
Modularity and Design in Reactive Intelligence

Joanna J. Bryson and Lynn Andrea Stein
MIT Artificial Intelligence Laboratory, NE43-833

Cambridge, MA 02139, USA
joanna@ai.mit.edu , lynn.stein@olin.edu

Abstract
Software design is the hardest part of creating intel-
ligent agents. Therefore agent architectures should
be optimized as design tools. This paper presents
an architectural synthesis between the three-layer
architectures which dominate autonomous robotics
and virtual reality, and a more agent-oriented ap-
proach to viewing behavior modules. We provide
an approach, Behavior Oriented Design (BOD), for
rapid, maintainable development. We demonstrate
our approach by modeling primate learning.

1 Introduction
The last decade of research has shown impressive conver-
gence on the gross characteristics of software architectures
for complete agents such as autonomous robots or virtual
reality (VR) characters [Kortenkampet al., 1998; Sengers,
1999; Bryson, 2000a]. The field is now dominated by ‘hy-
brid’, three-layer architectures [Gat, 1998]. The hybrids com-
bine: (1) behavior-basedAI , the decomposition of intelli-
gence into simple, robust, reliable modules, (2)reactive plan-
ning, the ordering of expressed actions via carefully specified
program structures, and (optionally) (3)deliberative plan-
ning, which may inform or create new plans or behaviors.

In this paper, we take the view that software design and
methodology are critical to the advances that have been made
in complete agents. We contribute architectural features that
further facilitate the human engineering of these agents, in-
cluding the effort to incorporate reliable learning and plan-
ning into the agent. We do this by enhancing the pro-
grammability of reactive plans and reintroducing modularity
to the organization of the ‘plan primitives’. In our system,
plan primitives are not themselves modules, butinterfaces
to semi-autonomous behavior modules encapsulating special-
ized state for learning and control. This brings hybrid archi-
tectures closer to multi-agent systems (MAS) and behaviors
closer to active objects [van Eijket al., 2001]. We also present
a methodology for constructing complete agents in the archi-
tecture we describe, and some example agents.

2 Intelligence by Design
One of the most important aspects of the reactive revolution
of the late 1980’s is often overlooked. The break-throughs in

robotics associated with reactive and behavior-based systems
are usually attributed to the loss of deliberate planning and/or
explicit representations. The real contribution of the reactive
paradigm was explained nearly a decade earlier: you can’t
learn something you don’t practically already know [Winston,
1975], nor, by extension, plan something you can’t nearly
already do. The reason is simple combinatorics [Chapman,
1987; Wolpert, 1996]. As evolutionary linguists and case-
based reasoning researchers often tell us, what makes humans
so intelligent are our exceptional ability to store and transmit
solutions we manage to find [e.g. Hammond, 1990; Knightet
al., 2000].

Reactive and behavior-basedAI thus facilitate the advance
of AI in two ways. First, by severely deprecating both plan-
ning and state (and consequently learning), the reactive ap-
proach increased by default the emphasis on one of the largest
problems ofAI and software in general: design. Second, the
behavior-based approach made fashionable a proven software
design methodology: modularity.

The primary contributions of this paper are methodolog-
ical. We provide more productive ways of creating hybrid
systems. This is not to say that developing good software is
ever easy, or that learning or productive planning should not
be used to the fullest extent practical. In fact, we emphasize
the role of learning in our methodology. What weare saying
is that we favor approaches to hybrid systems that facilitate
human design, because humans designers do most of the hard
work in artificial intelligence.

3 Fundamentals of Reactive Plans
The terms ‘reactive intelligence’, ‘reactive planning’ and ‘re-
active plan’ appear to be closely related, but actually signify
the development of several different ideas.Reactive intelli-
gencecontrols a reactive agent — one that can respond very
quickly to changes in its situation. Reactive intelligence has
sometimes been equated with statelessness, but that associa-
tion is exaggerated. Reactive intelligenceis associated with
minimal representations and the lack of deliberation.

