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Abstract

Many architectures of mind assume some form of modularity, but what is meant
by the term ‘module’? This chapter creates a framework for understanding current
modularity research in three subdisciplines of cognitive science — psychology, arti-
ficial intelligence and neuroscience. This framework starts from the distinction be-
tweenhorizontalmodules which support all expressed behaviors vs.verticalmodules
which support individual domain-specific capacities. The framework is used to dis-
cuss innateness, automaticity, compositionality, representations, massive modularity,
behavior-based and multi-agent AI systems, and correspondence to physiological neu-
rosystems. There is also a brief discussion of the relevance of modularity to conscious
experience.

Keywords: modularity, Fodor, Minsky, Chomsky, AI, psychology, neuroscience,
systems, representation.

1 Introduction

Many of the architectures of mind described and referred to in this book assume some
form of modularity. But what is considered to define a module varies a great deal both
within and across the cognitive science disciplines: artificial intelligence (AI), psychology
and neuroscience. This chapter is not devoted to any one architecture (though I have one
too, which I will describe briefly in the Discussion to make my biases clear), but is rather
an overview of the concepts and concerns of modularity. It covers all three of the above
disciplines and shows how they relate to one another and to cognition — or at least to
cognitive phenomena such as planning, learning, language, emotions, and consciousness.

My hope is that this chapter will serve as a useful primer — in the best case, a Rosetta
stone — for both scientists and lay people trying to get a handle on what the various fields of
cognitive science might mean by modularity, and how the modular architectures described
in this book and elsewhere might correspond to our common understanding of what minds
do. It is important to realise that researchers who are experts in one or more of the areas
described below may have no awareness of some of the other areas, and therefore make no
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effort to reconcile their own theories with the others. Consequently, this chapter contains
some substantial redescription in an effort to put these theories into a common framework
for comparison.

2 Modularity in Psychology

2.1 Criteria for Modularity

I will begin with an extremely simple definition of modularity from the psychological lit-
erature, due to Flombaum et al. (2002):

“Modularity is the thesis that the mind contains independent input systems that,
when engaged, are restricted in the types of information that they can consult.”

This definition is useful for two reasons. First, it introduces a very clean criterion for
modularity: that some part of the mind does not have access to some other part of the mind,
or at least not its ‘information’. Given this simple criterion, anyone who accepts the idea of
implicit knowledge or unconscious behaviour has already acknowledged that there is some
sort of modularity involved in human intelligence.

This is not the only possible characterisation of modularity. Fodor (1983) provides the
best-known list of criteria for recognising modularity, some of which are now highly con-
troversial, such as innateness. To be fair, the entire concept of innateness has become con-
troversial because the lifelong interplay between genetics and environment makes many
(particularly postmodern) developmental psychologists uncomfortable with the category
(for example Thelen and Smith, 1994; Elman et al., 1996; Donnai and Karmiloff-Smith,
2000). Those who do not believe in innateness as a discriminative category in human de-
velopment often do not believe in modularity either, because Fodor (1983) famously staked
so much importance on the innateness criteria. This seems slightly ridiculous when coming
from an AI perspective, because innateness has no bearing on the functional or computa-
tional characteristics of modularity, but it has had a large impact on the psychological
modularity literature.

Psychologists who do believe in modularity are generally concerned with other traits
such as automaticity in the presence of appropriate stimuli or brain localisation. Brain lo-
calisation I will discuss under neuroscience below. Automaticity is indicated both by speed
of processing and by changes in processing due to nearly identical but saliently different
stimuli which help the module select its own input. Modules are expected not only to be
specialised to a domain, but also to be able to recognise the context in which their domain
is present.

An impressive example of this is shown by Tanaka and Farah (1993) in the domain
of face recognition. Recognising individuals from their faces is an extremely difficult,
highly skilled behaviour which takes years to develop. Children tend to recognise people
through superficial cues such as glasses and hairstyle. Adults with sufficient experience
make discriminations on subtle differences between faces. Experience is critical: even
adults often have trouble discriminating faces from less familiar races, while those with
specialised experience, such as farmers and field researchers, can learn to discriminate the
faces of other species. Nevertheless, face recognition has often been seen as a candidate
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module because we do it quickly with no deliberate access to the process, and because the
capacity to recognise faces can be lost through brain damage or stroke independently of
any other capacity.

