indeed a huge variety of problems which
they must solve using general methods. It cannot be other-
wise, because there cannot be as many methods as problems.
Yet, simple problems become computationally hard for a gen-
eral solver if the structure of the problems is not recognized
and exploited. This is well known in AI, where systems that
do not exhibit this ablity tend to be shallow and brittle. In
the last few years, however, work in Planning and Problem
Solving has led to well-founded and empirically tested tech-
niques for recognizing and exploiting structure, focusing the
search for solutions, and in certain cases, bypassing the need
to search altogether. These techniques include the automatic
derivation of heuristic functions, the use of limited but effec-
tive forms of inference, and the compilation of domains, all
of which enable a general problem solver to ‘adapt’ automat-
ically to the task at hand. Interestingly, the need for focus-
ing the search for solutions has been recognized in a number
of recent works concerned with natural intelligent behavior,
where it has been related to the role of emotions in the ap-
praisal and solution of problems. We will say more about this
as well.
Since Newell’s and Simon’s GPS, the area of AI planning

has departed from the original motivation of understanding
human cognition to become the mathematical and computa-
tional study of the problem of selecting actions for achiev-
ing goals. Yet after all these years, and given the progress
achieved, it is time to reflect on what has been learned in the
abstract setting, and use it for informing our theories in the
natural setting. This exercise is possible and may be quite re-
warding. It parallels the approach advocated by David Marr,
and echoed more recently by [Glimcher, 2003] and others in
the Brain Sciences; namely: characterize what needs to be
computed, how it can be computed, and how these computa-
tions are approximated in real-brains. The findings that we
summarize below, aim to provide a partial account of the first
two tasks.
A few methodological comments before proceeding. First

about domain-generality vs. domain-specificity in action se-
lection. I have said that humans are capable of solving a wide
range of problems using general methods. This, however, is
controversial. Both evolutionary psychologists [Tooby and
Cosmides, 1992] and cognitive scientists from the ’fast and
frugal heuristics’ school [Gigerenzer and Todd, 1999] place
an emphasis on modularity and domain-specificity. Others,
without necessarily denying the role of specialization, pos-
tulate the presence of general reasoning and problem solv-
ing mechanisms as well, at least in humans (see for example
[Stanovich, 2004]). We are not going to address this contro-
versy here, just emphasize that ’general’ and ’adapted’ are
not necessarily opposite of each other. Indeed, the work in AI
planning is domain-independent, yet the recent techniques il-
lustrate how a general problem solver can ’adapt’ to a specific
problem by recognizing and exploiting structure, for exam-
ple, in the form of heuristic functions. These heuristics are
indeed in line with the ’fast and frugal heuristics’, the differ-
ence being that they are general and can be extracted auto-
matically from problem descriptions.

Another distinction that is relevant for fitting the work in
AI Planning within the broader work on Intelligent Behavior
is the one between finding solutions vs. executing solutions.
For many models, such as those involving uncertainty and
feedback, the solutions, from a mathematical point of view,
are functions mapping states into actions (these functions are
called closed-loop policies, and in the partially observable
case map actually belief states into actions; see below). These
functions can be represented in many ways; e.g. as condition,
action rules, as value functions, etc. Indeed, in what is of-
ten called behavior-based AI [Brooks, 1997], these solutions
are encoded by hand for controlling mobile robots. In na-
ture, similar solutions are thought to be encoded in brains but
not by hand but by evolution. Representing and executing
solutions, however, while challenging, is different than com-
ing up with the solutions in the first place which is what AI
Planning is all about. Whether this is a requirement of intelli-
gent behavior in animals is not clear although it seems to be a
distinctive feature of intelligent behavior in humans. Interest-
ingly, in many cases, the same models can be used for both
understanding the solutions found in nature, and for gener-
ating those solutions [McFarland and Bosser, 1993]. The in-
terest in the latter case, however, is not only with the models
but also with the algorithms needed for solving those models
effectively. We thus consider both models and algorithms.

2 Models
Most models considered in AI Planning can be understood in
terms of actions that affect the state of a system, and can be
given in terms of
1. a discrete and finite state space S,
2. an initial state s0 2 S,
3. a non-empty set of terminal states ST ✓ S,
4. actions A(s) ✓ A applicable in each non-terminal state,
5. a function F (a, s)mapping non-terminal states s and ac-
tions a 2 A(s) into sets of states

6. action costs c(a, s) for non-terminal states s, and
7. terminal costs cT (s) for terminal states.

In deterministic planning, there is a single predictable next
state and hence |F (a, s)| = 1, while in non-neterministic
planning |F (a, s)| � 1. In addition, in probabilistic plan-
ning (MDPs), non-deterministic transitions are weighted with
probabilities Pa(s0|s) so that

P
s02F (a,s) Pa(s0|s) = 1. In

general, action costs c(a, s) are assumed to be positive, and
terminal costs cT (s) non-negative. When zero, terminal
states are called goals. The models underlying 2-player
games such as Chess can be understood also in these terms
with opponent moves modeled as non-deterministic transi-
tions. Often models are described in terms of rewards rather
than costs, or in terms of both, yet care needs to be taken
so that models have well-defined solutions. State models of
this type are also considered in Control Theory [Bertsekas,
1995], Reinforcement Learning [Sutton and Barto, 1998],
and Behavioral Ecology [Houston and McNamara, 1988;
Clark, 1991]. In [Astrom, 1965], it is shown how problems
involving partial feedback can be reformulated as problems
involving full state feedback over belief states; i.e., states that
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encode the information about the true state of the system. All
these problems can also be cast as search problems in either
the original state space or belief space [Bonet and Geffner,
2000].
The solutions to these various state models have a mathe-

matical form that depends on the type of feedback. In prob-
lems without feedback, solutions are sequences of actions,
while in problems with full-state feedback solutions are func-
tions mapping states into actions (called also closed-loop con-
trol policies). The form of the solution to the various models
need to be distinguished from the way they are represented.
A common, compact representation of policies is in terms of
condition, action rules; yet many of the standard algorithms
assume a representation of policies in terms of less-compact
value functions. The problem of combining robust algorithms
with compact representations is not yet solved, although sig-
nificant progress has been achieved when actions can be as-
sumed to be deterministic.
From a complexity point of view, if there are n variables,

the state space (range of possible value assignments) is ex-
ponential in n. Thus, except for problems involving very
few variables, exhaustive approaches for specifying or solv-
ing these models are unfeasible. A key characteristic of AI
Planning are the languages for representing these models, and
the techniques used for solving them.

3 Languages
A standard language for representing state models in compact
form is Strips [Fikes and Nilsson, 1971].1 In Strips, a prob-
lem P is expressed as a tuple P = hA,O, I, Gi where A is
the set of atoms or boolean variables of interest, O is the set
of actions, and I ✓ A, and G ✓ A are the atoms that are
true in the initial and goal situations respectively. In addition,
each action a 2 O is characterized by three sets of atoms:
the atoms pre(a) that must be true in order for the action to
be executable (preconditions), the atoms add(a) that become
true after the action is done (add list), and finally, the atoms
del(a) that become false after doing the action (delete list).
A Strips planner is a general problem solver that accepts

descriptions of arbitrary problems in Strips, and computes
a solution for them; namely, sequences of actions mapping
the initial situation into the goal. Actually, any deterministic
state model can be expressed in Strips, and any Strips prob-
lem P = hA,O, I, Gi defines a precise state model S(P )
where

• the states s are the different subsets of atoms in A

• the initial state s0 is I

• the goal states sG are those for which G ✓ sG

• A(s) is the subset of actions a 2 O s.t. pre(a) ✓ s

• F (a, s) = {s + Add(a)�Del(a)}, for a 2 A(s)
• the actions costs c(a, s) are uniform (e.g., 1)

Extensions of the Strips language for accommodating non-
boolean variables and other features have been developed,
and planners capable of solving large and complex problems

1Strips is the name of a planner developed in the late 60’s at SRI,
a successor of Newell’s and Simon’s GPS.

currently exist. This is the result of new ideas and a solid em-
pirical methodology in AI Planning following [Penberthy and
Weld, 1992], [Blum and Furst, 1995], and others in the 90’s.

4 Is Strips Planning relevant at all?
Before getting into the techniques that made this progress
possible, let us address some common misconceptions about
Strips planning. First, it is often said that Strips planning can-
not deal with uncertainty. This is true in one way, but not in
another. Namely, the model S(P ) implicit in a Strips en-
coding P does not represent uncertainty. Yet this does not
imply that Strips planning cannot deal with uncertainty. It
actually can. Indeed, the ‘winner’ of the ICAPS 2004 Proba-
bistic Planning Competition [Littman, 2005], FF-Replan,2 is
based on a Strips planner called FF [Hoffmann and Nebel,
2001]. While the actions in the domain were probabilistic,
FF-Replan ignores the probabilities and replans from scratch
using FF after every step. Since currently, this can be done
extremely fast even in domains with hundred of actions and
variables, this deterministic re-planner did better than more
sophisticated probabilistic planners. It does not take much
to see that this strategy may work well in a ‘noisy’ Block
Worlds domain where blocks may accidentally fall off grip-
per, and actually it is not trivial to come up with domains
where this strategy will not work (this was indeed the problem
in the competition). Control engineers know this very well:
stochastic systems are often controlled by closed-loop con-
trol policies designed under deterministic approximations, as
in many cases errors in the model can be safely corrected
through the feedback loop.
A second misconception about Strips or ‘classical’ plan-

ning is that actions denote ‘primitive operations’ that all take
a unit of time. This is not so: Strips planning is about plan-
ning with operators that can be chacterized in terms of pre
and postconditions. The operator themselves can be abstrac-
tions of lower level policies, dealing with low level actions
and sensors. For example, the action of grabbing a cup in-
volves moving the arm in certain ways, sensing it, and so on;
yet for higher levels, it is natural to assume that the action
can be summarized in terms of preconditions involving the
proximity of the cup, a free-hand, etc; and postconditions in-
volving the cup in the hand and so on. Reinforcement learn-
ing has been shown to be a powerful approach for learning
low-level skills, but it has been less successful for integrating
these skills for achieving high-level goals. The computational
success of Strips planning suggests that one way of doing this
is by characterizing low-level behaviors in terms of pre and
postconditions, and feeding such behaviors into a planner.

5 Heuristic Search
How can current Strips planners assemble dynamically and
effectively low-level behaviors, expressed in terms of pre and
post conditions, for achieving goals? The idea is simple: they
exploit the structure of the problems by extracting automati-
cally informative heuristic functions. While the idea of using

2FF-Replan was developed by SungWook Yoon, Alan Fern and
Robert Givan from Purdue.
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heuristic functions for guiding the search is old [Hart et al.,
1968], the idea of extracting these functions automatically
from problem encodings is more recent [McDermott, 1996;
Bonet et al., 1997], and underlies most current planners.
In order to illustrate the power of heuristic functions for

guiding the search, consider the problem of looking in a
map for the shortest route between Los Angeles and New
York. One of the best known algorithms for finding short-
est routes is Dijkstra’s algorithm [Cormen et al., 1989]: the
algorithm efficiently and recursively computes the shortest
distances g(s) between the origin and the closest ‘unvisited’
cities s til the target is reached. A characteristic of the al-
gorithm when applied to our problem, is that it would first
find a shortest path from LA to Mexico City, even if Mexico
City is way out of the best path from LA to NY. Of course,
this is not the way people find routes in a map. The heuris-
tic search algorithms developed in AI approach this problem
in a different way, taking into account an estimate h(s) of
the cost (distance) to go from s to the goal. In route find-
ing, this estimate is given by the Euclidian distance in the
map that separates s from the goal. Using then the sum
of the cost g(s) to get to s and an estimate h(s) of the
cost-to-go from s to the goal, heuristic or informed search
algorithms are much more focused than blind search algo-
rithms like Dijkstra, without sacrificing optimality. For ex-
ample, in finding a route from Los Angeles to New York,
heuristic search algorithms like A* or IDA* [Pearl, 1983;
Russell and Norvig, 1994], would never consider ‘cities’
whose value g(s) + h(s) is above the cost of the problem.
These algorithms guarantee also that the solutions found are
optimal provided that the heuristic function h is admissible
or optimistic, i.e., if for any s, h(s)  V

⇤(s), where V
⇤ is

the optimal cost function. In the most informed case, when
h = V

⇤, heuristic search algorithms are completely focused
and consider only states along optimal paths, while in the
other extreme, if h = 0, they consider as many states as Dijk-
stra’s algorithm. Most often, we are not in either extreme,
yet good informed heuristics can be found that reduce the
space to search quite drastically. For example, while with
today’s technology it is possible to explore in the order of
1010 states, optimal solutions to arbitrary configuration of the
Rubik’s Cube with more than 1020 states, have been reported
[Korf, 1998]. These search methods are very selective and
consider a tiny fraction of the state space only, smaller actu-
ally than 1/1010.

6 Deriving Heuristic Functions
Two key questions arise: 1) How can these heuristics be ob-
tained? and 2) Whether similar gains can be obtained in other
models, e.g., when actions are not deterministic and states are
not necessarily fully observable. We address each question in
turn.
The power of current planners arises from methods for ex-

tracting heuristic values h(s) automatically from problem en-
codings. The idea is to set the estimated costs h(s) of reach-
ing the goal from s to the cost of solving a simpler, relaxed
problem. Strips problems, for example, can be relaxed by
dropping the delete lists. Solving (non-optimally) a delete-

free Strips problem can be done quite efficiently, and the
heuristic h(s) can be set to the cost of the relaxation. The
idea of obtaining heuristics by solving relaxed problems is
old [Pearl, 1983], but the use of Strips relaxations for deriving
them automatically for planning is more recent [McDermott,
1996; Bonet et al., 1997]. Since then other relaxations have
been been considered. In [Bonet et al., 1997], the derived
heuristics are used for selecting actions greedily, in real-time,
without finding a complete plan first. The proposal is closely
related to the spreading activation model of action selection
in [Maes, 1990], with activation levels replaced by or inter-
preted as heuristic values (cost estimators).
The automatic derivation of heuristic functions for guiding

the search provides what is probably the first fast and robust
mechanism for carring out means-end analysis in complex
domains.

7 Greedy Selection and Lookahead
Heuristic functions, as cost estimators, have also been found
crucial for focusing the search in problems involving uncer-
tainty and feedback where solutions are not ‘paths’ in the
state space. Solutions to the various models can be all ex-
pressed in terms of control policies ⇡ that are greedy with
respect to a given heuristic function h. A control policy ⇡ is
a function mapping states s 2 S into actions a 2 A(s), and a
policy ⇡h is greedy with respect to h iff ⇡h is the best policy
assuming that the cost-to-go is given by h, i.e.

⇡h(s) = argmin
a2A(s)

Qh(a, s) (1)

where Qh(a, s) is the expression of the cost-to-go whose ac-
tual form depends on the model; e.g., for non-deterministic
models is c(a, s) + maxs02F (a,s) h(s0), for MDPs c(a, s) +P

s02F (a,s) Pa(s0|s)h(s0), etc. In all cases, if the heuristic h

is optimal; i.e., h = V
⇤, the greedy policy ⇡h is optimal as

well [Bellman, 1957; Bertsekas, 1995]. As mentioned above,
the planner that won that the last Probabilistic Planning Com-
petition, used a greedy policy based on an heuristic function
derived ignoring probabilistic information.
Often, if the heuristic estimator h is good, the greedy pol-

icy ⇡h based on it is good as well. Otherwise, there are two
ways for improving the policy ⇡h without having to consider
the entire state space: one is by look ahead, the other is by
learning, and both involve search. Look-ahead is the strategy
used in 2-player games like Chess that cannot be solved up
to the terminal states; it is a variation of the greedy strategy
⇡h where the Qh(a, s) term is obtained not from the direct
successors of s but from further descendants. The lookahead
search is not exhaustive either, as values h(s0) of the tip nodes
are used to prune the set of nodes considered; a technique
known as alpha-beta search [Newell et al., 1963]. The quality
of the play depends on the search horizon and on the quality
of the value function, which in this case, does not estimate
cost but reward. In all the models, the greedy policy ⇡h is in-
variant to certain types of transformation in h; e.g ⇡h = ⇡h0

if h
0 = ↵h + � for constants ↵ and �, ↵ > 0, so the value

scale is not critical. Moreover, in Chess, any transformation
of the heuristic function that preserves the relative ordering
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of the states, yields an equivalent policy, even if lookahead is
used.