Reactive planningis something of an oxymoron. It de-
scribes the way reactive systems handle the problem tradi-
tionally addressed by conventional planning: action selection.
Action selection is the ongoing problem (for an autonomous
agent) of deciding what to do next. Conventional deliber-
ate planning assumes the segmentation of intelligent behavior



into the achievement of discrete goals. A deliberate planner
constructs a sequence of steps guaranteed to move an agent
from its present state toward a goal state. Reactive planning,
in contrast, chooses only the immediate next action, and bases
this choice on the current context. In most architectures uti-
lizing this technique, reactive planning is facilitated by the
presence ofreactive plans.Reactive plans are stored struc-
tures which, given the current context (both internal and en-
vironmental), specify the next act.

We will quickly address the concerns some researchers
have with reactive planning. Hierarchical plans and central-
ized behavior arbitrationare biologically plausible [Byrne
and Russon, 1998; Prescottet al., to appear]. They are suf-
ficiently reactive to control robots in complex dynamic do-
mains [e.g. Kortenkampet al., 1998] and have been shown
experimentally to be as reactive as non-hierarchical, de-
centralized systems [Bryson, 2000b]. Although they do pro-
vide a single failure point, this can be addressed either by
standard MAS techniques [e.g. Bansalet al., 1998], or ac-
cepted as a critical system, like a power supply or a brain. Fi-
nally, as demonstrated by coordinated MAS and in Section 4
below, they do not preclude semi-autonomous behavior mod-
ules operating in parallel.

3.1 Basic Elements of Reactive Plans
Reactive plans support action selection. At any given time
step, most agents have a number of actions which could po-
tentially be expressed, at least some of which cannot be ex-
pressed simultaneously, for example sitting and walking. In
architectures without centralized action selection, [e.g. Arkin,
1990; Maes, 1990], the designer must fully characterizefor
each actionhow to determine when it might be expressed.
For engineers, it is generally easier to describe the desired be-
havior in terms of sequences of events. This strategy is com-
plicated by the non-determinism of environments. Several
types of events may interrupt the completion of an intended
action sequence. These events fall into two categories: (1)
some combination of alarms, requests or opportunities may
make pursuing a different plan more relevant, and (2) some
combination of opportunities or difficulties may require the
current ‘sequence’ to be reordered. We have determined 3
element types for reactive plans which, when combined, sup-
port both of these situations.

Simple Sequences
The first element type is a simple sequence of primitive ac-
tions: ι1, ι2, . . . ιn. In our own architecture, we call this ele-
ment anaction pattern. Including the sequence as an element
type is useful for two reasons. First, it allows an agent de-
signer to keep the system as simple as possible, which both
makes it more likely to succeed, and communicates more
clearly to a subsequent designer the expected behavior of that
plan segment. Second, it allows for speed optimization of ele-
ments that are reliably run in order, which can be particularly
useful in sequences of preconditions or in fine motor control.

Executing a sequential plan involves priming or activating
the sequence, then releasing for execution the first primitive
act ι1. The completion of anyιi releases the followingιi+1
until no active elements remain. Notice that this isnotequiv-

alent to the process ofchaining, where each element is essen-
tially an independent production, with a precondition set to
the firing of the prior element. A sequence is an additional
piece of control state; its elements may also occur in different
orders in other sequences.

Basic Reactive Plans
The next element type supports the case when changes in cir-
cumstance can affect the order in which a plan is executed.
We developed this idiom independently, and called it acom-
petence. However, it occurs in a number of other architectures
[e.g. Fikeset al., 1972; Nilsson, 1994; Correia and Steiger-
Garç̃ao, 1995] and is so characteristic of reactive planning,
that we refer to the generic idiom as aBasic Reactive Planor
BRP.

A BRP stepis a tuple〈π,ρ,α〉, whereπ is a priority,ρ is a
releaser, andα is an action. ABRP is a small set (typically
3–7) of plan steps{〈πi ,ρi ,αi〉∗} associated with achieving a
particular goal condition. The releaserρi is a conjunction of
boolean perceptual primitives which determine whether the
step can execute. Each priorityπi is drawn from a total order.
Each actionαi may be either another BRP or a sequence as
described above.