Tanaka and Farah (1993) contribute to this debate by demonstrating implicit, automatic
context recognition by the face recognition capacity. Starting with photographs of famous
faces, they divide the pictures down the middle, then shift one side slightly with respect to
the other. Despite the fact that the misalignment boundary is quite conspicuous — subjects
are aware that they see one face that has then slightly skewed — both speed and accuracy
of recognition are substantially degraded. The Fodorian modularist’s explanation: these
slightly altered visual stimuli no longer trigger the ‘face recognition’ module.

In my own opinion, the most critical attribute of modularity is that individual mod-
ules support and are supported by different specialised representations (Bryson and Stein,
2001a; Bryson, 2002). Notice that this is fairly compatible with the inaccessibility defi-
nition of Flombaum et al. (2002) — process structure is heavily dependent on representa-
tional structure and content, so if we consider minds to be based on process, clearly the
different processes might have difficulty accessing each other’s knowledge or control (at
least directly) if they are based on different representations. However, I came to this con-
clusion in the course of designing a development methodology for artificial intelligence,
which I will discuss further below.

2.2 Fodor: Vertical and Horizontal Modules

The second reason that the Flombaum et al. (2002) quote is a useful introduction to modu-
larity in psychology is the phrase “independentinputsystems”. This makes clear the origins
of a great deal of the theory underlying modularity in the psychological literature — the
bookThe Modularity of MindFodor (1983). Although Fodor states that he believes mod-
ularity may also exist in motor systems (p. 42) he claims ignorance of these systems and
concentrates on perception. An entire school of psychological research has followed this
lead (recently Coltheart, 1999; Downing et al., 2001; Spelke, 2003), some (such as Flom-
baum et al. (2002)) apparently unaware that Fodor’s full architecture is actually symmetric
with respect to sensing and action.

Fodor himself cites Chomsky (1980) and Gall (1825, the originator of phrenology), as
his main inspirations. Dawkins (1976) and Hume (1748) also give highly relevant discus-
sions. But I will use Fodor as a basis for describing psychological modularity both because
of his influence in psychology and because of his relevance to modular AI.

Fodor introduces the terms ‘horizontal’ vs. ‘vertical’ to describe two different sorts of
decomposition for intelligence. For Fodorhorizontaldecompositions are those which iden-
tify processes which underlie all of cognition, such as memory, attention, perception, and
judgement.Vertical decompositions identify particular skills or faculties, such as mathe-
matics, language, and metaphysics, which each have their own characteristic processes of
memory, attention and so forth (Fodor, 1983, pp. 14–21). Roughly speaking, evidence for
horizontal decomposition is the extent to which, for a particular individual, performance
across all domains is correlated, while evidence for vertical decomposition is the extent to
which it is not. For example, it might turn out that individuals who have good memories
tend to be able to remember things well across any domain; this would indicate that mem-
ory is a horizontal module. On the other hand, if how good an individual is a mathematics
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in no way predicts how good they are language, then this is evidence that both mathematics
and language are vertical modules.

Fodor believes that only certain parts of human intelligence are decomposed in the
vertical sense; those parts being perception and action. In Fodor’s system, a number of
semi-autonomous perceptual modules run simultaneously giving quick, automatic analysis
of the perceptual scene. Each module recognises its own best input, and effectively trumps
any other module trying to process that input. The output of perception modules is in
the ‘language of thought’. This output is operated on by a horizontal reasoning system
that then chooses an action. The chosen action is then presumably produced by a vertical
action module, though as I’ve mentioned such action-skill modules are little researched or
discussed in the Fodorian modularity literature. But we would expect such a module to
take ‘language of thought’ as input and to generate patterns of muscular control as output.

Even if Fodorian psychology research did consider motor as well as perceptual mod-
ules, it would never consider the sorts of tightly-coupled perception-motor modules preva-
lent in artificial intelligence (for example Minsky, 1985; Brooks, 1991b; Albus, 1997, I
discuss these further below). This is because, for Fodor, the purpose of vertical modules
is to reduce the complexity of the real world into a common representation used by a hori-
zontal, general-purpose reasoning system.