8 Learning
The second way to improve a greedy policy ⇡h is by adjusting
the heuristic values during the search [Korf, 1990; Barto et
al., 1995]. More precisely, after applying the greedy action
argmina2A(s) Qh(a, s) in state s, the heuristic value h(s) in
s is updated to

h(s) := min
a2A(s)

Qh(a, s) (2)

Interestingly, if h is admissible (h  V
⇤), and these up-

dates are performed as the greedy policy ⇡h is simulated,
the resulting algorithm exhibits two properties that distin-
guish it from standard methods: first, unlike a fixed greedy
policy, it will never get trapped into a loop and will even-
tually get to the goal (if the goal is reachable from every
state), and second, after repeated trials, the greedy policy ⇡h

converges to an optimal policy, and the values h(s) to the
optimal values V

⇤(s) (over the relevant states). This algo-
rithm is called Real-Time Dynamic Programming (RTDP) in
[Barto et al., 1995] as it combines a greedy, real-time ac-
tion selecting mechanism, with the improvements brought
about by the updates. Like heuristic search algorithms in
AI but unlike standard DP methods, RTDP can solve large
problems involving uncertainty, without having to consider
the whole state space, provided that a good and admissi-
ble heuristic function h is used. Moreover, partial feed-
back can be accommodated as well, by performing the search
in ’belief space’. GPT is a planner, that accepts descrip-
tion of problems involving stochastic actions and sensors,
and computes optimal or approximate optimal policies us-
ing a refinement of these methods [Bonet and Geffner, 2000;
2003].

9 Inference
Many problems have a low polynomial complexity, and are
easy for people to solve; e.g., the problem of collecting pack-
ages at various destinations in a city, and delivering them at
some other destinations. This ‘problem’ is not even consid-
ered a problem by people as, unlike puzzles, can be solved
(non-optimally) in a very straightforward way. Yet if the
problem is fed to a planner by describing the actions of driv-
ing the truck from one location to another, picking up and
loading the packages, and so on, the planner would tackle the
problem in the same way it would tackle a puzzle: by means
of search. This search can often be done quite fast, yet like
in Chess, this does not seem to be the way people solve such
problems. Psychologists interested in problem solving, have
focused on puzzles like Towers-of-Hanoi rather than on the
simple problems that people solve every day. The work in
planning however reveals that problems that are easy for peo-
ple are not necessarily easy for a general automated problem
solver. It may be argued that people solve these problems by
using domain-specific knowledge, yet this pushes the prob-
lem one level up: how do people recognize when a problem
falls in a domain, and how many domains are there? Re-
cently we have addressed the related question of whether it is

possible to solve a wide variety of ‘simple’ problems that are
used as benchmarks in planning (including the famous Blocks
World problems), by performing efficient (low polynomial)
inference and no search. To our surprise, we have found that
this is possible [Vidal and Geffner, 2005]. We believe that
there are a number of useful consequences to draw from this
fact, given that most problems faced by real intelligent agents
are not puzzles. In any case, inference and heuristic func-
tions are two sides of the same coin: they both extract useful
knowledge from a domain description and use it to focus the
search, and if possible, to eliminate the search altogether.

10 SAT: Search and Inference in Logic
Logic has played a prominent role in AI as a basis for knowl-
edge representation and programming languages. In recent
years, logic restricted to propositional languages has become
a powerful computational paradigm as well. A variety of
problems can be encoded as SAT problems which are then
fed and solved by powerful SAT solvers: programs that take
a set of clauses (disjunctions of positive or negated atoms),
and determine if the clauses are consistent, and if so, return a
truth-valuation that satisfies all the clauses (a model). While
the SAT problem is intractable, problems involving thousands
of clauses and variables can now be solved [Kautz and Sel-
man, 2005]. Classical planning problems can be mapped
into SAT by translating the problem descriptions into propo-
sitional logic, and fixing a planning horizon: if the theory is
inconsistent, the problem has no solution within the horizon,
else a plan can be read off the model [Kautz and Selman,
1996]. For problems involving non-determinism, the SAT
formulation yields only ‘optimistic’ plans, yet work is un-
derway for reproducing the practical success of SAT in richer
settings. Current SAT algorithms combine search and infer-
ence as well, and are complete. Some of the original algo-
rithms, were based on local search [Selman et al., 1992], and
were inspired by a neural-network constraint satisfaction en-
gine [Adorf and Johnston, 1990].

11 Domain Compilation
Another recent development in logic relevant for action se-
lection is knowledge compilation [Selman and Kautz, 1996;
Darwiche and Marquis, 2002b]. In knowledge compilation,
a formula is mapped into a logically equivalent formula of
a certain form that makes certain class of operations more
efficient. For example, while testing consistency of a for-
mula is exponential in the size of the formula (in the worst
case), formulas in d-DNNF can be tested in linear time (d-
DNNF is a variation of ‘Disjunctive Normal Form’; see [Dar-
wiche, 2001; 2002]). Moreover, for a formula T in d-DNNF,
it is possible, in linear-time as well (i.e., very efficiently) to
check the consistency of T + L for any set of literals L,
get a model of T + L, and even count the number of such
models. Of course, compiling a formula into d-DNNF is ex-
pensive, but this expense is worth if the result of the com-
pilation is used many times. The idea of theory compila-
tion has a number of applications in planning that are begin-
ning to get explored. For example, Barret in [Barret, 2004],
compiles planning theories with a fixed planning horizon n
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into d-DNNF, and shows that from the compiled theory it is
possible to obtain plans for arbitrary initial situations and
goals, in linear-time with no search. This is a very inter-
esting idea that makes technical sense of the intuition that
there are many logically equivalent representations, and yet
some representations that are better adapted for a given task.
We are currently exploring a variation of Barret’s idea that
exploits another property of d-DNNF formulas T : the abil-
ity to efficiently compute not only models of T but also best
models, ‘best’ defined in terms of a ranking over the individ-
ual (boolean) variables [Darwiche and Marquis, 2002a]. By
ranking the literals at the horizon n and then using ideas sim-
ilar to ones above, it is possible to get in-linear time, for any
initial situation, the best plan and the rank of the (best) sit-
uation that it leads to. In this way, very quickly, we get an
appraisal and appropriate ‘reaction’ to any situation, with-
out doing any search. It does not take much to relate these
appraisals with the role emotions in the selection of actions as
postulated in a number of recent works; e.g., [Damasio, 1995;
Ketelaar and Todd, 2001; Belavkin, 2001; Evans, 2002;
MacLeod, 2002]. In the view that arises from domain compi-
lation, however, emotions are prior to search, and they are not
used for guiding the search or deliberation, nor are they the
result of deliberation; rather they summarize expected reward
or penalty (as when a deer sees a lion nearby). This view can
account also for the way in which local preferences (ranks)
are quickly assembled to provide an assessment of any situ-
ation (see ”Feeling and Thinking: Preferences Need No In-
ferences” in [Zajonc, 2004]). Computationally, the account is
limited in two ways: it assumes a given fixed planning hori-
zon, and that there is no uncertainty. Still it appears as a good
starting point. In relation to the heuristic view of emotions,
the notion of domain compilation provides an alternative and
probably complementary view: in one case, emotion like an
heuristic, guides the search for best reward, in the other, emo-
tion stands for expected reward, which in the compiled repre-
sentation is computed in linear-time (i.e., very quickly).

12 Summary
We have argued that humans encounter a huge variety of
problems which they must solve using general methods. For
general methods to work, however, they must be able to rec-
ognize and exploit structure. We have then reviewed some
recent techniques from AI planning and problem solving that
accomplish this, either focusing the search for solutions or
bypassing the search altogether. These techniques include the
automatic derivation of heuristic functions, the use of limited
but effective forms of inference, and the compilation of do-
mains, all of which enable a general problem solver to ‘adapt’
to the task at hand. We have also discussed briefly how these
ideas relate to some biologically-motivated action selection
models based on ‘activation levels’ and recent proposals link-
ing emotions and search.
The area of planning and problem solving in Artificial In-

telligence has come a long way, and it is probably time, fol-
lowing Marr’s approach, to use the insights gained by the
study of what is to be computed and how is to be computed,
for gaining a better understanding of what real-brains actu-

ally compute when making plans and selecting actions. Of
course, there is a lot to be learned, and many other useful and
necessary approaches to the problem, yet some of us hope
that a good theory of AI planning and problem solving, as
Newell, Simon, and others envisioned many years ago, will
be an essential part of the global picture.
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Abstract
To accomplish a household task, an autonomous
system needs a plan with steps. It is desirable to
derive this plan dynamically instead of pre-coding
it in the system. In this paper, we find a plan by us-
ing common sense knowledge collected from vol-
unteers over the web through distributed knowl-
edge capture techniques. This knowledge consists
of steps for executing common household tasks.
We first pre-process the data with part-of-speech
(POS) tagging to identify the actions and objects
in the steps in all available plans for the task. We
then determine the order of the steps to accomplish
the task using discriminative as well as generative
models. For the discriminative approach, we clus-
ter the plans using hierarchical agglomerative clus-
tering and choose a plan from the biggest cluster.
In the contrasting approach, we make use of gener-
ative Markov chain techniques. Using human judg-
ments, we show that the generative model with the
first order Markov chain has the best performance.
We also show that environmental constraints can be
incorporated in the generated plans.

1 Introduction
The long term goal of our work is to make indoor mobile
robots that work in environments like homes and offices more
intelligent through common sense. Mobile robots in homes
and offices will be expected to perform tasks within their
environment to satisfy the perceived desires and requests of
their users. In order to meet these needs, we want to endow
these robots with some knowledge to use as the basis to ac-
complish these tasks. Examples of household tasks include
making coffee, washing clothes, and cleaning a spill.

Common sense does not require expert knowledge, and
hence it may be gathered from non-specialist net citizens (ne-
tizens) in the same fashion as the projects associated with
the rather successful OpenMind Initiative pioneered by David
Stork [Stork, 1999]. In this paper, we focus on how we can
use the knowledge collected about task steps in the Open-
Mind Indoor Common Sense project (OMICS) [Gupta and

∗Currently at University of Massachusetts, Amherst, MA

Kochenderfer, 2004] to populate an initial robot knowledge
base with default household task plans.

In the work reported here, we show two approaches to find
a plan for a given task. Our first approach is discriminative,
where we perform hierarchical agglomerative clustering of
the plans before choosing one. Our second approach is gen-
erative, where we make use of the first order Markov chains.
We start with all the plans from OMICS database for the se-
lected tasks and capture the sequence information between
steps using the first order Markov chains. This allows us to
combine multiple plans with interleaved chains into a gener-
ative model from which an appropriate plan can be derived.
We also experimented with capturing the globally optimal se-
quence of steps.

Figure 1 shows an outline of different techniques. Tech-
nique two is discriminatory, and techniques three, four and
five are generative. All these techniques are compared to
the baseline technique of selecting a random plan (technique
one). We performed experiments with human subjects and
used statistical significance tests to compare these techniques.

The rest of the paper is organized as follows. The follow-
ing section discusses the related work. We then give examples
of data in our knowledge base and describe preprocessing to
extract action-object pairs. Section 4 discusses discrimina-
tive approach along with the clustering technique to find the
largest cluster of plans reflecting consensus. We then describe
the generative approach, for capturing the sequence informa-
tion using the first order Markov chains to generate locally
and globally optimal plans. We also show how the generative
approach can be used to generate a plan with environmental
constraints. The results and analysis are presented in section
6. We finally conclude our paper with some pointers to the
future work.

2 Related Work
In the past, expert systems have been used to encode the steps
for accomplishing a task algorithmically [Waterman, 1986].
A key component was the capture of human expert knowl-
edge using a laborious manual process. However, not every-
thing that humans learn is taught by the experts. Most of the
activities of our day-to-day life are learned by observations
and experience – by looking at other non-experts (e.g. tying
shoe laces).
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Discriminative Techniques
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Figure 1: outline of proposed approaches.

Human actions can be analyzed on a variety of different
levels. At lower level, execution of an action can be con-
trolled by a motor response schema of sensory motor map-
ping [Schmidt, 1975]. For higher levels of action control,
concepts such as scripts [Schank and Abelson, 1977] and
memory Organization Packets (MOP) [Schank, 1982] have
been proposed to represent the organization of well-learned
activities such as going to a restaurant or visiting a doctor
for surgery. When a MOP is activated, only one of the steps
is generally carried out at a time, but steps can sometimes
be combined with other activities (for example, one can read
while waiting at doctor’s office).

Between these low and high level extremes lies a whole
range of well-learned activities like making breakfast, clean-
ing one’s teeth, starting a car, dressing and so on. In these
situations, the steps are represented as discrete units and their
parallel execution (although possible) rarely occurs. Thus
in toothbrushing, one can delay or do something between
putting toothpaste on the toothbrush and brushing one’s teeth,
it is not generally advisable.

At this mid-level, Cooper and Shallice [2000] presented
a computational model for selection of of steps for routine
tasks based on competitive activation within a hierarchically
organized network of action schemas. Their activation model
for sequential step selection was based on the Contention
Scheduling theory of Norman and Shallice [1980]. This
model was demonstrated in the routine task of preparing cof-
fee. Under normal functioning, the model was able to gener-
ate a sequence of simple actions (pick up spoon, dip spoon in
sugar bowl etc.) culminating in a drinkable cup of coffee.

According to Rasmussen et al [1983], human activity in
such routine tasks is oriented towards a goal and controlled
by a set of rules which have proven successful in the past.
The sequence of steps is typically derived empirically dur-
ing previous occasions, communicated from another person’s
knowhow or a cookbook recipe. We are interested in captur-
ing such procedures for household tasks.

In contrast, literature and work in AI planning [Weld,
1999] falls under goal controlled exploratory behavior cat-
egory. Here attempts are made to reach the goal using knowl-

edge of different plans and a successful sequence is selected.
Such planning is complementary to our work and is critical
during execution of these tasks.

One source of common sense knowledge is the web. For
instance, web-sites such as eHow1 list the steps to perform
activities2. Intel developed a system called Probabilistic Ac-
tivity Toolkit (PROACT) to build activity models [Philipose
et al., 2003]. They automatically identified activities by ob-
serving the objects involved in the activity [Perkowitz et al.,
2004]. They found the relevance of various terms to a given
activity from the web. For instance, the word cup is highly
related to activity making tea because cup occurs frequently
on the web-pages about making tea.

This idea of using the web as the information source is
very attractive. However, while extracting knowledge from
the web, one has to deal with high variance and noise in web
information and large documents. We have better information
on steps for household tasks from Open Mind Indoor Com-
mon Sense (OMICS) database. In OMICS, volunteers are
prompted with household tasks and asked for steps to accom-
plish such a task. We still have to extract semantic informa-
tion from the steps, as well as deal with issues of noise and
consistency in the data.