The order in which plan steps are expressed is determined
by two means: the releaser and the priority. If more than one
step is operable, then the priority determines which step’sα
is executed. If no step can fire, then the BRP terminates. The
top priority step of a BRP is often, though not necessarily a
goal condition. In that case, its releaser,ρ1, recognizes that
the BRP has succeeded, and its action,α1 terminates the BRP.

The details of the operation of a BRP are best explained
through an example. BRPs have been used to control such
complex systems as mobile robots and flight simulators [Cor-
reia and Steiger-Garção, 1995; Benson, 1996; Bryson and
McGonigle, 1998]. However, for clarity we draw this exam-
ple from blocks world. Assume that the world consists of
stacks of colored blocks, and that an agent wants to hold a
blue block.
x

〈 Priority Releaser⇒ Action
4 (holding) (held ’blue)⇒ goal
3 (holding)⇒ drop-held, lose-fix
2 (fixed-on ’blue)⇒ grasp-top-of-stack
1 (blue-in-scene)⇒ fixate-blue

〉

(1)
In this case priority is strictly ordered and represented by

position, with the highest priority step at the top. We refer to
steps by priority.

This single reactive plan can generate a large number of ex-
pressed sequential plans. In the initial context of a red block
stacked on a blue block, we might expect the plan 1–2–3–1–
2–4 to execute. But if the agent is already fixated on blue
and fails to grasp the red block successfully on first attempt,
the expressed plan would look like 2–1–2–3–1–2–4. If the
unsuccessful grasp knocked the red block off the blue, the
expressed plan might be 2–1–2–4. This BRP is identically
robust and opportunistic to changes caused by another agent.

If an action fails repeatedly, then the above construction
might lead to an indefinite behavior cycle. This can be pre-
vented through several means. Our competences allow a retry



limit to be set at the step level. Thus acompetence stepis re-
ally a quadruple〈π,ρ,α,η〉, whereη is an optional maximum
number of retries. Other systems often have generic rules for
absence of progress or change.

The most significant feature of a BRP is that it is relatively
easy to engineer. To build a BRP, the developer imagines a
worst-case scenario for solving a particular goal. The priori-
ties are then set in the inverse order that the steps might have
to be executed. Next, preconditions are set, starting from the
highest priority step, to determine whether it can fire. For
each step, the preconditions are simplified by the assurance
that the agent is already in the context of the current BRP,
and that no higher priority step can fire.

Plan Manipulation
Finally, a reactive system must be able arbitratebetween
plans. We do this with a third element type called adrive col-
lection, also based on the BRP. A ‘step’, or in this case,drive
element, now has five elements〈π,ρ,α,A,ν〉. For a drive, the
priority and releaserπ andρ are as in a BRP, but the actions
are different.A is theroot of a BRP hierarchy, whileα is the
currently activeelement of the drive. If a drive element is se-
lected for action, but itsα is null because a BRP or sequence
has just terminated, thenα is set to theA for that drive. The
drive element begins action selection again from the root of
its hierarchy.

This system improves reaction time by eliminating the
stack that might be produced when traversing a plan hier-
archy. On every program cycle, the agent checks only the
drive-collection priorities, and at most one other set of prior-
ities, if α is currently a BRP rather than a sequence. It also
allows the agent to periodically re-traverse its decision tree
and notice any context change. This approach also allows the
hierarchy of BRPs to contain cycles or oscillations, which are
frequently useful patterns of behavior. Since there is no stack,
there is noobligationfor a competence chain to terminate.

The fifth member of a drive element,ν, is an optional max-
imum frequencyat which this element is visited. This is a
convenience for clarity, like the retry limitη on the compe-
tence steps — either could also be controlled through precon-
ditions. The frequency in a real-time system sets a temporal
limit on how frequently a drive element may be executed. For
example, on a mobile robot [Bryson and McGonigle, 1998]
we had the highest priority drive-element check robot’s bat-
tery level, but this was only executed every two minutes. The
next highest priority was checking the robot’s sensors, which
happened at 7Hz. Other, lower-priority processes then used
the remaining interspersed cycles.