2.3 Massive Modularity and Evolutionary Psychology

The examples Fodor initially proposed of vertical modules (e.g. language and mathematics)
are far higher-level skills than most Fodorian psychological modularists currently ascribe
to modules. This is because of another characteristic Fodor himself attributed to modules:
that they are atomic. This means that, for Fodor, modules are not composed of further
modules. Since language has been demonstrated to have many independent constituent
parts, it does not meet this Fodorian criteria, despite being one of the modules he orig-
inally discussed the most. Fodor believed this atomicity was necessary to his vision of
lightning-fast, automatic, parallel modules vying with each other to interpret the world for
the general-purpose reasoning system (and, presumably, to translate the general-purpose
reasoning back out into actions in the world.)

Other researchers, coming particularly from evolutionary psychology, have a very dif-
ferent understanding of modularity (for example Cosmides and Tooby, 1994; Evans and
Zarate, 1999; Carruthers, 2003). These researchers focus primarily on understanding why
humans show greater computational abilities in some cognitive domains than others. That
is, problems which are computationally equivalent are easier or harder to solve depending
on the domain being reasoned about. For example, people are better at reasoning about
relationships when they are expressed in terms of social characteristics and obligations
than when they are presented as logical abstractions. People are also more capable of do-
ing arithmetic involving fractions if problems are expressed in terms of the currency local
to their country (this was easier to demonstrate before the British converted to a decimal
system of change for the British Pound).

Here again there is a diversity of opinion about innateness. For some researchers, the
leading indication that a module exists is if non-human primates are shown to share the
specialised capacity. For example, the recent results indicating monkeys expect equivalent
compensation as their peers for performing the same task (Brosnan and de Waal, 2003) is
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taken as evidence for a cheater-detection module. Others consider any specialised capacity,
such as face recognition described above, to be an indication of a module. They are happy
to believe that modules develop or are learned. Such acquired modules could explain both
the increased cognitive capacities of mature animals and their relative inflexibility — es-
sentially a general-purpose learning substrate consolidates into regions of specialised skills
and representations. Bates (1999) provides such an account of language learning, although
she is not normally associated with ‘massive modularity’.Massive modularityis the term
applied for those who believe the adult mind consists perhaps entirely of specialised (ver-
tical) skill modules.

3 Modularity in Artificial Intelligence

I mentioned briefly above that Fodor’s theory of modularity was strongly influenced by
contemporaneous work by, for example, Chomsky (1980). Chomsky’s influence extends
not only into linguistics and philosophy but also into computer science, particularly in
artificial intelligence. Two of Chomsky’s colleagues at MIT working in AI also made
contemporaneous contributions to modularity research which have resulted in the wide-
spread adoption of modularity in certain areas of AI.

Since the mid-1990s, modular approaches have dominated the development of ‘au-
tonomous’ AI systems such as mobile robots or virtual reality (VR) characters (Hexmoor
et al., 1997; Kortenkamp et al., 1998; Sengers, 1999; Thórisson, 1999; Bryson, 2000).
These systems share with humans and other animals the characteristic of needing to be
able to coordinate a large range of intricate expressed behaviours, many of which are only
applicable in some of the variety of contexts the system may find itself in. These con-
texts include an environment which changes independently of the actions of the intelligent
system and in ways the system cannot control.

This section offers a brief overview of four distinct approaches to modularity that have
been developed in AI in the last twenty years. For more extensive reviews, see Bryson
(2000, 2001).

3.1 Modules as Agents

The first well-known modular model of mind at least described by an AI researcher is
the Society of Mind(Minsky, 1985). Although the book was published in 1985, Minsky
had been working on and presenting the idea for some time before that (Doyle, 1983).
Compared to Fodor’s, Minsky’s proposal is more substantially vertical, although it still has
some horizontal elements. An individual’s actions are determined by simpler individual
agencies, which are effectively specialists in particular domains. Minsky’s agenciesare
compositional — they exploit hierarchy for organisation. For example, the agency of play
is composed of agencies of block-play, doll-play and so forth. Arbitration between agencies
is also hierarchical, so the play agency competes with the eat agency for the individual’s
attention. Once play establishes control, the block and doll agencies compete.

Minsky’s agents have both perception and action, but not memory, which is managed
by a shared facility — presumably ‘horizontal’ to Fodor, though one that is still modularly
decomposed. Memory (K) agencies are interconnected both with each other and with the
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other, actor (S) agents. K agents and S agents can each activate the other type as well as
others of their own type. Keeping the whole system working requires another horizontal
faculty: the ‘B brain’ which monitors the main (A) brain for internally obvious problems
such as redundancy or feedback cycles.