3 Semantic Data Extraction
There are more than 150 tasks in OpenMind database like
making coffee, cleaning the floor, washing clothes for which
plans have been entered by the users. Each task in our
database consists of a number of plans and each plan con-
sists of a sequence of instructions. A sample plan from the
database is shown below:
Task: wash clothes
Steps: collect clothes

move to washing machine
place clothes in washing machine
add detergent to clothes
close lid of washing machine
start washing machine

Our objective is to make use of these plans for the given
task to build a model. From this model. we can extract a plan,
or derive a plan (which may not be present in the original set
of plans), or generate a custom plan based on environmental
constraints. In this section, we further describe how this data
is pre-processed by extraction of action-object pairs.

3.1 Extracting action-object pairs
We extract the action and object from a given step for better
processing downstream. For extracting action-object pairs we
first parse the instruction with Brill’s part-of-speech (POS)
tagger [Brill, 1992]. We then identify the first verb as the ac-
tion. If the verb is followed by a proposition, we combine the
preposition with the action. Finally, we identify the first noun
phrase as the object of the action. Since most of the steps
in the tasks are instructional in nature, this simple procedure
performs surprisingly well. The result of parsing the above
plan is shown below:

1http://www.ehow.com
2These activities correspond to our tasks.
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Task: wash clothes
Action object pairs for steps:

collect, clothes
move to, washing machine
place, clothes
add, detergent
close, lid
start, washing machine

We are also interested in finding how the objects are re-
lated to various actions for every task. We, therefore, find the
following conditional probability distribution for every task.

P (action|object) =
f(action, object)

f(object)
(1)

where f(action, object) is the number of times action oc-
curs with object and f(object) is the number of times object
occurs in the given task across all the plans.

4 Discriminative Approach
A simple way of coming up with a plan is to select a random
plan from the set of the plans in the database. This forms
our baseline. In the discriminative approach, we select a plan
from a subset representing the majority consensus. Majority
consensus is reflected by the biggest cluster of plans in the
task.

We perform hierarchical agglomerative clustering where
we group similar plans, and merge similar groups into larger
groups [Salton, 1989]. For each task, we find the similarity
between two plans pi and pj as the following.

Sim(pi, pj) =
len(largest matching sequence)

len(pi)len(pj)
(2)

where len(pi) is the individual number of steps in the plan
pi and len(largest matching sequence) is the number of
common steps in plans pi and pj . When individual plans are
compared we use the similarity criteria as given in the equa-
tion above, but when clusters are compared, we use group av-
erage to compare clusters on the basis of average similarity.
In our system, we can specify the desired number of clusters.
We empirically found that plans for our tasks fall in five or
fewer categories. Therefore, we choose to have at the most
five clusters of plans for each task.

We have found these clusters to correspond to distinct tech-
niques for accomplishing the task. For example for making
coffee task, the different clusters correspond to using coffee
maker, instant coffee, and expresso machine. Since a major-
ity of people entered plans to make coffee using the coffee-
maker, that cluster was the largest. After clustering, we ran-
domly select a plan from the largest cluster.

5 Generative Approach
So far we have selected a plan from the original set of plans.
In this section, we describe how we can instead generate a
plan. We propose to construct a model for each task, called
Task Model, using the first order Markov chains [Rabiner,
1989]. The primary motivation for the Markov chain is the
inherent sequential nature of steps in a given plan. We model
each plan as a first order Markov chain, where each step de-
pends on the previous one with no hidden states.

5.1 Constructing the Task Model
All the plans are encapsulated between the start and end steps.
To build the Task Model, we link the first step to the start state
with probability 1.0. We keep linking all other steps in order
with probability 1.0, ending in the end state. We repeat this
for all plans in the database with appropriate probability com-
putations. For example, we initially have a transition from A
to B with probability 1 .0 . When we get a new transition from
A to C, we create an additional link from A and recompute
the probabilities of links from A as 0 .5 each. It is possible for
the same instruction to occur more than once in the model.
For instance, in case of wash the clothes task, open the lid
can occur before putting the clothes in the washing machine
and after the washing is done to take out the clothes.

After executing the above procedure for washing clothes
task we combine all these links to generate a graph. All these
states are represented in the graph as nodes and joined accord-
ing to their transition probabilities. A sample construction is
shown in figure 2.

There are various advantages of building such Task Model.
Firstly, we do not have to store all individual plans for a task.
We store a model for each task which makes the storage space
linear in the number of steps, rather than linear in the number
of total plans in the database. Secondly, models evolve with
technological advancements and encompass new information
as newer plans for tasks come up. When we have a new ver-
sion of the database of plans entered by non experts, we can
either generate a new model from the data using the same
procedure described here or update the existing model with
new probabilities and new states. Finally, having a model al-
lows us to generate consensus plans and more complex plans
that do not exist in the database or use available objects in the
environment.

The following subsections discuss details of how the gen-
erated Task Model can be used to derive a plan with the differ-
ent generative techniques. We first describe technique three,
followed by techniques four and five using the most probable
sequence.

5.2 Plans using the first order Markov Chains
We have already captured step sequence information in our
Task Model. To derive a locally optimal plan, we go through
the most probable sequence of steps. At every state starting
from start, we choose the next state as the one with the highest
probability. The state at time t is found using the following
equation:

NextState(t) = argmax
si

p(si|sj) (3)

where t is the current time step, sj is the state at time t − 1 ,
and si are all the successor states of sj . To avoid cycles, we
remove all the incoming links to the step that we visit3. A

3Note that this will not prevent us from using the same instruc-
tion again in the plan generation. This is because the same instruc-
tion may be represented by more than one states. For instance,
”close the lid” instruction may be represented by two states - one
that occurs before ”put the clothes” state and the other that occurs
after ”take out the clothes” state.
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start

end

carry, clothes collect, clothes

move to, washing machine place, clothes put, clothes

take, clothes start, washing machine turn on, power switch

get, clothes locate, washing machine

0.03 0.3 0.01 0.03

0.09 0.09 0.09

0.16 0.17 0.7

Plan 1

Figure 2: Portion of a Task Model. The dashed outline shows one of the plans.

sample output for the task wash the clothes is given below. It
is in the format step → transition probability → step.
start -> 0.36 -> get, clothes
get, clothes -> 0.3333 -> locate, machine
locate, machine -> 0.4285 -> move to, machine
move to, machine -> 0.2727 -> fetch, clothes
fetch, clothes -> 0.5 -> open, machine
open, machine -> 0.8 -> put, clothes
put, clothes -> 0.5294 -> add, detergent
add, detergent -> 0.5 -> close, machine
close, machine -> 0.2857 -> start, machine
start, machine -> 0.6666 -> end

Putting these steps together, we get a plan. The evaluation
of its goodness is discussed in the next section.

5.3 Generating globally optimal plans
So far we have considered dependency of a state on the pre-
vious state to reduce the computation. For global optimality,
we consider the relation of present state to all the previous
states. Therefore, our formulation of selecting the next state
as given in equation (3) changes to the following:

NextState(t) = argmax
i

p(si|s1, s2, ..., si−1) (4)

where t is the time step on which we are trying to find the
best state, s1, s2 , ..., si−1 are the states that occurred till t− 1

and are linked through a path in the model, and i iterates over
all the possible states at step t.

To implement this idea, we computed the probability along
different possible sequences from start to end in our Task
Model. The sequence that gives the maximum probability
is chosen for the plan. In technique 4, we select a random se-
quence if there are multiple choices with the largest probabil-
ity. In technique 5, we select the shortest of these sequences
if there is a tie. The results of all these techniques along with
the analysis are given in the Results section.

5.4 Plan with environmental constraints
In a real-time system, we want to consider the environmen-
tal constraints while generating a plan. Such constraints may
be provided by the user or obtained by the system using sen-
sors. Sensors may provide information about what objects
are available in the environment. However, our data is rep-
resented in the units of action-object pairs. To convert the
restrictions on objects to action-object pairs, we assume that
the most likely action is one that occurs most frequently with
the object. We make use of the P (action|object) probabil-
ities that we found earlier in equation (1). For handling a
constraint to use a given object in the task, we find the most
probable action to be associated with that object:

arg max
action

P (action|object) (5)

In plan generation, we choose children of the current step
with restrictions. If there is more than one choice, we choose
the one with highest probability. If there are no constraints for
a step, we choose the one with the maximum probability on
its link. In order to avoid cycles, we remove all the incoming
links at each visited step.

It is important to note here that even though we are associ-
ating the observed objects to their most likely actions, these
actions are not forced in the plan. It is possible that the plan
generation process neglects such steps to be consistent with
the rest of the steps. A sample output for the washing clothes
task with restriction to make use of water, clothes, and wash-
ing machine is given below:

Found restriction: "feed, water" with
probability 0.2

Found restriction: "put, clothes" with
probability 0.32

Found restriction: "start, washing machine"
with probability 0.15

The plan:
start -> 0.36 -> get, clothes
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get, clothes -> 1 -> put, clothes
put, clothes -> 1 -> feed, water
feed, water -> 1 -> feed, detergent
feed, detergent -> 1 -> set, timings
set, timings -> 1 -> start, washing machine
start, washing machine -> 0.6666 -> end

This plan is different from the one that we derived earlier
without any constraints. Because of this method’s bias to-
wards choosing the step that fulfills one of the restrictions,
the corresponding transition probabilities are set to 1.0.

6 Results and Analysis
We selected 105 tasks, each with at least 25 plans in the
OMICS database and compared the following techniques:

1. Baseline: a plan selected randomly.

2. Discriminative approach: a plan selected from the
largest cluster.

3. Generative approach: a plan generated from the corre-
sponding Task Model.

4. A plan generated from the Task Model by considering
the probability of the whole sequence.

5. A plan generated from the Task Model by considering
the probability of the whole sequence, and choosing a
plan with minimal length if there is a tie.

All these techniques made use of the same data and prepro-
cessing. In order to compare these techniques4, we based our
evaluation on the following criteria:

1. Completeness. Plan for a task should be complete. A
plan for cleaning the floor, which spilled the water and
the soap on the floor but did not mop it to dry, would be
an incomplete plan.

2. Correct sequence. The sequence of steps should be con-
sistent. A plan, which poured coffee from carafe into
a mug before adding water to coffee-maker, would be
rated low using this criteria.

3. It should make sense. For example if a coffee mak-
ing plan used both a coffee-maker and instant coffee, it
would be rated low.

4. Not too many details of interaction with objects. Given
two plans with same number of objects, a plan with
higher level description is preferable to low level
detailed instructions. For making coffee for the step of
adding filter to coffee-maker,
Preferable: add filter
Less preferable: find filter, take one filter, add filter

We asked 10 users to rank five plans for each of 105 house-
hold tasks. This evaluation took users about 2 hours to fill.
For every task we averaged over the 10 evaluations for each
of the 5 plans. The maximum score for a technique for a given

4The implementation that made use of the environmental con-
straints was difficult to judge and evaluate; therefore, we did not in-
clude it in our evaluation. However, it is a special case of technique
3 and inherits advantages of that technique.

Tech- Name Avg. Overall
nique score ranking

1 Baseline 267.63 5
2 Discriminative 257.45 3
3 First order Markov chain 245.90 1
4 First order Markov chain 250.09 2

with full sequence
5 First order Markov chain 266.00 4

with full shortest sequence

Table 1: Results of the user judgments

task would be 5 (the worst) and the minimum score would be
1 (the best). We then add these scores for all the 105 tasks for
each technique. Table 1 summarises the results, from which
we make the following observations:

• Selecting a plan randomly from a given set of plans
(baseline) gives the worst performance. This indicates
that if we rely on the knowledge of just one person or
one source, then we have high likelihood of a bad plan.

• Technique 2, which is a discriminative approach, does
better than the baseline. A random plan from the con-
sensus cluster is better than a random plan.

• Technique 3 using first order Markov Chains does the
best. This is a generative model that learns the knowl-
edge from the given data and generates a plan. This ap-
proach is attractive for a number of reasons. First, it con-
siders a step as a unit instead of a plan, thus not confining
itself to a particular plan like the first two techniques.
Second, it is able to remove some noise and spurious
data through the process of learning. Third, it captures
the consensus at the level of steps and their sequence.

• Techniques 4 and 5 do not do as well as 3. We believe
the main reason is the lack of sufficient number of plans
required to perform the inferencing on long sequences
of steps.

The scores reported in table 1 gives an idea of the perfor-
mance of various techniques. To compare these techniques,
we performed a paired two-tailed t-test. This test determines
if the outcome of two different techniques come from the
same distribution. If the original distributions are signifi-
cantly different, then the one that provides better results is
said to be performing significantly better over the other. This
statement about significance is associated with a level of con-
fidence. The p-values for different techniques are given in
table 2. We can see that with the confidence interval of 95%,
techniques 3 (locally optimal plan) and 4 (globally optimal
plan) perform statistically significant over the baseline. Both
of these techniques are based on the first order Markov chain
generative models.

7 Conclusion and Future Work
In this paper we discussed the problem of selecting or extract-
ing a plan to perform a task from the given set of plans that
have been collected by distributed knowledge capture tech-
niques. We proposed a discriminative as well as generative
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Technique p-value
2 0.0838
3 0.0004
4 0.0036
5 0.7866

Table 2: p-values from paired two-tailed t-test. The tests were
done by making pairs of ranks given by baseline and the tech-
nique specified in the first column.

approaches to derive a plan. We used hierarchical agglomera-
tive clustering for the former approach and first order Markov
Chains for the latter one.

Although the discriminative approach gave better results
than the baseline, the generative approach did even better. For
the generative approach we first construct a Task Model from
the available plans. We use First Order Markov Chains to
find the most likely sequence of steps. We can also incorpo-
rate information about available objects in the plan generation
process. Our experiments showed reasonable plans as out-
puts in discriminative as well as generative models. Since the
goodness of these results cannot be measured objectively, we
used human subjects to evaluate our results. We also showed
that the differences among techniques were statistically sig-
nificant.

In our plan representation and generation processes, we
perform shallow Natural Language Processing (NLP) for
finding action-object pairs. Further NLP can improve the re-
sults. For instance, we can find the synonyms of the actions
as well as objects and merge them to simplify the Task Model
before generating the plans. In future work, we also plan to
automate the specification of environmental constraints for
objects in the environment using RFID or vision sensors.
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Abstract 
In this paper, we will discuss whether there could 
be any means to bridge the gap between the Sym-
bolic and Subsymbolic AI. One way to do this is to 
ask ourselves if human brain executes any planning 
algorithms. We see that we have taken a series of 
steps when we are done with planning in a situa-
tion. Taking a series of steps during planning might 
be a result of the execution of an innate planning 
algorithm. If we really are executing a planning al-
gorithm, then we believe, its function is very gen-
eral and is to set the conditions which will trigger a 
next step to take. A step to take might be the exe-
cution of an IF rule as an example. IF rule execu-
tions are not the only steps to take while planning, 
however, for simplicity, they are assumed as the 
only ones here. There is not any neuro-scientific 
evidence against the possibility that human mind 
incorporates an innate planning algorithm that trig-
gers the next rule to execute (the step to take) yet. 
For that reason, in this paper we will investigate 
that possibility.   

 
Keywords: Action sequencing, action associations, concept-action 
associations, emergence of association mechanisms 

1 Introduction 
Classical AI symbol systems are criticized basically for two 
points [Steels, 1996]: 

1) Their problem solving functionality such as plan-
ning needs to be programmed by hand as opposed 
to evolving adaptive intelligent systems. 

2) The symbolic descriptions of the reality need to be 
given to them.  

As a result, there are already many studies where adaptive 
intelligent systems are evolved as opposed to being hand 
designed [Nolfi and Floreano, 2000]. There are also studies 
which reject the presence of any kind of representations 
[Brooks, 1991].   