One further characteristic discriminates drive collections
from competences / BRPs. Only one element of a compe-
tence is expected to be operating at any one time, but for a
drive collection, multiple drives may be effectively active si-
multaneously. If a high-priority drive takes the attention of
the action-selection mechanism, the program state of any ac-
tive lower drive is preserved. In the case of our robot, if the
navigation drive is in the process of selecting a destination
when the battery needs to be checked, attention returns to
the selection process exactly where it left off once the bat-
tery drive is finished. Further, action primitives in our system

are not stand-alone, consumatory acts, but are interfaces to
semi-autonomous behaviors which may be operating in par-
allel (see Section 4 below.) Thus the action ‘move’ in the
robot’s script merely confirms or transmits current target ve-
locities to already active controllers. A moving robot does
not stop rolling while its executive attends to its batteries or
its sensors.

3.2 Discussion — Other Reactive Architectures
We refer to reactive plan structures as described above as
Parallel-rooted, Ordered Slip-stack Hierarchical (POSH) ac-
tion selection. Although we freely distribute implementations
of this architecture in both C++ and Lisp / CLOS, we have
also implemented versions of POSH action selection in other
architectures [Bryson and Stein, 2001].

The functionality of the BRP, which in our experience is a
critical element of reactive planning, is surprisingly missing
from several popular architectures. In effect, architectures us-
ing middle layers like PRS [Georgeff and Lansky, 1987] seem
to expect that most of behavior can be sequenced in advance,
and that being reactive is only necessary for dealing with ex-
ternal interruptions by switching plans. On the other hand,
architectures such as subsumption [Brooks, 1991] or ANA
[Maes, 1990] expect that there is solittle regularity in the ar-
bitration of behavior that all actions must be considered for
execution at all times. We have found the most expedient
solution to the design problem of reactive planning is to cate-
gorize selection into things that need to be checked regularly,
things that only need to be checked in a particular context,
and things that one can get by not checking at all. These cat-
egories correspond to our three types of plan elements: drive
collections, competences, and action patterns.

4 Semi-Autonomous Behavior Modules and
the Role of Perceptual State

Besides emphasizing the use of modularity, the behavior-
based movement also made an important engineering con-
tribution by emphasizing specialized learning [e.g Brooks,
1991, pp. 158–9]. Specializing learning increases its proba-
bility of success, thus increasing its utility in a reliable agent.
Similarly, modularity simplifies program design, at least lo-
cally, thus increasing the probability of correctness. Govern-
ing the interaction of multiple independent behavioral mod-
ules can be a difficulty, but we have already addressed this
issue in the previous section.

Consider this description of standard hybrid systems:

The three-layer architecture arises from the empir-
ical observation that effective algorithms for con-
trolling mobile robots tend to fall into three distinct
categories: (1) reactive control algorithms which
map sensors directly onto actuators with little or
no internal state; (2) algorithms for governing rou-
tine sequences of activity which rely extensively on
internal state but perform no search; and (3) time-
consuming search-based algorithms such as plan-
ners. [Gat, 1998, p. 209]

Gat’s view of three-layer architectures is particularly close
to our own view of agent intelligence, because it puts con-



trol firmly in the middle, reactive-plan layer. The deliberative
‘layer’ operates when prompted by requests. However, we
differ on the notion that there are many actions which can re-
ally map sensors to actuators with little internal state or con-
sideration for the past.

Nearly all perception is ambiguous, and requires expecta-
tions rooted in experience to discriminate. For a mobile robot,
this ‘experience’ may be from the last half a second, for dis-
criminating sonar ‘ghosts’, half a minute, to move around a
bumped object invisible to sonar, or days, as in remember-
ing a local map. Primitive actions governed by the reac-
tive plans may depend on any of this information. We do
not believe this information should be passed between ‘lay-
ers’ either by micro-management or as parameters. Rather,
in our model, the primitives of a reactive plan interface di-
rectly to semi-autonomous behavior modules. Each module
maintains its own state and may possibly perform its own
‘time-consuming’ processes (such as memory consolidation
or search) in parallel to the main activity of the complete
agent. Thus our view of agent control is very similar to Gat’s,
except that (1) we increase the number, specificity and poten-
tial simplicity of the modules composing his top layer, and
(2) we replace the notion of a bottom layer with the that of
an interface between the action selection module of the robot
and its (other) behavior modules.