Minsky’s model attempts to account for all of human intelligence, but has never been
fully implemented. The existent systems described in the book, for example the learning
system of Winston (1975), were for the most part fairly traditional, monolithic, single-
problem AI systems with centralised control. Masters and Ph.D. students routinely resolve
to fully and properly implement the Society of Mind model, but there is to date no widely-
accepted canonical implementation.

3.2 Modules as Finite State Machines

In contrast, the term “behaviour-based artificial intelligence” (BBAI) was invented to de-
scribe a simplified but fully-implemented system, originally used to control mobile robots.
This was the subsumption architecture (Brooks, 1986, 1991b). The subsumption archi-
tecture is purely vertical. The modules were originally each finite state machines (see
Figure 1), and arbitration between them was conducted exclusively by wires connecting
the modules — originally literally (Connell, 1990), but soon as encoded in software. Each
wire could connect one module to another’s input or output wires, the signal of which the
first module could then either monitor, suppress or overwrite.

alive dead

1,4-8 neighbours

3 neighbours

1,2 4-8
neighbours

2,3
neighbours

Figure 1: A finite state machine is an enumerated set of all the possible states the module
can be in, plus the complete list of possible transitions between states, each labelled with
the condition that would lead the module to make that transition. Example figure is for the
cells in Conway’s Game of Life (Gardner, 1970).

Brooks initially asserted that most apparent horizontal faculties (memory, judgement,
attention, reasoning) were actually abstractions ‘emergent from’ (used to describe) an
agent’s expressed behaviour, but had no place in the agent’s actual control (Brooks, 1991b,
p. 146–147). However, his system was rapidly extended to have learning systems either
inside modules or local to layers of modules (e.g. Matarić, 1990; Brooks, 1991a). My own
opinion is that this is precisely where learning belongs, in specialised representations in the
heart of modules. Unfortunately, what might have been a promising approach has gener-
ally been overlooked by most critics and followers of the subsumption architecture — they
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were most enthralled by the attractive simplicity and radicalism of Brooks’ deemphasis of
representation and centralised control. In fact, many researchers are still convinced that
Brooks’ robots are ‘stateless’ (have no memory), despite the fact that finitestatemachines
are at the core of his architecture, and do serve as the short-term memory necessary to react
to events after they are sensed (for example, collisions with obstacles.)

3.3 Modules as Slaves and Bitmaps

Of the researchers who didnot immediately adopt “no representation” as a mantra, most
attributed the impressive success of Brooks’ approach to the fact that he had created ab-
stracted primitives — the semi-autonomous action/perception modules. Because these
primitive units could sort out many of the details of a problem themselves, they made the
composition of intelligence underanyapproach easier (Malcolm et al., 1989). Thus mod-
ular behaviour systems have been incorporated as a component into a large variety of AI
architectures, many of which still maintain centralised, logic-based planning and learning
systems (for example Gat, 1991; Bonasso et al., 1997). In fact, due to the difficulty of rea-
soning about relatively autonomous components, some systems have reduced behaviours
to ‘fuzzy rules’ (Konolige and Myers, 1998) or vector fields (Arkin, 1998) which can be
more easily composed.

Despite the lack of commonality of such approaches to Brooks’ original ideal, they are
still often called either behaviour-based or hybrid behaviour-based systems. Further, by the
late nineties, the work of these researchers had so far outstripped that of the ‘pure’ BBAI
researchers that two significant publications declared these hybrid approaches to have been
conclusively demonstrated superior to pure BBAI (Hexmoor et al., 1997; Kortenkamp et al.,
1998).

It is interesting to note that the systems with simplified, easily composed modules (e.g.
Konolige and Myers, 1998; Arkin, 1998) are the AI systems closest to Fodor’s ideal, al-
though often the modules are for action, not perception. But they are simple, quick, one-
step mappings from a goal constructed by a centralised / horizontal planning system to a
set of motor commands to achieve it. On the other hand, they have lost many of the engi-
neering advantages that Minsky and Brooks considered critical to modular AI. Intelligence
is no longer decomposed entirely into simple elements. The planning systems are generally
as elaborate as any in AI; they simply reason about more powerful elements.