In [Steels, 1996] it is stated that most of the work as-
sumes that there are abstraction facilities in neural networks 
or a new higher level dynamics that may emerge. However, 

none of the systems developed in this studies are yet able to 
achieve the high level capabilities of human beings such as 
planning and reasoning.   

In this paper, we will consider the possibility of having an 
innate planning algorithm that sets the conditions which will 
trigger a next step to take. We will mainly consider task 
planning but not motion planning and navigation. In robotic 
literature, task planning is defined as the planning activity 
that calculates the order in which a robot should execute 
“actions” or “sub-tasks”, in order to reach a specified goal.  
Assembly and “travelling salesman”-like jobs go into the 
task planning category.   

The idea of having the innate algorithm is similar to the 
idea of having a traversal algorithm in Symbolic AI because 
a traversal algorithm, although is not as much general in 
function as the innate planning algorithm we are thinking of, 
shows a way to trigger the next action or step to take also.   

An innate task planning algorithm might be what we need 
to borrow from Symbolic AI and if we do so then we can 
direct our studies to emerge the innate planning algorithm.  

In Section 2, we will elaborate on the presence of rules in 
human mind with a movie planning example. Section 3 will 
talk about association of concepts with each other and with 
the rule in execution. We will explain the composition of the 
innate planning algorithm in this section also. Section 4 will 
be our conclusions. 

2 Presence of Rules in Mind 
The sentences we encounter either on paper, on computer 
screens or in spoken language are analyzed syntactically 
before we can actually get meanings out of them. This is 
managed by us using a set of grammar rules which have 
their mental representations [Jackendoff, 1993; Pinker, 
1993].   

We many times per day experience ourselves applying 
grammar rules while forming sentences. This becomes more 
obvious when we learn a new language. Although [Jackend-
off, 1993] suggests a universal grammar inherited geneti-
cally in addition to other steps of learning a language, our 
point here is to keep attention to the fact that if we have 
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grammar rules in our minds then we might have rules other 
than grammar rules represented in our minds as well.  

How could it be inferred that we have other rules than 
grammar rules represented in our minds and what other im-
portance does this have in addition to knowing we represent 
rules as well as symbols in our minds?  

If we knew we did execute rules in our minds, we would 
be closer to inferring that we might also be capable of exe-
cuting planning algorithms in our minds. 

When I think about rather seeing a movie than attending a 
party this evening, the questions that occupy my mind are 
possibly the kind of movies that are on show tonight, 
whether there being any science fictions movies on or not, 
whether I have already seen them or not, whether the show 
times are too late or not and some more whether questions if 
not What, Which, Where and How questions. A “whether” 
follows a previous “whether”. For practical purposes we 
will replace a “whether” with an “If” from this point on. It is 
true that one “if” might remind me of another “if”. As an 
example, I might ask if there are any science fiction movies 
on and then this might remind me of a science fiction movie 
I have already seen and of its director and I might start 
wondering if I could find a movie for tonight which is di-
rected by the particular director. However, regardless of one 
if leads me to another if or to other thoughts, it is definite 
that I am applying an IF rule as a part of my thinking proc-
ess. These rules are represented in my brain in the form of 
various biological neuron patterns.   

Planning for tonight is mostly dependent on our beliefs 
(what we already know about our world although our inter-
pretations of the world might be different from reality), de-
sires and intentions which are internal at the time of think-
ing although they might be produced as a result of earlier 
interactions of human beings with the real world. For exam-
ple having already seen a good movie of John, we can be-
lieve that John is a good director. This particular belief ne-
cessitates having representation of the real person John in-
ternally as well as having the internal representations of 
concepts “good” and “director”. Thinking that “John is a 
good director” demands us to refer to the concepts of “direc-
tor” and “good” explicitly as well as the real person John at 
the time of thinking. 

If we now go back to our discussion of having If rules 
represented in our minds, we can say that it is the case that 
first we find answers to conditional parts of an “IF” expres-
sion, such that we can apply the THEN part of the expres-
sion (rule). However, it is also possible that because of lack 
of information, we might suspend working on the condi-
tional part of an IF rule and jump to another if rule or an-
other thought. The execution of the new if rule might supply 
us with enough information to resolve the previous if rule so 
we can go back to the execution of the previous one and 
complete it. If we continue like this, we might come up with 
a list of things or ideas that we would want to achieve.  

In the movie example, I might finally decide to go to the 
party instead, if I conclude that none of the movies on the 

show are interesting. On the other hand, I might have de-
cided to go to see one of the movies at 7 o’clock but after 
having dinner in a nearby restaurant and yet meeting with a 
colleague in the mathematics department to deliver him his 
book I borrowed a week ago before that.  

As a result, human brain actually might be acting like a 
computer which executes the steps of an algorithm while 
executing IF rules.  

The statement that brain acts like executing the steps of 
an algorithm is a metaphor to the execution of an IF rule, 
suspending the execution of an IF rule and jumping to an-
other IF rule, going back to the execution of the previous IF 
rule and so on. Each rule in the execution sequence can be 
inspired by the other and hence appear and take its term in 
the whole thought process.   

If we consider all of the rules that are invoked during   
planning as a part of a rule search space, then there can be 
an algorithm, which decides which rule is followed by 
which rule.   

It does not seem to be a mistake to consider each of these 
rules as corresponding to a node of a search tree in symbolic 
AI. We can also use symbolic AI tree search strategies (i.e. 
depth first, breadth first) as a metaphor for the type of algo-
rithm we mention here. The algorithm can trigger other 
rules for execution than the one which is now in execution. 
It is possible that the first rule is triggered by a problem 
from the environment as well as by internal beliefs, desired 
or intentions. 

Although planning, decision making or  thinking happen 
in the frontal lobe, they are in tight communication with 
other parts of the brain in terms of retrieving other rules or 
symbols (from memory), sending back newly inferred rules 
and symbols (to memory), making associations between  
rules and concepts, activating motor cortex and other possi-
ble handling (actions). 

3 Rule and Concept Associations  
In a situation of making a decision, as above, between at-
tending a movie and a party, IF rules seem to be applied and 
one IF rule seems to lead to another IF rule.   

Following statement can be the very basic algorithm of 
our minds which invokes the next rule to execute: 

“Execute the next associable rule while resolving the current 
rule or after the execution of the current rule is finished and 
do concept associations meanwhile”.  

This algorithm resembles a one step traversal algorithm 
that can be applied on a search tree but it is more general 
and since it considers associations of the current rule to 
other rules and concepts, it is situated in the sense that these 
rules and concepts are exposed to updates from environ-
ment. 

In order to achieve the statement of the algorithm, we 
could possibly have yet other rules which actually form the 
algorithm itself. We will call these rules as meta rules to 
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separate them from other IF rules. An example “meta IF 
rule” could tell our mind how to execute an “IF rule” as 
follows: 

“Execute the preconditions of an IF rule first and then exe-
cute the THEN part”. 

 If several IF rules are invoked by real world problems at 
the same time for simultaneous thoughts, the meta rule can 
be applied to each IF rule and two or more rule executions 
can take place in parallel.  

Given the message of executing the preconditions first, 
the possible associations with the current rule and the other 
rules and concepts will be achieved.   

From dynamical systems perspective, the meta rules will 
correspond to the laws of change [Holland, 1998] because 
these rules create the dynamism to execute new rules and 
make associations.  

Concepts that are associated with IF rules refer to the 
mental states as described in [Dorffner, 1992] in our work. 
Concepts have non-linguistic representations and they are 
shaped by context and experiences of an agent who is form-
ing those concepts. We extend this description of concepts 
to IF rules and assume them to be mental states also. 

In Figure 1, an example for concept-concept associations 
is given. In the figure, “Movie” is a concept which has fea-
tures such as “Name”, “Date”, “Time”, “Seen before”, 
“Type” and “Director”. These features are also concepts. 
Each feature (concept) can have possible different values. 
For example date can be “Thursday” or “Tuesday”. In fact, 
we see each feature value as a concept also. 

The links between feature concepts to value concepts are 
absent or present depending on what value another feature 
has. For example, if “Name” feature has the value of “ET”, 
“Date” feature will have a value of “Tuesday”. However, if 
it is “XY”, “Date” feature will have a value of “Thursday”. 

In this example, features, values and the “Movie” concept 
are part of a Movie context. However, “Date” and “Time” 
features can be part of another context such as delivering a 
book to the mathematics department on Thursday and be-
fore 4 pm. I might switch to the context of delivering a book 
while I am thinking about the date of a movie because 
“Date” feature is also part of the book context (Figure 2). 

I can switch back to the Movie context when I decide that 
I should deliver the book today because it is Thursday. One 
of the movies, as an example, XY will supply all my condi-
tions of seeing a movie tonight because it will activate the 
feature concepts of “Science fiction”, “Thursday”, “No”, 
“John” and “7 pm”. All these features can be connected by a 
node which represents an “And” concept and can lead to 
another concept which is “See the Movie”. That is, we actu-
ally are executing and if rule which is: 

IF (Type = “Science fiction” and Date = “Thursday” and 
Seen before = “No” and Director = “John” and Time = “7 
pm”) THEN See the Movie.  

In the figures, arrows do not represent the spread of acti-
vations. They only represent which concept is related to 

which concept. Feature values given in the figure are the 
possible values only for the Movie context. 

On the other hand, while building symbolic planning sys-
tems, researchers have encountered many problems such as 
frame problem, temporal projection problem etc. We ignore 
those problems and how their solutions could be within our 
work because we are not aiming at building a planning sys-
tem that can plan as well as or better than the existing sym-
bolic planners but we are questioning whether there can be 
any innate planning algorithms or not and if so what their 
role could be in human mind. 

Finally, we will suggest that the innate planning algo-
rithm is nothing but the application of the Hebb’s rule 
[Hebb, 1949]. That is, some of the concepts in our minds are 
activated because of either external events or internal be-
liefs, desired and intentions. On the other hand, that acti-
vated concept or concepts activate another one depending 
on how strong or weak a link (synapse) between the current 
concept and the next concept is. Concepts can be part of 
rules and thus activation of another concept might mean 
activation of another rule.  

4 Conclusions 
We believe that existing research in artificial neural net-
works [Kohonen, 1984; Kosko, 1988], evolutionary compu-
tation [Nolfi and Floreano, 2000] and others [Prescott et al., 
2002] can be scaled up to form a computational model of 
human mind where the components of the model are rule 
representations, concept representations, concept-concept 
associations, rule-rule associations and belief, desire and 
intention representations. There are already studies in this 
direction [Cangelosi, 2004]. 

We also aimed at pointing to a similarity in terms of task 
planning between Symbolic AI task planning systems and a 
neural network task planning system which can be like the   
one presented in this paper. We believe that this similarity 
which points to a navigation in a rule search space while 
planning a task could be one of the means of bridging the 
gap between Symbolic and Subsymbolic AI.  
 The next step for us will be the implement the system 
described in this paper.  
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Abstract
This paper shows a study of the integration of phys-
iology and perception in a biologically inspired
robotic architecture that learns behavioural patterns
by interaction with the environment. This imple-
ments a hierarchical view of learning and behaviour
selection which bases adaptation on a relationship
between reinforcement and the agent’s inner mo-
tivations. This view ingrains together the basic
principles necessary to explain the underlying pro-
cesses of learning behavioural patterns and the way
these change via interaction with the environment.
These principles have been experimentally tested
and the results are presented and discussed through-
out the paper.

1 Introduction
The problem of behaviour selection, ergo knowing what to
do next has been approached by different disciplines, from
neuroscience to robotics [Dayan and Balleine, 2002; Ávila
Garcı́a and Cañamero, 2002].

Animal perception responds to the principle of ecology
which directly conditions the way they learn and select be-
haviours. An analogous perception has been modelled and
integrated in a framework to learn behavioural patterns in-
spired on a double hypothesis of learning [Schultz et al.,
1993] and behaviour selection [Houk et al., 1995] for the
basal ganglia. Our model therefore shares part of the view
proposed by [Gurney et al., 2001; Prescott, 2001; Redgrave
et al., 1999] on the basal ganglia being a centralised behaviour
selector. However, our implementation fundamentally differs
from theirs in that the role of dopamine (DA) is to signal the
error in the prediction of reward and not to be a threshold in
the process of elicitation of behaviour.

The view we introduce also connects to former studies
on behaviour selection in ethological robotics [Ávila Garcı́a
and Cañamero, 2002], which explain behaviour selection as
a comparison of behavioural intensities (proportional to the
effect on each motivation). We adhere to the view of a mo-
tivation driven behaviour selection [Toates and Jensen, 1990]
that we also extend to learning. In fact, in a dynamic environ-
ment it is likely that only the capacity of re-building the re-
lationships between motivational states, physiological effects

...
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ACTOR
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Figure 1: Model Schema.

and behaviours dramatically facilitates animal’s and animat’s
survival. We argue that the actor-critic algorithm [Sutton and
Barto, 1981] ingrains these principles in the context of reward
driven decision making and learning while does not impose
any formulae to combine stimuli into motivations.

These ideas are sufficient to motivate an actor-critic based
architecture to learn behavioural patterns. However, physio-
logical and anatomical data only is insufficient to propose a
sensible criterion for learning to select behaviours. In fact,
there are as many possible correct choices for a given a mo-
tivational state as criteria. However, some constraints can
be extracted from the combination of principles of etholog-
ical coherence combined with the rules of convergence of the
actor-critic. The final behavioural patters will maximise re-
ward, therefore it is straightforward to relate this principle
to Ashby’s notion of viability: good actions increase internal
physiological stability and therefore are associated to a pos-
itive reward, conversely for bad actions [Ashby, 1965]. This
single principle should be sufficient to constrain the compu-
tations of the motivational state by the actor-critic towards
patterns that ensure internal stability.

The actor-critic was designed to this aim. However, the
procedure with which stimuli combine to do so entirely de-
pend on how reward is defined. This paper aims at shedding
some light in this and at providing a qualitative and quantita-
tive measure of the influence that reward and stimuli have on
the learning process and on the apprehended behavioural pat-
terns. The rest of the paper is divided into three sub-sections:
a description of the model, an explanation of the experimental
setup, and finally some results and conclusions.
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2 Learning Behavioural Patterns
The architecture consists of an artificial internal physiology
and module for arbitration and learning after biological inspi-
ration. These are introduced next.

2.1 Internal Physiology
The internal physiology is a subset of that described in
[Cañamero, 1997]. It consists of a set of homeostatic vari-
ables — survival-related variables representing the agent’s in-
ternal resources —, a set of drives that signal the need to com-
pensate any homeostatic variable, a behaviour repertoire and
an arbitration mechanism to resolve conflicts among compet-
ing motivations to choose a behaviour. Due to limitations of
space it has been impossible to include an analytical descrip-
tion, refer to [Cos-Aguilera et al., 2003] for further informa-
tion. The model also contains two hormones: satisfaction,
released when there is a successful conclusion of an interac-
tion with an objects and frustration, triggered in the converse
case.

2.2 Learning and Behaviour Selection
The arbitration mechanism is embedded in the actor-critic
algorithm, cf. centre of figure 1, which exhibits separate
modules for behaviour selection (actor) and learning (critic).
However, both roles are interrelated via the motivational state
s̄(t), which consists of the drives d̄(t) and the affordances
of the closest object in the neighbourhood of the agent ā(t),
represented as

s̄(t) = {ā(t), d̄(t)}. (1)

The actor performs behaviour selection by calculating the
likelihood for each behaviour of leading to maximum cu-
mulative reward given the current motivational state s̄t and
choosing the behaviour to execute next bi according to a
winner-take-all policy.