3.4 Agents as Modules

At the other end of the modular-complexity spectrum are multi-agent systems (MAS)
(Weiß, 1999; Wooldridge and Ciancarini, 2001). Here, the modules composing the sys-
temareagents, but not in Minsky’s sense. Rather, these agents were meant at least initially
to be themselves complete software systems — often the agents themselves use the sort of
hybrid behaviour-based architectures just described (d’Inverno et al., 1997; Guzzoni et al.,
1997).

MAS practitioners generally consider themselves to be modelling not individual minds,
but societies. They nevertheless typically do have ‘horizontal’ modules / agents / compo-
nents for connecting agents with complementary needs and abilities together (directory
agents) or for enforcing behavioural norms of participants.
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In some senses, MAS are actually closer to BBAI than the so-called hybrid behaviour-
based systems. Each agent performs a particular task, and may have its own private knowl-
edge store and representations which are presumably well suited to its function. However,
to date there are a few fundamental differences between a MAS and a single, modular
agent. These differences are due to issues of communication and arbitration between mod-
ules / agents. The MAS community is concerned with interoperability between unspecified
numbers and types of agents, and with distribution across multiple platforms. This creates
an administrative overhead not necessary for a single, modular agent. Where MAS are in
fact limited to a single platform and a relatively fixed architecture, I suspect their engineers
may in fact be taking the wrong approach, and should consider them to be modular single
agents. But this is a topic for another paper (Bryson, 2003).

It is important to realise that, despite their high profile in some resewarch communi-
ties, MAS are not yet a proven technology (Edmonds, 2002). Unlike behaviour-based and
hybrid behaviour-based systems, they do not yet have an extensive commercial application
base.

3.5 Summary: AI and Mental Modules

AI provides us with working models of both Fodorian modular decomposition (in the form
of hybrid architectures) and of massive modularity (in the form of more strictly modular
architectures, such as behaviour-based AI and multi-agent systems.) This provision has
been largely unintentional, though certainly influenced by some concerned researchers’
theories of the nature of natural intelligence. But because they have been built into working
systems they have been subjected to a special kind of selective pressure. These systems
need to work, and in order to work they need to be relatively easy to design and debug.
Thus the quest for success in AI leads to a sort of selective pressure for parsimony yet at
the same time a need to be able to handle the complexity of the real world.

The net result of all this experience seems to be the following:

• Modularity is an important attribute for systems that have to interact with a com-
plex, changing environment. It is used widely for mobile robotics, virtual reality and
user interfaces. It has also often been suggested for managing networked resources
(whether load balancing or exploiting e-services on the Internet), but these applica-
tions are not yet well established.

• Pure modularity is difficult to manage. If modules are both autonomous and sim-
ple, they tend to interfere with each other. Most modular systems now have some
sort of behaviour arbitration. These systems run the gamut from top-down control
by a reasoning system to negotiated solutions where each module acts as a voter.
Some architects Blumberg (including 1996); Gat (including 1998); Sloman and Lo-
gan (including 1999); Bryson and Stein (including 2001a) think that intermediate
architectures which reflect both top-down and bottom-up information will ultimately
prevail. Such architectures require additional specialised structures, akin to Fodor’s
horizontal modules.

• Nevertheless, extremely quick, simple modules typical of Fodor’s description of ver-
tical modules arenot the norm, although some examples of such an approach do ex-
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ist. If hand-coded BBAI continues dominating applications (or is replaced by MAS),
then this will be evidence that, for AI at least, it makes more sense for modules to be
more intricate, mapping sensing clear through to action. To this extent, AI supports
a model more like massive modularity.

For a more complete (if older) analysis along these lines, see Bryson (2000), or the
slightly updated version of that work in Chapter 3 of Bryson (2001). I should say that,
although this section has concentrated mostly on the pragmatic aspects of AI, that this is
not meant to undermine the work by some philosophers and psychologists to work within
the AI discipline at creating and understanding complete models of mind. Besides Minsky,
see in particular Sloman and Logan (1999) as well as many of the chapter authors in this
book.

4 Modularity in Neuroscience

We have evidence of at least three sorts of modular decomposition in mammal brains1:
modularity by organ within the brain, by region within an organ, and by context or time. In
this section I will describe each of these in more detail.

4.1 Modularity by Organ

We know that different parts of the central nervous system have radically different struc-
ture, in terms of different component cells, different amounts of connectivity, and different
organisations of connectivity. Even if we did not have behavioural evidence (as we do)
that the neocortex, cerebellum, hippocampus and so forth perform different functions, we
would suspect as materialists — and given our understanding of computation in networks
— that these organs must perform different computations, because of their different struc-
ture and connectivity. This point becomes even more obvious when we realise there is no
particular reason not to extend the concept of organ modularity to more peripheral organs,
such as the spinal cord, the retina or the cochlea.

The brain is normally considered to have three parts: the fore-, mid- and hindbrain
(Carlson, 2000). Speaking roughly, the hindbrain seems necessary for coordinated action
— animals that are missing much of their hindbrain produce jerky, uncoordinated actions
and may have difficulty with balance. The midbrain contains much of the more basic or
primitive control, including the encoding of complex species-typical behaviours. A cat with
an intact hind- and midbrain can go through the motions of pouncing, stretching, sleeping
and eating, but does not necessarily perform these behaviours in appropriate contexts. The
forebrain is associated with connecting behaviours to contexts, or in more cognitive terms,
with goal-oriented behaviour. In primates at least, this includes inhibiting more reflexive
actions so that more complex strategies or learning can have a chance to achieve activation
(Hauser, 1999).

This sort of task decomposition indicates that the best parallel within the Fodorian
framework to organ-level modularity may well be horizontal decomposition. Organs seem
dedicated to a sort of processing, not a particular context for perception or action.

1Most of this discussion is true of vertebrate brains in general, but I am most familiar with primate brains
so I restrict my claims.
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4.2 Modularity by Region

Even within an organ which is fairly structurally homogeneous (at least in considerations
likely to affect the nature of its computations) there are differences in function. In some
cases these seem to be determined primarily by connectivity: for example, the primary au-
ditory and visual cortices are areas of the neocortex that most directly receive the sensory
input of the two systems. It has been suggested that other regions are modular by function,
such as the ‘fusiform face area’ or the ‘parahippocampal place area’ (Downing et al., 2001).
However, given the amazing diversity of cortical computation even in single regions (for
example Kauffman et al., 2002, who show that the ‘visual cortex’ is necessary for learning
Braille, see below), it may be that such apparent specialisation also reflects connectivity.
For example, the ‘fusiform face area’ may reflect links to subcortical brain organs spe-
cialised for purposes such as social interaction (perhaps the amygdalic system), and the
‘parahippocampal place area’ may reflect known links to navigation in the hippocampal
system.

Some cortical regions are steps along a stream of processing, for example regions dedi-
cated to identifying low-level features such as line orientations (Hubel, 1988), or to higher-
level concepts such as categories of objects or tasks (Freedman et al., 2001) or personal
identity (Perrett et al., 1992). If we are trying to map these regions into the sorts of mod-
ularity expressed by BBAI or massive modularity, we would have to consider a column
of such representations as a single module, or need to hypothesise ensembles of modules
acting in a coordinated manner.

4.3 Modularity by Context

Even within a given region, the semantics of a particular cell’s firing seems to be dependent
on the context in which it fires. This has been demonstrated in the hippocampus (Kobayashi
et al., 1997), in sensory cortices mapping receptive fields (Sen et al., 2001), and in the pre-
frontal cortex (Asaad et al., 2000). I believe that the extent of the consequences of this
temporalmodularity have not been fully recognised. It may be that some computations are
mutually exclusive because their representations cannot be active at the same time. Further,
individual differences in developing these representations might account for individual dif-
ferences in insight and generalisation based on the relative accessibility of two represen-
tations. See for example Skaggs and McNaughton (1998) for their account of individual
differences in rats’ ability to discriminate two similar rooms.

The concept of temporal modularity is in marked contrast to the descriptions of Fodor or
the rationale for BBAI and of MAS, which all claim that the reason their modular approach
is useful is because all modules are constantly active. However, some more established
(and less conventionally modular) systems of cognitive modelling such as Soar (Newell,
1990) and ACT-R (Anderson, 1993), have found it necessary to create ‘problem spaces’
so that the system chooses actions only from an appropriate subset of available actions.
The same is true of blackboard systems (Hayes-Roth, 1985). Such strategies are also to be
found buried in the details of some well-known BBAI architectures (for example Blumberg,
1996).

Modularity by context must be vertical, since it is necessarily context / task specific. It
also involves a significant amount of processing structure, encompassing from perception
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to action. For example, emotional states might be seen as contextual modules — the state
of fear reduces the problem of behaviour arbitration to a choice between fight or flight, yet
all of an animal’s senses and all of its muscles are available to effect these actions.