The critic estimates the cumulative reward V (s̄(t)) result-
ing from the execution of the behavioural pattern (decided by
the actor) leading from the current motivational state to the
optimal zone. This is analogous to the Pavlovian learning ob-
served by [Schultz et al., 1993] and extended by [Houk et al.,
1995] to the instrumental case. The stimulus for our case
consists of the motivational state which the critic relates to
a reward via Temporal Difference updates (TD) as expressed
by

δ(t) = r(s̄(t − 1), bk) − (V (s̄t−1) + γV (s̄t)), (2)

where r(s̄(t− 1), bk) represents the real reward obtained due
to the execution of behaviour bk. Therefore, the learning ex-
plicitly consists of a-posteriori update of the weights of the
estimators that predict the reward (V (s̄(t− 1))) for the previ-
ous motivational state in the case of the critic. Furthermore,
the critic also assesses the policy that led to the execution bk

for that motivational state s̄(t − 1) by updating the weights
of the NN that estimated the policy of the behaviour bk by
a value proportional to δ. The underlying idea is that if the
execution of that behaviour was successful that policy should
be incentivazed.

d(t−1)

d(t)

1.0

1.0

DEFICIT 2(d2)

OPTIMAL ZONE DEFICIT 1 (d1)

LETHAL BOUNDARY

VIABILITY ZONE

Effect

Reward=f(Effect)

Figure 2: Definition of Reward (case of 2 drives only).

2.3 The Definition of Reward
Reward is interpreted in this approach as the affective inter-
pretation of the physiological effect provoked by the execu-
tion of a behaviour. This sense may have arisen because it
facilitates survival in a competitive niche. It is straightfor-
ward that animals that associate a good feeling to behaviours
that improve their physiological state have a larger probabil-
ity of surviving that the others. This is an enhanced solution
to the need of maintaining physiological stability proposed
by [Ashby, 1965], which we propose to use as an ethologi-
cal constraint. Therefore, reward can be modelled as an as-
sessment of the physiological effect provoked by a behaviour.
Among the infinite formulae that quantify behaviour and the
aforementioned constraint we have chosen the following

r(t) =
1

∥d̄i(t)∥
2 −

1

∥d̄i(t − 1)∥2 , (3)

where d̄i(t) and d̄i(t − 1) are the current and the previous
physiological states, respectively. This formula relates effects
diminishing the deficits to a positive value, coherently with
the aforementioned constraint (cf. figure 2).

The hypothesis introduced by formula 3 is vital for several
reasons. On the one hand it introduces the sufficient con-
straints to extend the learning hypothesis of [Schultz et al.,
1993] to instrumental learning [Houk et al., 1995], since now
the delivery of reward is always mediated by the execution of
the appropriate behaviour. On the other, this formula respects
basic ethological constraints while does not impose any arith-
metic formulae to combine external and internal stimuli to
compute the motivational state. The only inherent condition
imposed to the behavioural patterns of the algorithm is that
these must maximise the reward within the cycle of execu-
tion.

3 Experiments
A set of experiments to quantitatively relate the behavioural
patterns obtained by testing this model to its internal dynam-
ics in a variety of significant environments have been per-
formed. Their results are introduced in the next section.
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3.1 Experimental Setup
For both experiment sets, the robot is placed in two sets of en-
vironments containing some objects. Their affordances have
been distributed in such a manner that small objects afford
grasping, large ones afford to shelter and all objects afford to
be touched. The scenarios have been engineered in order to
vary the availability and accessibility of resources in the en-
vironment. In scenario E1 (Motivation Driven) afford every
behaviour to be performed. On the contrary each object in
scenario E3 (Stimulus Driven) afford a single behaviour to be
performed. Scenario E2 (Motivation and stimulus Driven) is
a middle case between cases E1 and E3. The robot knows a-
priori the affordance values of each objects and has to learn
the appropriateness of each behaviour to satisfy one need or
another.

The metric used to assess the learning mechanism is the
physiological stability. Two viability indicators are used,
namely, physiological stability and overall comfort. Physio-
logical stability is the average level of satisfaction for all vari-
ables, and overall comfort a measure of the homogeneity with
which the needs are satisfied. These indicators respond to the
formulas 4 and 5, respectively. Similar indicators have been
introduced in [Ávila Garcı́a and Cañamero, 2002], where the
lifespan was used to normalise the indicators. This is not nec-
essary in our experimental schema, since simulations have a
fixed length.

Physiological Stability =
1

N

N−1
∑

i=0

d̂i(t) (4)

Overall Comfort =
1

N

N−1
∑

i=0

σ(d̂i(t)) (5)

The robot navigates at random. Every time an object is
encountered, the state is updated by perceiving the set of ex-
ternal (affordances) of the object encountered and by reading
the instantaneous value of the agent’s internal drives (drives).
The actor calculates then the motivational state (the policy
values) and the behaviour whose related motivation exhibits
the highest value is selected and executed. Then the object
is abandoned, to wander at random until another object is en-
countered to re-start the cycle of execution.

3.2 Learning Behavioural Patterns
The goal of the first set of experiments is dual. Firstly, it
intends to test the performance of the model to integrate ex-
ternal and internal stimuli to produce behavioural sequences
that contribute to the internal physiological stability. The
actor-critic should be able to cope with a diversity of envi-
ronments by providing appropriate policies to lead the system
towards stability. The choice of the three aforementioned en-
vironments covers, from a behavioural perspective, the range
of adaptation we aim to study.

Secondly, it addresses the study of the dependence of the
learning process on the perception of the agent. To that
aim, experiments have been parametrised after a distortion

parameter α. Related to this, n(t) has been added to the
perceived affordance values (a

′

i(t)) as white additive noise
(n(t), mx = 0, amplitude = α), cf. equation 6. Sets of 2
simulations have been run for each value of noise, varying
their amplitude (α) between 0.0 and 1.0 in increments of 0.2.

ai(t) = a
′

i(t)(1 − α) + α(n(t) + 0.5) (6)
Equation 6 shows the affordance value resulting from the ad-
dition of Gaussian noise (n(t), mx = 0, amplitude = α) to
its original value (a

′

i(t)).
he learning process is organised in cycles, each commenc-

ing by re-setting the homeostatic variables at a random value
between 0.0 and 1.0. The agent will then have to make ap-
propriate decisions until the norm of the vector of deficits
(drives) is in the optimal zone (cf. figure 2). When this hap-
pens, the values are newly reseted to start the following cycle.

Results For all simulations, the length of the cycle of exe-
cution decreases overtime a minimum value. Furthermore,
the shorter the cycle the smaller the mean of the deficits
(physiological balance), cf. fig. 3.
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Figure 3: Physiological Parameters along the Simulation for
EI, mean and variance, left and right, respectively

However, depending on the environment (cf. picture (a) in
figure 4), the distortion (α) may facilitate or not convergence.
If affordances are very available (Environment EI) distortion
renders convergence more difficult. Interestingly, for incen-
tive driven behaviours (EIII) convergence is facilitated by dis-
tortion. This may be explained by the combination of slow
decay of the agent’s variables and of difficulty in interpreting
the external stimulus when distortion is high. For its highest
value (α = 1.0), the selection will logically be only based on
the internal drives, disregarding the external stimulus.

3.3 From Effect to Reward
The goal of the experiment set is to evaluate the influence
of the definition of reward on the basis of the physiological
effect. The amount of effect and its consequent interpreta-
tion as reward during the learning process determine not only
the pace at learning, but also the quality of the final values
for convergence. To this aim, the effect of a behaviour execu-
tion on a homeostatic variable has been parametrised between
0.15 and 0.35.

Results The results shown in picture (b) of figure 4 show
that this influence of the relationship between effect and re-
ward is vital to determine the final stability of the learnt pol-
icy. The larger the effect step size, the shorter the cycle and
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(a) Physiological Stability
parametrised after α Dis-
tortion Values

(b) Physiological Stability
parametrised after Effect
Values

Figure 4: Physiological Stability for the cases of distorted
affordances and of different quantisations of effect, left and
right, respectively.

the larger the physiological stability. This has to be consid-
ered in the ecological framework that characterises the rela-
tionship between the agent, in terms of internal physiology,
and the environment in terms of how this affects the agent.
The more available are the resources in the environment, the
easier it should be to learn policies to satisfy internal needs.
Likewise, the larger is the effect with regard to the pace of
growth of the deficits, the shorter is the cycle and the lower
the mean of the deficits.

4 Discussion and Future Work
The architecture introduced in this paper suggests a simple
manner of integrating affordances and internal stimuli for
learning behaviour selection in a biologically inspired fash-
ion. It has demonstrated to provide appropriate policies to
maintain physiological stability in a variety of scenarios, with
different availability and accessibility of resources. This sup-
ports the hypothesis for the role of dopamine (DA) in the
basal ganglia not only as the error of the prediction of reward
for Pavlovian, but also for instrumental learning.

This also highlights that instrumental learning is linked to
the definition of reward, which is also related to the physio-
logical stability. Actions contributing to stability should be
considered beneficial, conversely for others. Learning rad-
ically depends on this. Furthermore, agents can only live
within a range of reward definitions relating their internal
physiological dynamics and their environment. This restric-
tion seems to be imposed by the need of physiological stabil-
ity.

Furthermore, the experiments also highlight the fact that
the effect of the affordances on the behaviour selection is
highly noticeable. In their absence or when they are blurred,
the time to learn efficient policies increases, turning the
choice of behaviour into a blind selection. However, the sce-
nario and the rhythms of the agent’s internal physiology need
to be considered to make sense of it, therefore reinforcing the
ecological principle.

Based on this, we suggest that animals living in a fast
changing environment may exhibit the ability to learn be-
havioural patterns mostly in a developmental manner and that

these are solely assessed via the agent’s ecological relation-
ship to its environment.

The mechanism to select the behaviour to execute next is
a simple winner-take-all of the policy values, which is only
one of the several mechanisms that can explain ethological
observations. The choice of what to do next follows often
complex ways, which may not necessarily correspond to the
aforementioned straight forward mechanisms to maintain the
stability of the internal milieu. This will be addressed in the
near future.
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Abstract
A class of biped locomotion called Passive Dy-
namic Walking (PDW) has been recognized to be
efficient in energy consumption and a key to un-
derstand human walking. Although PDW is sensi-
tive to the initial condition and disturbances, some
studies of Quasi-PDW, which incorporates supple-
mental actuators, have been reported to overcome
the sensitivity. In this article, we propose a re-
inforcement learning scheme designed in particu-
lar for Quasi-PDW walking. The keys of our ap-
proach are a reward function and a learning method
of a simple intermittent feedback controller, both of
which utilize the robot’s passive dynamics as much
as possible. They successfully make the action se-
lection problem for walking significantly reduced.
Computer simulations show that the parameter in a
Quasi-PDW controller is quickly learned after only
180 episodes, and that the obtained controller is ro-
bust against sudden perturbations and variations in
the slope gradient.

1 Introduction
Biped walking is one of the major research topics in recent
humanoid robotics, and many researchers are now interested
in Passive Dynamic Walking (PDW) rather than the conven-
tional Zero Moment Point (ZMP) criterion. The ZMP crite-
rion is usually used for planning a desired trajectory to be
tracked by a feedback controller, but the continuous con-
trol to maintain the trajectory consumes a large amount of
power. In contrast, PDW is completely unactuated walking
on a gentle downslople [McGeer, 1990]. However, PDW is
generally sensitive to the robot’s initial posture, speed, and
disturbances incurred when a foot touches. To overcome
this sensitivity, “Quasi-PDW” [Sugimoto and Osuka, 2003;
Takuma et al., 2004; Wisse and Frankenhuyzen, 2003] meth-
ods, in which some actuators are activated supplementarily
to handle disturbances, have been proposed. Because Quasi-
PDW is a modification of the PDW, this control method con-
sumes much less power than control methods based on the

This research is supported by JSPS Grant-in-Aid for Scientific
Research No. 15300102.

ZMP criterion. In the previous studies of Quasi-PDW, how-
ever, parameters of an actuator had to be tuned based on
try-and-error by a designer or on a priori knowledge of the
robot’s dynamics. To act in non-stationary and/or unknown
environments, it is necessary for robots that such parameters
in a Quasi-PDW controller are adjusted automatically in each
environment.
In this article, we propose a reinforcement learning method

to train a feedback controller for Quasi-PDW. In our method,
we define the reward as becoming large when the robot re-
peats same motions, i.e., the trajectory of the locomotion is
stable. Computer simulation shows that a good controller
which realizes a stable quasi-passive walking by a biped robot
with knees, can be obtained with a relatively small number of
iteration of learning, whereas the controller before learning
has poor performance such to allow the biped robot to walk
for only a few steps.
In an existing study [Tedrake et al., 2004], a stochastic pol-

icy gradient reinforcement learning was successfully applied
to a controller for Quasi-PDW, but their robot was presum-
ably stable and relatively easy to control because it had large
feet whose curvature radius was almost the same as the robot
height, but no knees. Furthermore, the reward was set accord-
ing to the ideal trajectory of the walking motion, which had
been recorded when the robot realized a PDW. In contrast, our
robot model has closer dynamics to humans where there are
smaller feet whose curvature radius is one-fifth of the robot
height, and knees. The reward is simply designed so as to
produce a stable walking trajectory, without explicitly spec-
ifying a desired trajectory. Furthermore, the controller we
employ performs feedback control for a short period espe-
cially when both feet touch the ground, whereas the existing
study above employed continuous feedback control. We be-
lieve that our approach is more plausible in the perspective of
energy efficiency and understanding of human walking.

2 Approach Overview
Fig. 1 depicts the biped robot model composed of five links
connected by three joints: a hip and two knees. The motions
of these links are restricted in the sagittal plane. The angle be-
tween a foot and the corresponding shank is fixed. Because
we intend to explore an appropriate control strategy based
on the passive dynamics of the robot in this study, its phys-
ical parameters are set referring to the existing biped robots
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Figure 1: 2D biped robot model

that produced Quasi-PDW [Wisse and Frankenhuyzen, 2003;
Takuma et al., 2004]. The length and weight of a thigh or
shank are 0.33 [m] and 0.5 [kg], respectively. The curvature
radius of a foot is 0.132 [m], which is one fifth of the robot’s
height. The weight of a foot is 0.02 [kg]. The body is a
point mass of 4 [kg]. As described in Fig. 1, stands for the
absolute angle between the two thighs, and de-
note the knee angles, and denotes the angular velocity of
the body around the point at which the stance leg touches the
ground. The motion of each knee is restricted within
[rad].
Our approach to achieving adaptive controls consists of the

following two stages.
1. The two knees are locked, and the initial conditions,
and , which realize PDW are searched for. These val-
ues are used for the initial setting of the robot in the next
stage.

2. The two knees are unlocked, and the robot is controlled
by a feedback controller with a variable gain parameter.
The parameter is modified by reinforcement learning so
that the robot keeps stable walking.

These two stages are described in detail in the followings.

2.1 Searching for the initial conditions
In the first stage, we searched for an initial posture, denoted
by and , which realize PDW on a downslope with a
gradient of [rad]. For simplicity, we fixed
[rad] and searched a region from 0 to [rad/sec] by
[rad/sec], for that maximizes the walking distance. We
found [rad/sec] was the best value such to
allow the robot to walk for seven steps.