Although this sort of modularity violates Fodor’s notions both by the lack of parallelism
and by the end-to-end nature of its control, these are quite similar to the violations already
mentioned in describing behaviour based AI and MAS. As such, the concept of tempo-
ral modularity might be very interesting to evolutionary psychologists and other massive
modularists.

4.4 Summary: Modularity in Brains

As usual when looking at a real, evolved systems, the picture of modularity gets much
more messy when looking at the brain. There is nevertheless strong evidence for modular-
ity of some sort. Recall the definition of modularity I championed in the first section —
there can be no question that various organs of the brain and various regions of organs have
specialised, externally inaccessible representations and processes. However, task-based ac-
tivation incorporates many disparate parts of the brain. Rather than dividing into horizontal
or vertical modules, it seems that much of mental processing can be pictured as a criss-cross
of activations between horizontalandvertical modules. Even V1, long ‘known’ to be the
area of human neocortex associated with very basic interpretations of retinal (visual) data,
has now been implicated for learning Braille (a tactile but still spatial skill) in both blind
and sighted patients (Kauffman et al., 2002). Interestingly, this also requires contextual
modularity — sighted patients find learning Braille much easier if they are blindfolded.

Why should the brain be modular? I suspect that evolution has found it useful for
the same reason as software engineers have (Parnas et al., 1985; Coad et al., 1997): to
combat the explosive combinatorial complexity of searching for the right solution to hard
problems. During both evolution (for the species) and development (for the individual),
preferred synaptic organisations are learned for recognising regularities that are useful for
controlling actions and achieving goals. These regularities may arise from the external
environment, as communicated by the senses, or from neighbouring neural systems —
from the neuron’s perspective there is no difference. This view of the development of
modularity in the individual is similar to that of Bates (1999) and to some extent to that
of Karmiloff-Smith (1992), whose work emphasises the developmental aspects of skill
specialisation. On the species level, it echos the Livesey (1986) account of the evolution of
brain organisation.

5 Discussion

The bulk of this chapter has been about the current state of the art in modularity. In this
discussion I turn at least a bit more speculative. To begin with I will describe my own work
(alluded to earlier) in behaviour coordination. Then I will dive into a brief discussion of the
extent to which I have failed to discuss many of the cognitive entities generally associated
with mind.
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5.1 Module Coordination and Structured Action Selection

Although my main personal motivation is understanding how brains and minds work, the
bulk of my research to date has been into the management and design of modular AI sys-
tems. This is because I think that modular AI systems are a good platform for modelling
and thus understanding natural intelligence (Bryson and Stein, 2001b; Bryson, 2001).

Here is a brief summary of my current conclusions about the engineering of modular
AI systems:

1. Semantic and task memory should be stored in specialised representations within
modules. That is, specialised memory should be stored with the processes that exploit
it. This is roughly consistent with the massive-modularist approach to psychology,
and a slight elaboration on the position of BBAI, as described earlier.

2. Ordering the behaviour of such modules is best done using a specialised, horizontal
module for sequencing behaviour. This sequencing module is not a full planning
system, but rather a system for running established reactive plans (see Bryson and
Stein, 2001a, for further details). As such, it is similar to the interface between the
basal forebrain in mammals and parts of the midbrain implicated with storing action
sequences (see further Mink, 1996; Redgrave et al., 1999; Carlson, 2000; Lonstein
and Stern, 1997).

These are the systems that I have the most experience of building myself, but I believe
there are other ‘horizontal’ modules that will be of general use that my systems are just
not yet sophisticated enough to require. I suspect that it is useful to have coordination and
smoothing of motor command conducted by a hindbrain-analogue module. There is al-
ready some evidence for this in the literature, for example the motor command of the Ymir
architecture (Th́orisson, 1999) or the work of various groups in modelling the cerebellum.
To date, some of the smoothest control of complex robotics have come from monolithic
‘dynamical systems’ based mathematical control (for example Atkeson et al., 1997) but
I suspect breaking this approach into modules will make it easier to scale it up to more
complex tasks.