2.2 Feedback controller
In light of the design of control signals for the existing Quasi-
PDW robots [Wisse and Frankenhuyzen, 2003; Takuma et al.,
2004], we introduce torque inputs of a rectangular shape ap-
plied to the hip joint (cf. Fig. 3). A single rectangular con-
trol torque is characterized by a three-dimensional vector ,
that is, : the lag time of the torque applying time from
the time when either leg is off the ground, : the torque
amplitude, and : the duration of the torque application
(Fig. 3(2)). At each time when both legs touch the ground,

the controller observes the state of the robot, i.e., , and then
outputs a control torque applied to the biped robot. is
assumed to be distributed as a Gaussian noise vector (see sec-
tion 3.2) whose means are given by

(1)
(2)
(3)

where is supposed to be the desired value of and ,
, are bias terms, respectively. The value of

is unknown, however, so we let the robot to learn by
expressing and adjusting the value of . Here,
is used as the initial value of . Equations are

then expressed as

(4)

where , and are the parameters that should be ad-
justed by reinforcement learning, and and are

Because the learning algorithm requires the differentials of
equation (4) with respect to the parameters, we linearized this
equation as

(5)

The six-dimensional vector:

was adjusted by an on-line reinforcement learning scheme,
which is described in section 3. Since we assume no a priori
knowledge of the feedback control, was set at as its
initial value.

3 Learning a Feedback Controller
3.1 Policy gradient reinforcement learning
In this study, we employ a stochastic policy gradient method
[Kimura and Kobayashi, 1998b; 1998a] in the reinforcement
learning for the controller’s parameter . The robot is re-
garded as a discrete dynamical system whose discrete time
elapses when either foot touches the ground, i.e., when the
robot takes a signal step. The state variable of the robot is
given by , where counts the number of steps. For each
state , the controller provides a control signal accord-
ing to a probabilistic policy . At the next step, the
controller observes a new state and is assumed to re-
ceive a reward signal . Based on these signals, a temporal-
difference (TD) error is calculated by

(6)
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where is the discount rate. denotes the state
value function and is trained by the following TD(0)-learning:

(7)

where is the learning rate. The policy parameter is up-
dated as

(8)

(9)
(10)

where is the eligibility and is the eligibility trace.
is the diffusion rate of the eligibility trace and

is the learning rate of the policy parameter. After policy pa-
rameter is updated into , the controller emits a new
control signal according the new policy .
Such a concurrent on-line learning of the state value function
and the policy parameter is executed until the robot tumbles
(we call this period an episode), and the reinforcement learn-
ing proceeds by repeating such episodes.

3.2 Simulation setup
In this study, we try to obtain an appropriate controller for the
hip joint, whereas the knee joints are controlled by a predeter-
mined simple deterministic controller. The stochastic policy
is defined as a normal distribution:

(11)

where the mean is determined by the feedback control rules
(equations (1)(2)(3)) and the covariance is given by

(12)

where , and are set at and ,
respectively. We assume each component of is 0 or positive,
and if it takes a negative value probabilistically it is calculated
again, similarly in the previous study [Kimura et al., 2003].
The reward function is set up as follows. If a robot walks

stably, and should repeat similar values over steps. Fur-
thermore, the robot should take no step in the same place, i.e.,

needs to be large enough.
To satisfy above requirements, we define the reward func-

tion as

(13)

Fig. 2 shows the landscape of this reward function.
The knees are controlled by a simple control scheme de-

scribed below (cf. Fig. 3) so that each leg in the swing phase
does not contact to the ground. A torque ( [Nm]) is applied
to the knee joint of the swing leg in order to flex the knee,
from the moment that a torque is applied to the hip joint of
the swing leg to make this leg go forward, until the foot of
the swing leg goes ahead of that of the stance leg. Then,
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Figure 2: Landscape of the reward function
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Figure 3: Torque applied to the hip joint and the knee joint.
(1) Motions of the swing leg during a single step. (2) Torque
applied to the hip joint. (3) Torque applied to the swing leg’s
knee joint. (a) A single step starts when both feet touch the
ground. (b) After [sec], the robot begins to bend the
swing leg’s knee by applying a positive torque. (c) The torque
to the knee is removed when the foot of the swing leg goes
ahead of that of the stance leg. (d) When the thigh of the
swing leg turns into the swing down period from the swing
up period, a negative torque is applied in order to extend the
swing leg. (e) The swing leg touches down and becomes the
stance leg.

the torque is removed so that the swing leg is swang down
according to its passive dynamics. After the swing leg turns
into the swing down period from the swing up period, a torque
of [Nm] is applied in order to make the leg extend; this
control is continued until the leg touches the ground and then
becomes the swing leg again.
The value function is represented by a table over grid cells

in the state space, and the value for each grid cell is updated
by equation (7). In this study, we prepared grid cells; the
center of the fifth cell on each coordinate was (Fig. 4),
and the grid covered the whole state space, by assigning the
-th cell on each coordinate to the range . We used

, and .
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Figure 4: Discretization of the state space

In this study, we used a 3D dynamics simulator, Open Dy-
namics Engine [ODE, ]. In simulation experiments, motions
of the robot were restricted in the sagittal plane by config-
uring a symmetric robot model with nine links (Fig. 5). It
should be noted this nine-links robot has equivalent dynamics
to the five-links model (Fig. 1), under the motion restriction
in the sagittal plane; this nine-links model was also adopted
in Wisse [Wisse and Frankenhuyzen, 2003] and Takuma et al.
[Takuma et al., 2004].

Figure 5: Dynamics simulation of the nine-links model
with ODE

4 Simulation Results
Although the physical parameters of our robot were set re-
ferring to the existing Quasi-PDW robots, our robot with un-
locked knees was not able to produce stable walking by itself.
Then, this section describes the way to train the controller.

4.1 Passive walking without learning
First, we examined whether the robot with unlocked knees
was able to produce stable walking on a downslope with

[rad], when it received no controls to the hip joint.
The unlocked knees were controlled in the same manner as
that described in section 3.2. Initial conditions were set at

[rad] and [rad/sec], which are the same
as those in the knee-locked model that performed seven steps
walking. As Fig. 6 shows, the robot with unlocked knees
walked for 80 cm and then fell down. The robot could not
walk passively when the knees were unlocked but controlled
by a simple heuristic controller.

4.2 Learning a feedback controller
The experiment in section 4.1 showed that the robot with un-
locked knees was not able to produce stable walking without
any control to the hip joint, even when starting from good
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Figure 6: Effect of knee existence in PDW. Upper panel
shows a trajectory of the knee-locked model, while
lower panel is for when knees were unlocked but con-
trolled by a simple controller. In both panels, the hip
was not controlled.

initial conditions and . Then, in this section, we ap-
plied on-line reinforcement learning to the automatic tuning
of the parameter in the feedback control rules, equations
(1), (2), and (3). At the onset of each episode, the robot was
set to its initial conditions , and the episode
was terminated either when the robot walked for 50 steps or
fell down. When the height of the robot’s ‘Body’ became
smaller than 80% of its maximum height, it was regarded as
a failure episode (falling down). Reinforcement learning was
continued by repeating such episodes.
Fig. 7 shows the moving averages for episodes

of walking steps (upper) and cumulative reward (lower),
achieved by the robot. The steps increased after about 80
episodes, and went up to near 40 steps after about 180
episodes. In the early learning stage, the cumulative re-
ward and walked distance were small though the robot
walked for more than 10 steps, indicating the robot was
walking stumbling with small strides. Using the determin-
istic feedback controller with the parameter after 180
training episodes, the robot could walk for more than 50
steps (Fig. 8). The parameter at this time was

; the negative sign of
all feedback coefficients which form in equation (5) im-
plies that had grown to represent an appropriate feedback
gain.

4.3 Robustness against disturbances
To see the robustness of the acquired Quasi-PDW against dis-
turbances, we applied impulsive torque inputs to the hip joint
during walking. Fig. 9 shows the time-series of in the same
condition as Fig. 8, except that impulsive torque inputs were
applied as disturbances at the time points with the arrows.
Each disturbance torque was [Nm] and was applied so as
to pull the swing leg backward for [sec] when [sec]
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Figure 7: Moving averages of steps and cumulative re-
ward. After about 180 episodes, the robot became to
walk for nearly 40 steps and for over 10 [m] in average.
Each panel shows the moving average for the period:

.

elapsed after the swing leg got off the ground. As this figure
shows, recovered to fall into the stable limit cycle within
a few steps after disturbances, implying that the attractor of
the acquired PDW is fairly robust to noises from the environ-
ment.

4.4 Walking on different slopes
Next, we let the robot with the control parameter after 180
training episodes walk on downslopes with various gradients.
Fig. 10 shows the results for [rad]. The
robot was able to walk for more than 50 steps on downslopes
with [rad], and 10 steps with 0.06 [rad]; the
feedback controller acquired through the on-line reinforce-
ment learning was robust against the change (in the gradient)
of the environment with which became larger as the envi-
ronment got harder.

5 Discussion
In this article, we proposed an on-line reinforcement learning
scheme for a feedback controller in order to realize Quasi-
PDW which is suitable for locomotive robots in the perspec-
tive of low energy consumption and good correspondence
to human walking. Our scheme was successful in making
the robot with knees produce stable walking after 180 train-
ing episodes, despite of the simple feedback controller. Our
method acquired a good feedback controller that allows the
robot to be entrained to a stable limit cycle based on the pas-
sivity of the robot’s dynamics.
Our learning scheme consisted of two stages, as described

in section 2. After roughly searching in the first stage for
an initial angular velocity with which the robot with locked
knees walked for several steps, reinforcement learning was
applied to the robot with unlocked knees, starting from the
initial condition obtained in the first stage. This two-stages
learning can be regarded as a developmental progression
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Figure 8: Values of and during the walking for 50
steps. The deterministic feedback controller with
acquired after 180 learning episodes was used. Robot
walked for more than 50 steps.
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Figure 9: Perturbation of against impulsive distur-
bances (torque). Each torque of [Nm] was applied to
the hip joint for [sec] during the 10-th, 30-th steps
(arrowed) so as to pull the swing leg backward.

found at least in humans [Newell and Vaillancourt, 2001;
Bernstein, 1968] which increases the degree of freedoms as
the learning proceeds; after a primitive control is achieved
for a system with a low dimensionality, the dimensionality
is gradually released to realize more complex and smooth
movements by the high-dimensional system. Furthermore,
animals seem to employ different controllers in the initiation
phase and in the maintenance phase for effective motor con-
trols [Pahapill and Lozano, 2000]; e.g., it has been known that
three steps in average are required to initiate stationary walk-
ing in humans [Miller and Verstraete, 1996]. We consider the
first stage of our approach corresponds to the initiation stage
above.
As another reason for our successful result, our adaptive

feedback controller is trained by the on-line reinforcement
learning as to apply intermittent energy for maintaining sta-
ble PDW. Although the feedback controller itself was sim-
ple, the simulation experiments on downslopes with various
gradients and through addition impulsive disturbances have
shown that the stochastic policy gradient method with the re-
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Figure 10: Values of and on downslopes with var-
ious gradients. Robot could walk more than 50 steps on
downslopes with [rad]. On downslope with
0.06 [rad], the strides in the latter five steps were almost 0.

ward given to continue rhythmic walking steps contributed
to making the PDW by the robot robust against noises in
the environment. This intermittent control was inspired by
the studies on the measurement of human EMG [Basmajian,
1976] and on Quasi-PDW conducted by Collins et al.[Collins
et al., 2005] or by Takuma [Takuma et al., 2004]. To de-
velop an energy-efficient control method of robots, consid-
erable care about the passivity of the robot should be taken,
as Collins suggested. Furthermore, the dynamics of robots
with many degrees of freedom is generally a nonlinear con-
tinuous system , and thus the action selection for controlling
such a system is usually very difficult. Our approach success-
fully realized rapid learning by introducing the policy that
emits intermittent control signals and a reward function en-
couraging stable motion, both of which utilized the passivity
of the robot. Our learning scheme is not restricted to locomo-
tion, since the computational problem and the importance of
passivity are both general, although what kind of controllers
should be activated or switched when and how are remained
as significant problems.
As a future work, we will devise a method to produce sta-

ble walking on a level ground. In addition, we will conduct
experiments with a real biped robot.
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Abstract 
Hierarchical reactive methods are very popular in 
the field of controlling complex artificial intelligent 
agents. In this paper, we argue that they cannot 
cope with human-like behaviour. We present a 
detailed analysis of behaviour of a relatively simple 
human-like artificial agent, an artificial gardener, 
whose action selection model is based on hierarchi-
cal reactive planning. It is shown that although the 
agent has no troubles with “survival” in a complex 
and dynamic environment, its behaviour is not 
believable in some situations. However, instead of 
rejecting the judged methodology, we propose how 
to extend it using certain features of other action 
selection models. 

1 Introduction 
There are two main characteristics that make hierarchical 
reactive methods of action selection popular in the field of 
controlling complex artificial intelligent agents. The first is 
a top-down recursive decomposition of top-level agents’ 
behaviours to sub-behaviours or sequences of simple 
actions. This decomposition eases the design. The second is 
that an agent’s decision procedure focuses attention only to 
most relevant goals, while ignoring the rest of them 
temporarily. All reactive methods allow for quick switching 
between tasks according to the changing environment and 
agent’s internal drives. Consequently, reactive hierarchies 
reduce combinatorial complexity of control and still can 
cope with large, unpredictable, real-time environments. 

We are working on a research and educational toolkit for 
prototyping human-like artificial agents, i.e. the agents with 
the objective to imitate behaviour of humans (h-agents in 
the following text) [Brom et al., 2005]. One of our 
motivations on this research effort is to find an appropriate 
methodology for controlling h-agents. The methodology 
must allow an easy behavioural design and must be 
computationally effective. Thanks to the aforementioned 
advantages of reactive hierarchies, we turned our attention 
to this branch of methods. So far, we have prototyped 
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several h-agents “living” in a family house utilizing reactive 
hierarchies in order to ascertain their applicability.  

As was expected, partially owing to Bryson’s analysis 
[2000], our h-agents had no troubles with “survival”, that 
means with satisfying own needs. However, it was not 
always straightforward to design their behaviour so that it 
was believable enough. Consequently, h-agents did not 
behave naturally in some situations—i.e., they would not 
pass Turing test. Because the h-agents otherwise performed 
well, we aimed at isolating problems and extending pure 
hierarchical reactive approach, instead of rejecting it. 

In this paper, we present observed limitations on 
believability and suggest how to overcome them. We 
present the results in a case-study example of an artificial 
gardener, whose behaviour is structured by so-called simple 
hierarchical reactive planning (S-HRP). For features that 
could extend this model, we seek both inside and outside of 
hierarchical reactive family. 

In Section 2, we briefly introduce our toolkit and detail 
our motivation. Then, we describe morning tasks of a 
“natural gardener”. This story represents desired behaviour. 
In Section 4, we formalize the S-HRP method and describe 
behaviour of the artificial gardener. In Section 5, we present 
the results, together with suggestions on extensions of S-
HRP. At the end, we discuss applicability of the extended S-
HRP considering related action selection models. 

2 Motivation: Project Ents 
Simulations of artificial humans are becoming increasingly 
more popular both in the academic and industrial domains. 
Typical applications include computer games, virtual 
storytelling, entertainment applications, military simulations 
and behavioural modelling (e.g. [Prendinger et al., 2004]). 

From the technical point of view, each artificial human is 
viewed as an autonomous intelligent agent [Wooldridge, 
2002] that carries out a diverse set of goals in a large 
dynamic environment with the objective to simulate 
believable behaviour of humans; this agent is a so-called h-
agent. One of the key issues in this research field is design 
of a mind of h-agents (i.e., a memory and a procedure that 
decides what to do next—an action selection algorithm).  

Although various theoretical solutions of this issue have 
been proposed so far (e.g. [Newell, 1990]), and a lot of 
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individual applications using h-agents and languages for 
their programming exist, it is hard to find any complex 
toolkit that would couple an artificial environment similar to 
natural world, a neat graphical user interface and a language 
for prototyping h-agents’ minds by means of various dif-
ferent techniques. Such a toolkit would simplify develop-
ment of h-agents, enable verifying theories and it could 
serve as an educational tool for students. 