I also suspect that real agents need a hippocampus analog. The hippocampus seems to
be an organ with highly-indexical, context-dependent relations which rapidly learns asso-
ciations. This organ has been implicated as necessary for episodic memory, but also for
navigation. My own current research is leading me to believe that these may follow from
each other — that the organ may have originally been specialised to learning navigation,
but became adapted for task learning in general, and episodic memory may have become
one of the features of this capability. Unfortunately, it may not be a good idea for artificial
agents to be built to include a primate-like capacity for task learning, as such a system
would necessarily both slow down their processing and reduce their reliability (Bryson and
Hauser, 2002). But itis clear that any human-like mind would need this kind of capacity.

5.2 Deliberation

Episodic memory is occasionally called ‘declarative memory’ because in humans it is the
kind of memory you can talk about (have conscious access to), but this is a strange term in
a sense since there is evidence of other animals having memories of isolated experiences,
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but not of them declaring much of anything. Episodic memory is useful locally for keeping
place within a task, for example knowing which parts of a familiar maze you have explored
alreadytoday(assuming the maze is rebaited every day.) It might be useful long term as
a source of cases for case-based reasoning, or as raw data to be compiled statistically into
probability frameworks so that expectations can be used for planning or to disambiguate
noisy sensory data.

On the other hand, the role of deliberation (or conscious attention to a task) still seems
deeply mysterious to me. As already mentioned the accessibility difference that determines
explicit from implicit knowledgeis a key indicator of modularity. But I see no systematic
difference (other than qualia) between conscious and unconscious thought other than a
marked increase in cortical activity (Dehaene et al., 2001, 1998).

Unlike some researchers in AI, I am not convinced that consciousness is isomorphic
with having self-knowledge — although clearly having a good representation of oneself is
useful to planning. Nor is it with having language. Language almost certainly fundamen-
tally alters the nature of consciousness, both by allowing shorthand concept reference in
what is clearly a limited-capacity system, and by increasing coherence as a consequence
of language’s sequential temporal nature (Spelke, 2003; Bryson, 2002). But I could easily
construct an AI straw-being that might have either or both of these attributes but not seem
particularly more alive or aware than any other AI system.

The consciousness-related data that are currently intriguing me most are a number of
recent results from a variety of laboratories (Siemann and Delius, 1993; Bechara et al.,
1995; Greene et al., 2001) showing that:

1. humans can learn complex tasks without explicitly understanding them, and further

2. humans whodogain an explicit understanding showno performance differencefrom
those who do not.

I suspect that two things are true. First, that I believe Dennett (2001) is absolutely right
in suggesting that, as we come to understand consciousness, we will realise we have been
covering several disparate functions with that one term, none of which are magic. Second,
I believe that two of these functions will turn out to be focusing search for action selection
and ordering behaviour in time.

6 Conclusions

This chapter has been an introduction to the idea of modularity as approached from three
different disciplines: psychology, AI and neuroscience. It has attempted to create a com-
mon framework for discourse between these fields, leveraging (but not necessarily support-
ing) the decomposition originated by Fodor (1983) between the notion of horizontal mod-
ules, which affect all of an agent’s intelligence, and vertical modules, which are specialised
skill areas showing disassociated abilities or deficits. Many topics have been touched on
only lightly here, hopefully the bibliography can fill in more details for anyone interested.

Modularity is a key aspect of mind — it explains or at least describes our inability
to access all of our intelligence, which in turn justifies the hacks we use to control our
own behaviour — for example, not having a whole box of cookies in the house, or not
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having even one drink if we know it would lead to more drinks than it’s safe to have before
driving. Modularity also casts an interesting light on the fundamental mental problem of
planning or action selection. If our minds are modular, then choosing the next action is not
necessarily something done by visiting all possible alternatives, but may instead be a matter
of arbitrating between a number of alternative courses of action proposed by modules.
These modules are then themselves engaged in a similar problem, but over a more limited
set of goals and possible courses of action.

In conclusion, I expect modular models of intelligence will continue to dominate both
AI and the natural intelligences, though not necessarily such clean and simplistic models as
we began with. One of the current fundamental problems of AI is to enable the automatic
learning of modular representations. This is difficult because it requires a general-purpose
representational substrate which will almost certainly be slow and inefficient. It should
also be noticed that the brain isnota general-purpose representational substrate, but incor-
porates an enormous amount of genetic bias which enables learning in animals. Similarly,
as systems neuroscience comes to dominate the biological attempts to understand intelli-
gence, there will be increased demands for models which somehow hide or abstract from
the complexity of real, messy modules yet allow for the interconnectivity that makes the
whole thing work.
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