The project Ents [Brom et al., 2005] is a first generation 
of a toolkit that addresses these issues. It provides: 

• A customizable artificial environment similar to natural 
world, which allows the h-agent to carry out complex 
human-like tasks (among others eating, sleeping and 
going to toilet). 

• E language, which that enables modelling of h-agents 
using various different techniques (including for 
example hierarchical reactive planning, hierarchical 
finite state machines, and classical planning).  

• A linguistic module, which enables talking to h-agents 
(in Czech language). 

• The tool allows for interaction between the h-agents, 
and between h-agent and a user-agent. 

Nevertheless, a toolkit is not just a programming vehicle 
and a bundle of debugging tools. It is also a design 
methodology. Therefore, we are focused not only on how to 
program h-agents, but also on how to design their behaviour 
simply. We are now in the phase of evaluation of the first 
generation of the toolkit and of various models of action 
selection, while specifying requirements on the toolkit’s 
second generation. Hence, we evaluate, whether hierarchical 
reactive planning is the methodology appropriate for h-
agents domain; and that is the topic of this paper. 

The artificial gardener, whose behaviour is observed in 
the case-study, is prototyped in the project Ents. A model of 
a “family-house” is used. A screenshot from the simulation 
is depicted in Fig. 1. More information on the project is 
available at: http://ckl.ms.mff.cuni.cz/~bojar/enti/.  

3 The challenge: natural behaviour 
This section describes a story of a typical human that spends 
his morning gardening. Behaviour of the artificial gardener 
is modelled according to this “natural model” and the course 
of resulting behaviour is compared to it. In what follows, the 
artificial gardener will be denoted as the a-gardener and its 
human model as the n-gardener (we will use masculine for 
the n-gardener, neuter for the a-gardener and feminine for 
both an artificial and a natural neighbour).  

Behaviour is observed from the moment the gardeners are 
going to the garden to the moment they leave it. Two tasks 
are intended: watering and weeding. The scenario follows: 

Because n-gardener knows that a garden hose is 
punctured, he decides to water by a can. He goes to a 
chamber for tools. Because he is intended to weeding 
afterwards, he does not find only a can, but also a bucket, a 
weeder and a little scoop. Then he takes all of that (the 

weeder and the little scoop in the bucket) and goes to the 
garden. He whistles from time to time for joy. 

In the course of watering, two events happen: 
1. A neighbour comes and asks him for a can. He 

promises her to bring the can after he finishes the 
watering. 

2. Nature calls. He puts down the can and goes to the 
toilet. Then he returns and continues with the task. 

When he finishes watering, he goes to lend the can to the 
neighbour. Then he starts weeding.  

In the course of weeding, following event happen: 
3. The neighbour returns the can. The n-gardener leaves 

the can as she has put it down. 
After he completes weeding, he puts all the tools into the 

chamber. Then he goes to eat to the dining room.  

4 A-gardener: the action selection model 
In this section we explain the action selection model of the 
a-gardener—simple hierarchical reactive planning, the S-
HRP, and describe behaviour of the a-gardener. We remark 
that SHRP resembles the planning method of Bryson [2001]. 

4.1 Simple hierarchical reactive planning 
S-HRP is a top-down, reactive method. The former means 
that the overall behaviour is decomposed into specific goals, 
which are recursively decomposed into smaller subgoals, 
until atomic actions are reached. The latter means that the 
next action an agent has to perform is not selected from a 
plan generated before an execution starts, but it is computed 
instantly by means of context-based triggers that 
continuously monitor an environment or the agent’s internal 
drives. Reactive planners do not “look ahead”; instead, they 
compute just the next act in every instant. In S-HRP, the 
problem of what to do next is reduced to switching among 
sets of triggers associated with some subgoals according to 
changing circumstances. 

S-HRP provides four behavioural structures: atomic 
actions, processes, top-level goals and sequences. 

 
Figure 1: The GUI of the toolkit Ents. From the left: the user-

agent and the artificial gardener. 
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• An atomic action (a-action) is the primitive operation 
an h-agent can do. E.g. aStep(hAgentID,placeID). 

• A sequence is a simple sequence of a-actions or 
processes, e.g. <a1, a2, p1, a3, p2> (p denotes a process, 
a denotes an action). 

• A process is a set of process-steps (p-steps), which are 
quadruples <p, r, c, a>, where p is a priority local to 
the process (such that p-steps of one process are total-
ordered by their priorities), r is a releaser, c is an 
optional context and a is an action. Releasers and 
contexts are boolean conditions, an action can be an a-
action, a subprocess or a sequence. In the following we 
will write directly “priorities of releasers” instead of 
“priorities of p-steps”. 

• A top-level goal is quadruple <pr, r, c, f>, where pr is a 
process associated with achieving the goal, r and c are 
releaser and context respectively, and f is a function of 
time that serves as a floating priority of the goal.  

Subprocesses are nested under each top-level goal in a 
tree-like hierarchy. Leaves represent a-actions. The behav-
iour of one agent is represented by a set of such behavioural 
structures and this set is called a betree (it comes from a 
“behavioural tree”). The betree is always provided in 
advance by a behavioural programmer/designer and it is not 
further modified when an h-agent is running (in S-HRP). 

All p-steps and top-level goals of the betree are either 
active or preactive or inactive or sleeping, all a-actions and 
processes are either executed or not-executed. 

At every instant, at least on of top-level goals’ releasers 
must hold. The highest priority goal with the holding 
releaser is active, the other goals with holding releasers are 
preactive; the rest is inactive. 

A sequence, which is a child of an active node (i.e. a p-
step), is executed; other sequences are not-executed. A 
process or an a-action, which is a child of an active node 
(i.e. a p-step or a top-level goal), is executed. Exactly one 
process or exactly one a-action from an executed sequence 
is also executed (the one just being performed). The other 
processes and the a-actions are not-executed. 

Each executed process is associated with several p-steps. 
At every instant, at least one of their releasers must fire. The 
p-step (under an executed process) with holding releaser and 
with the highest priority is called active. Its siblings with 
holding releasers (and lower priority) are called preactive. 
Its siblings without a holding releaser (both with higher and 
lower priority) are called inactive. All p-steps under a not-
executed process are sleeping. In the following, we will 
often write directly “active/ inactive/... releasers” instead of 
“active/inactive/... p-steps/goals”.  

An example of a betree is depicted in Figure 2. Figure 3 
shows the action selection algorithm. This algorithm is 
performed in every time-step by a control unit of an h-agent. 
When the simulation starts, all nodes of the given betree are 
marked as not-executed, or sleeping, except for top-level 
goals, which are inactive.  

When the algorithm starts, it evaluates all releasers of 
top-level goals and identifies an executed process (SELECT-
GOAL). Then it recursively finds in a breath-first manner all 
active, preactive and inactive releasers in the upper layer of 
the subtree of the executed element (A-S). The active re-
leaser in a leaf triggers an a-action and finishes the evalua-
tion (26). A non-leaf active releaser expands the evaluation 

… …

4 3 2 1

3 2 1 2

2 1

active goal

preactive goal

executed a-action/process
not-executed a-action/process

inactive goal

active p-step

preactive p-step

inactive p-step

sleeping p-step

1

these releasers
fire, but their 
priority is low…

this releaser does not 
fire, but it is evaluated…

1st layer

2nd layer

3rd layer

 

Fig. 2: An example of a betree. The priorities are written above the 
p-steps. 

SELECT-GOAL( betree ):
(1) eval ← all releasers of top-level goals of betree  % they “never sleep” 
(2) evaluated ← evaluate eval  
(3) set active/preactive/inactive top-level goals based on evaluated 
(4) set executed/not-executed processes of top-level goals 
(5) p-steps ← all p-steps of executed process 
(6) A-S( third layer of betree, p-steps, betree ) % 3rd layer – see Fig. 2 
A-S( layer, p-steps, betree ): 
(7) releasers ← all releasers of p-steps 
(8) eval ← evaluate releasers  
(9) set active/preactive/inactive p-steps from p-steps based on eval 
(10) set all other nodes % i.e. p-steps % in the layer as sleeping 
(11) act ← the action of the active p-step of p-steps 
(12) if act differs from previously executed action then 
(13) set previously executed flag as not-executed 
(14) if act is "a-action" or "process" then  
(15) EXEC( act, layer, betree )  
(16) else if act is "sequence" then 
(17) if act is not executed then set act as executed 
(18) if act already contains executed element then 
(19) set this element as not-executed          % element = process or 
(20) if this element is not the last element of act then        % a-action  
(21) EXEC( the next element of act, layer, betree ) 
(22) otherwise  % restart the sequence: 
(23) EXEC( the first element of act, layer, betree ) 
EXEC( act, layer, betree ): 
(24) set act as executed 
(25) if act is "a-action" then  
(26) execute( Act ) 
(27) otherwise % act is now a "process" 
(28) A-S( next layer of betree, all p-steps of act, betree ) 

Fig. 3: The S-HRP evaluation algorithm. 
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to the lower layer of the betree (28). Because there is 
exactly one active releaser in each layer, there is also ex-
actly one active p-step in each layer. Subsequently, exactly 
one a-action can be performed in the given time step. This 
a-action can be performed several times, until another leaf 
releaser becomes active. An agent’s attention is switched to 
another branch of the betree, i.e. to another subtask, when 
previously preactive or inactive releaser is activated. That 
happens either when an executed process is finished (i.e. its 
releaser holds not more), or when external/internal circum-
stances are changed. As exactly one branch of the betree can 
be executed, there is no parallelism in S-HRP.  

The asymptotic complexity of the S-HRP-evaluation is 
O(p.l.a), where l is the depth of the betree, p an average 
number of p-steps of one executed process and a a constant 
that limits the time for evaluation of one releaser; provided 
that releasers are re-evaluated in every time step. 
(Complexity can be reduced significantly by utilizing a 
variant of RETE algorithm [Forgy, 1982].) 

The purpose of a context is to interrupt currently executed 
action, even if the releaser holds. As contexts are typically 
conjunctions of releasers with higher priorities, they are 
omitted from the description of the algorithm for the sake of 
simplicity (it is possible to express for example timeouts or 
numbers of retries by means of them). Scheduling of top-
level goals is enabled by their floating priorities.  

The four elements of S-HRP are similar to the elements 
of Byson’s POSH action selection plans [2001] (primitive 
actions, action patterns, competences and drive collections). 
The whole S-HRP-betree resembles to AND-OR tree with 
only AND branches, which are used for example in total-
order simple task network planning [Ghallab et al., 2004]. 

4.2 Behaviour of the artificial gardener 
The behavioural structure of the a-gardener is depicted in 
Figure 5. For simplicity, library functions like searching for 
an object or drinking are not detailed. Figure 4 shows the 
priorities of top-level goals and the whole course of the 
behaviour. The behaviour of the a-gardener is programmed 
in the language E of the project Ent [Brom et al., 2005].  

5 Results: observed limitations 
In this section, we present observed limitations on 
believability of behaviour of the artificial gardener. The 
results clearly reveal four main flaws of the a-gardener and 
thus of the S-HRP method. First, the S-HRP betree does not 
allow for intentions, the best one could do in S-HRP is to 
associate intentions with top-level goals. Second, concurrent 
processes are not allowed—just one a-action can be 
performed in each time step. Third, some situations require 
planning, at least to some extent, but S-HRP avoids classical 
planning. And finally, strong need for transition behaviours, 
i.e. small processes that applies during task switching, has 
been recognised. Unfortunately, it is not straightforward to 
express them in S-HRP. We anticipate that some of these 
limitations can be avoided by utilizing a different reactive 
hierarchical method, but others are more fundamental.  

5.1 Intentions 
Case 1. Choosing an alternative: 
N-gardener: Before he starts watering, he decides whether to 
hose or to water by a can. 
A-gardener: When the watering goal becomes active (i.e. 
what to do), the a-gardener is not able to choose between 
alternatives (i.e. how to do), because exactly one process is 
associated with the top-level goal. 

watering
(a releaser: true)

toilet
(a releaser: when it must go...)

whistling
(a releaser: true)

50

5

0

30 weeding
(a releaser: true)20

time

priority

Figure 4: Priorities of top-level goals of the a-gardener. The resulting 
course of behaviour (without interaction with the user-agent) is 

indicated by the bold line. The time of switching from watering to 
toilet is based on the incremental rate of the internal drive underlying 

“when it must go” releaser. 

w atering the  ga rden
[ "at least one  bed is  dry" ]

• find& take ( can ) [ "can is not he ld" ]
• fill( can  ) [ "can  is  em pty" ]
• fixa te-on& goto-to ( "dry", bed ) [ "a  bed is  d ry" ]
Ö watering( bed, can ) [ "the bed is still dry &  gardener is  nex t-to" ]

w eeding the garden
[ "at least one  bed is

w eedy" ]

• find& take ( bucket ) [ "bucket is not have been got" ]
• f ind& take ( w eeder ) [ "w eeder is  no t have  been got" ]
• f ind& take ( little  scoop  ) [ " litt le  scoop is not have been  go t" ]
• em pty( bucke t ) [ "fu ll bucket" ]
• f ixa te-on& go-to( "weedy", bed  ) [ "a  bed is weedy" ]
{ Ö w eeding( bed, scoop, weeder ); • m ove-to ( w eeds, bucke t )  }

[ "the bad is  s till weedy &  gardener is nex t-to" ]

w histling

to ile t Ö to ile t( to ile t )  [ "ga rdener is  next-to " ]
• find& go-to( to ile t )

Ö w his tle

cleaning up a fte r w ate ring
[ "can is  not cleaned up" ] • c lean -up( can ) [ "can is  not cleaned  up " ]

w atering

w eeding

• c lean -up( litt le  scoop ) [ "little  scoop is  not cleaned  up" ]
• c lean -up( weeder ) [ "weeder is  not c leaned up" ]
• c lean -up( bucke t )  [ "bucket is not c leaned up" ]

cleaning up a fte r w eed ing
[ "too ls are not c leaned up" ]

 

 

Figure 5: The schema of behaviour of the a-
gardener. Parenthesis denotes parameters, 
brackets denote releasers, angle brackets stand 
for a sequence. Arrows denote priorities, the 
p-step with the highest priority is at the top. 
A-actions are marked with (Ö), subgoals are 
marked with (•). Contexts are omitted for 
simplicity.  

It is noteworthy, that contrary to other 
hierarchical reactive methods (e.g. [Bryson, 
2001]), the p-steps are written in the 
reversed-order  (the first thing done is on 
the top) and the releasers are expressed in a 
negative form. The reason for this is to 
make the programming simpler.  
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Case 2. Adding a new intention: 
N-gardener: When a neighbour asks for a can, the n-
gardener promises her to bring her the can after he finishes 
watering and then, he becomes intended to this task. 
A-gardener: It completely lacks capability to add itself a 
new intention, that means a new top-level goal. 

Comment: Changes of intentions and feasibility of 
choosing alternative ways how to accomplish a goal are 
basic requirements on action selection model for h-agents. 
These features are not built-ins of S-HRP, but are well-
defined in others hierarchical reactive architectures, namely 
in the Belief Desire Intention (BDI) [Wooldridge, 2002]. S-
HRP could be pushed towards BDI by specifying simple 
goal driven hierarchical reactive planning (S-GHRP): 

1. A new structure of goal is introduced. It is a quintuple 
<{pr}, me, r, c, f>, where {pr} is a set of processes that 
can accomplish the goal, me is a procedure for means-
ends reasoning among the processes, and r, c and f are 
a releaser, a context and a priority, a function of time, 
respectively. A top-level goal is just an ordinary goal. 

2. An extended sequence is a simple sequence of a-
actions, processes or goals. 

3. A p-step is augmented as follows: it is a quadruple <p, 
r, c, ga>, where ga is an extended action, i.e. a subproc-
ess or an a-action or a goal or an extended sequence. 

4. A S-GHRP betree is partially modifiable on-line. When 
an h-agent is running, a new goal can be added to the 
betree, both top-level one and a subgoal. 

5. In S-GHRP, we say that a goal is active, preactive, 
inactive or sleeping iff the p-step encapsulating the 
goal (or a sequence with the goal) is active, preactive, 
inactive or sleeping, respectively. Top-level goals are 
never sleeping, but all top-level goals that are not 
intended (i.e. not a part of the betree) can be con-
sidered as such. From the other hand all not-sleeping 
goals can be regarded as intentions.  

6. The EXEC procedure of the algorithm in Fig. 2 is called 
also when the act variable contains a goal (line (14)) 
and it performs me reasoning in this case (line (25)). 

Notice, that the set of all active and preactive elements of 
the S-GHRP betree is similar to so-called intention structure 
of JAM architecture [Marcus, 1999], which is an 
implementation of BDI. We suggest that implementations of 
BDI can be exploited in solving the issue on intentions. 

5.2 Concurrent processes and interleaving 

Case 3. Pure parallelism: 
N-gardener: When he is watering, he whistles from time to 
time for joy. 
A-gardener: It lacks capability to do two tasks 
simultaneously. 

Comment: A simulated body of a believable h-agent should 
be viewed as a group of semi-independent resources that can 
perform a-actions concurrently, and S-GHRP should be 
applied in parallel version, where more active nodes can co-
exist in one betree-layer. This idea is hardly surprising and, 
in fact, a lot of reactive hierarchies address this issue (e.g. 
[Blumberg, 1996; Bryson, 2001]). It is also noteworthy, that 
modelling of preferences’ combination may be required. 
That means choosing a compromise action when two (or 
more) concurrent tasks compete for the same resource (for a 
discussion on this topic see [Tyrrell, 1993, p. 185-187]).  

Case 4. Preparation: 
N-gardener: When he is beginning watering, he goes to a 
chamber and finds a can. Because he knows that he will 
weed afterwards, he finds also a bucket, and puts a weeder 
and a little scoop into it. Then he takes the bucket and the 
can and goes to the garden. 
A-gardener: When it is beginning watering, it takes a can 
from a chamber and goes to the garden. When it finishes the 
watering, it returns to the chamber for a bucket, a weeder 
and a little scoop. 

Comment: Two goals conflict, active watering and inactive 
weeding, but even though inactive, weeding has to manifest 
itself in order to save the second trip to the chamber. Goals 
have to be interleaved. The question is how to give “losers” 
chances to influence overall behaviour out of their time-
slots. Classical solution is to use a planning technique, in 
this case partial-order simple task network planning (STN) 
would be appropriate. Unfortunately, it is not straightfor-
ward (and perhaps even not biologically plausible) to 
combine reactive methods with this kind of planning. 
Therefore, we suggest another solution based on semi-
autonomous fuzzy triggers: 

1. The priority function of a goal, f, is replaced with the 
set of fuzzy-triggers {t+}. 

2. A fuzzy trigger is like a releaser in that it continuously 
monitors an environment, an agent’s body or its mind 
in order to recognise some relevant situations. Unlike a 
releaser, the trigger is able to invoke resource 
negotiation procedure ne(pow) between an active goal 
(or goals) and an inactive/preactive applicant. pow is 
the actual power of the trigger (a value <0, 1>). 

3. Based on the result of ne the applicant can either 
subsume the active goal, or the active goal can let the 
“loser” manifest itself shortly, or the me procedure of 
the active goal can switch to another process1.  

The challenging issue is to identify situations that should 
invoke negotiation. One of such situations is: an h-agent is 
attracted by an object that is supposed to be use later. This 
notion of semi-autonomous triggers puts S-GHRP a bit 
towards Minsky’s Society of Mind [1985]. A fundamental 
question on efficiency of this method rises. What is more 

                                                 
1 We are working on a prototype implementation of negotiation 

procedure using Soar [Newell, 1990].  
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computationally effective? STN planning or a bundle of 
reactive triggers and negotiation procedures?  

Case 5.  Task inhibition: 
(In this case, we assume that a goal of lending a can to the 
neighbour is intended also by the a-gardener.) 
N-gardener: When he finishes watering, he goes to the 
neighbour and lends her the can.  
A-gardener: When it finishes watering, it puts the can to the 
chamber, then it picks it immediately up and goes to lend it 
to the neighbour. 

Comment: There is another kind of situation that should be 
recognised by a trigger: the h-agent attempts to do a task 
whose effect will be later cancelled. This situation is unlike 
Case 4 because the result of negotiation is temporal 
inhibition of a subgoal. To describe this, a new type of 
trigger is useful: an inhibition trigger. It temporarily inhibits 
a releaser of a p-step that would invoke a conflicting goal 
(i.e. putting the can to the chamber).  

Extended definition of a goal is: the goal is a quintuple 
<{pr}, me, r, c, {t+, t-}>. t+ and t- are tuples <t, ne>, where t 
is the trigger and ne is the negotiation procedure. The 
difference between t+ and t- is that t+ starts negotiation in 
order to activate the goal, while t- starts negotiation in order 
to inhibit a releaser of a p-step with an undesirable goal. 

Inhibition is a fundamental feature of architectures like of 
Maes [1991] (an inhibition link) or Minsky [1985] (a 
suppressor and a censor agent). Its need is also mention for 
example in [Charles et al., 2002]. Nevertheless, it is 
typically not a built-in of reactive hierarchies. We will call 
this kind of extended S-HRP negotiatory goal driven 
hierarchical reactive planning, the N-GHRP.  

5.3 Stop and think 

Case 6.  Seeing a distance: 
(This case extends the scenario from Section 2 as it de-
scribes one situation more precisely.) 
N-gardener: When he is preparing tools for weeding, he first 
looks around and then chooses almost optimal way how to 
pick up a bucket, a weeder and a little scoop. 
A-gardener: When it is preparing tools for weeding, it 
follows the priorities of the p-steps and no matter how the 
objects are far it always picks up the bucket, then the 
weeder and finally the little scoop (see Fig. 6). 

Comment: This is an observation of a task with complex 
appetitive behaviour. A question is what we humans do in 
these situations. We think that two cases should be 
distinguished. The first is when a human perceive all objects 

of the interest at once and there are less then three or four of 
these objects. The second case encompasses more 
complicated situations with hidden objects or more objects 
on the scene. We think that in the former case the human 
directly perceive the order of how to pick the objects up2, 
while in the latter case the human consciously stops and 
thinks a bit about what to do next.  

For an a-gardener: The latter case calls for a conventional 
planner that should be invoked by the first subprocess of the 
process with complex appetitive behaviour. The purpose is 
to re-arrange the order of appetitive subtasks (i.e. to change 
priorities of p-steps—it corresponds to stop and think 
activity). The former, direct perceiving, can be simulated by 
using releasers and triggers for each possible ordering.  

Case 7.  A sharp timeout: 
(We assume a can is not in the chamber and must be looked 
for.) 
N-gardener: He remembers that the can is often in the 
chamber. When he does not find it there, he starts searching 
it within the whole house. As time is passing, he becomes 
more and more angry. After a while, he wants to give it up, 
but then he suddenly spot the can in the garage. He picks it 
up and returns to the garden. 
A-gardener: It remembers that the can is often in the 
chamber. When it does not find it there, it starts searching it 
within the whole house. After 14.55 minutes of searching, it 
catches sight of the can in the dining room. It makes two 
steps towards the can, but just before it reaches the can, the 
timeout (15 min.) expires. The task of watering is failed. 

Comment: A sharp timeout can be expressed directly in S-
HRP by a context of a p-step. We suggest that instead of the 
sharp timeout, a soft one should be used. It incorporates not 
only time, but also appropriate environmental/body/mental 
states. N-GHRP triggers serve this purpose better than 
contexts, because they can facilitate negotiation. 

5.4 Transition behaviour 

Case 8. No transition: 
N-gardener: When nature calls if he is watering, he puts 
down the can and goes to the toilet.  
A-gardener: If it needs to go to the toilet during watering, it 
goes with the can in its hands and puts it down when in the 
toilet. 

Comment: We have stumbled on so-called cleaning 
behaviour, which is in the case of humans performed in 
some of its form as a consequent of a consumatory 
behaviour almost ever. An example of pure cleaning is 
cleaning up the can. This behaviour can be simply described 
in S-HRP by adding one p-step after the consumatory act. 
However, special kind of cleaning behaviours, transitions, 
that mean short behaviours that should automatically apply 

                                                 
2 Here, we refer to the concept of an affordance and direct 

perceiving of James J. Gibson [1979]. However, the discussion on 
this topic is out of the scope of this paper.  
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Fig. 6: The order in which the n-gardener picks the objects up is fixed.
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when two “major” ones are being switched, complicate the 
situation. An example of transition is putting away the can. 
The need for transitions is noted for example in [Blumberg, 
1996; Mateas, 2002]. The problem is that they can not be 
simply expressed in S-HRP. 

We suggest that both for pure cleaning and for transitions 
negotiation from N-GHRP could be utilised as follows:  

1. As the result of negotiation, the incoming goal should 
give a small amount of time to perform cleaning or 
transition process to an outgoing goal. The amount of 
time should be proportional to the ratio of the 
necessities of behaviours. 

2. If an incoming goal is very urgent, transition may be 
also performed as a part of it. As an example, assume a 
case of an attack—the gardener might throw the 
currently holding object at the aggressor, instead of 
putting it down. 

5.5 Other lessons learned 
Here, we briefly mention the remnant of observations. 

Postponement. When the task A is aimed to suspend the 
task B (e.g. eating watering) postponement could be 
negotiated if B is almost finished. This is similar to Case 
7—when a-gardener is finishing watering, so-called small 
variant of eating could be performed (e.g. eating a tomato 
from the garden instead of lunching), or watering should not 
be interrupted at all. 

Quantities. Serious problem appears when an h-agent is 
confronted with huge amount of objects it is potentially 
interested in. Consider an h-agent aimed to eat a carrot, 
which needs to be pulled out from a garden bed first—there 
are hundreds of such carrots in the garden and typical 
cognitive h-agent’s perception system that is designed to 
perceive all of them, will push this pile into the h-agents’ 
memory. We suggest that in such a situation, the h-agent 
should instead of perceiving some concrete objects rather 
see a container, e.g. the garden bed.  

Blocking behaviour. The common problem is a situation in 
which a process A shortly corrupts its own context. A 
correction process B (typically a sibling from the betree) 
could fix the situation, but then A corrupts the context 
again—that only leads to an infinite loop. Consider the a- 
gardener who must first hold the can to be able to fill it, but 
in order to turn water on, it must temporarily put it down. It 
is the same problem as with Herbert, the robot retrieving 
cans, that blocked by its arm its camera focused on the can, 
when it had begun to pick the can up [Connell, 1990]. An h-
agent must use a memory to remember that it has to avoid 
execution of the correction process. 

6 Discussion: S-HRP vs. related AI models 
We have shown several situations in which S-HRP fails as 
the action selection model for believable h-agents. We 
conclude that this does not mean the methodology has to be 
discarded, but rather reviewed instead. Considering the fact 

that h-agents carry out large number of complex goals in 
unpredictable and dynamic environments, the hierarchies 
together with reactive approach must be utilised anyway. 
There are two main reasons for this. First, hierarchies reduce 
design complexity. Second, because believable h-agents are 
aimed for real simulations with several h-agents running on 
a single PC, their action selection model must be computa-
tionally effective (h-agents belong to the field of applied AI, 
rather then computational psychology or ethology). There-
fore, we think that models based on spreading activation in a 
flat network (e.g. [Maes, 1991]) or in a hierarchical network 
(e.g. [Tyrrell, 1993; Negatu, 2003]) would not fit, because 
they generally suffer from combinatorial complexity. 

What does it mean to review S-HRP? S-HRP is partially 
based on Bryson’s [2001] basic reactive plans. We suggest 
that it can be simply extended into S-GHRP by adding the 
concept of goals. S-GHRP is in fact BDI architecture (e.g. 
[Wooldridge, 2002]), nevertheless, we suggest that GHRP 
can be pushed further towards another approaches. Namely, 
we suggest adding “stop-and-think” planner (but not con-
ventional planning in general) and semi-autonomous trig-
gers that are able to cause resource negotiation, and inhibit 
an undesirable goal. The second concept is inspired by 
Minsky’s Society of Mind [1986] and Maes [1991]. We 
have called such architecture “negotiatory goal driven 
hierarchical reactive planning”, the N-GHRP, and we have 
recommended applying its parallel version. As N-GHRP 
combines reactive approach with conventional planning, it 
might be viewed as a hybrid architecture representative. 

What is the contribution? We see the main contribution of 
the architecture in that the triggers are able to break the 
monolithical reasoning procedure into relatively indepen-
dent modules. Notice, that decomposition of the reasoning 
procedure is neither decomposition of the body (e.g. 
[Blumberg, 1996]) nor decomposition of overall behaviour 
into independent behavioural-modules (e.g. [Bryson, 2003]). 
It is yet another kind of decomposition. 

The decomposition of reasoning blurs the borders 
between behaviours and makes the alternation among 
prescripted plans more “smooth” and thus natural and 
believable (contrary to “rigid ‘artificial’ switching” in S-
HRP and S-GHRP/BDI). For example, sharp timeouts can 
be avoided, undesirable tasks can be inhibited, preactive 
behaviour can be demonstrated shortly without its timeslots, 
transitions can be expressed and postponement can be 
negotiated.  

There is yet another branch of methods that is suitable for 
believable h-agents. It is any-time planning. For example, 
Nareyek uses any-time planning based on structural con-
strained satisfaction [2005] and Charles et al. exploit a 
variant of hierarchical task network planning and heuristic 
search planning [2002]. We think that anytime planning do 
not allow for as easy design as reactive hierarchies do. 
However, the correct comparison between N-GHRP and 
any-time planning methods is a question for future research.  

S-HRP and similar methodologies belongs to the branch 
of so-called forward-chaining methods. To complete the 
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picture, we must mention Soar architecture [Newell, 1990], 
which is one of the most known cognitive forward-chaining 
architectures. Soar is also exploited in h-agents simulations. 
However, it is rather a powerful programming vehicle, not a 
design methodology. For example, S-GHRP as well as 
simple task network planning can be programmed in it. 

7 Conclusion 
In this paper, we have argued that hierarchical reactive 
planning is not able to cope with human-like behaviour. We 
have shown several limitations of this branch of methods 
through behavioural analysis of an artificial gardener, whose 
behaviour have been designed according to simple hierar-
chical reactive planning, the S-HRP. 

The main limitations of S-HRP include: 1) impossibility 
of adding new goals/intentions during execution, 2) the 
shortage of parallel execution and task interleaving, 3) the 
impossibility of inhibition an undesirable subtask, 4) fixed-
ordered steps in appetitive behaviour, 5) rigid “unnatural” 
switching between behaviours, which disable for example 
expressing of transition behaviours and postponement. The 
first one is the limitation only of the S-HRP method. The 
second one is the limitation of all the methods that do not 
allow parallel execution and/or preactive behaviours. The 
third is the limitation of methods that cannot express 
inhibition. The last two are limitations of the whole branch 
of reactive hierarchical family. 

We have suggested a solution to overcome these by 
extending S-HRP to N-GHRP, negotiatory goal driven 
hierarchical reactive planning. It is a hybrid architecture 
representative. The precise comparison between N-GHRP 
and other hybrid approaches, namely any-time planning, is a 
question for future research. 
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