5 Developing an Agent
The process of developing an agent with these two attributes,
POSH action selection and a behavior library, we call Behav-
ior Oriented Design. The analogy between BOD and OOD
is not limited to the metaphor of the behavior and the ob-
ject, nor to the use of methods on the behavior objects as
primitives to the reactive plans. The most critical aspect of
BOD is its emphasis on the design process itself. The old
problem of behavior decomposition (and new, analogous one
for MAS) is solved by using state requirements, as in mod-
ern object decomposition. Also as in OOD, BOD emphasizes
cyclic design with rapid prototyping. The process of develop-
ing an agent alternates between developing libraries of behav-
iors, and developing reactive plans to control the expression
of those behaviors.

5.1 The Initial Decomposition
The steps of initial decomposition are as follows. (1) Specify
at a high level what the agent is intended to do. (2) Describe
likely activities in terms of sequences of actions (prototype
reactive plans.) (3) Identify sensory and action primitives
from these sequences. (4) Identify the state necessary for
these primitives, clustering them by shared state (prototype
behaviors). (5) Identify and prioritize goals or drives that the
agent may need to attend to (prototype POSH drive roots). (6)
Select a first behavior to implement.

5.2 The Development Process
The remainder of the development process is not linear. It
consists of the following elements, applied repeatedly as ap-
propriate: coding behaviors, coding reactive plans, testing
and debugging code, and revising the specifications made in
the initial phase.

Usually only one behavior and one reactive plan will be
actively developed at a time. We strongly suggest maintain-
ing the lists developed in the initial phase as documentation.
Where possible, such documentation should be part of active
code. For example, the primitive list should be a file of code
specifying the interface calls. Similarly, old reactive plans
should be preserved with their development history and used
as a test suite as modifications are made to the behavior li-
braries.

5.3 Revising the Specifications

The most interesting part of the BOD methodology is the set
of rules for revising the specifications. The main design prin-
ciple of BOD iswhen in doubt, favor simplicity.A primitive
is preferred to an action sequence, a sequence to a compe-
tence. Heuristics then indicate when the simple element must
be decomposed into a more complex one. One guiding prin-
ciple is to reduce redundancy. If a particular plan or behavior
can be reused, it should be. If only part of a plan or a primitive
action can be used, then a change in decomposition is called
for. In the case of an action primitive, the primitive should
be decomposed into two or more primitives, and the origi-
nal action replaced by a sequence. If a sequence sometimes
needs to contain a cycle, or often does not need some of its
elements to fire, then it should really be a competence. A new
plan element should have the same name and functionality as
the primitive or sequence it replaces. This allows established
plans to continue operating without change.

Reactive plan elements should not require long or complex
triggers. Perception should be handled at the behavior level;
it should be a skill. A large number of triggers should be
converted into a single perceptual primitive. Another prob-
lem that crops up in competence design can be the presence
of too many elements. More than seven elements in a com-
petence, or difficulty in appropriately prioritizing or setting
triggers, indicates that a competence needs to be decomposed
into two. If several of the elements can be seen as working
to complete a subgoal, they may be moved to a child com-
petence. If two or more of the elements always follow each
other in sequence, they should be converted into an action pat-
tern. If the competence is actually trying to achieve its goal
by two different means, then it should be broken into two
sibling competences which are both inserted into the original
competence’s parent.

6 Example: Modeling Transitivity in a
Non-Human Primate

Although we have used our methodology on a mobile robot
[Bryson and McGonigle, 1998] and on virtual reality char-
acters [Bryson and Th́orisson, 2001], we find artificial life
(ALife) more conducive for quantitative comparisons [e.g.
Bryson, 2000b] and for communicating with researchers. We
thus illustrate BOD by building an ALife model of primate
intelligence. Unfortunately, this shows only degenerate ex-
amples of drive collections, but space is limited.

We begin by modeling the ability of a monkey to perform
transitive inference [McGonigle and Chalmers, 1977]. This



task is interesting, because it was initially believed to re-
quire reasoning, which was in turn considered to require lan-
guage. Squirrel monkeys (saimiri scuireus) were trained on
four pairs of colored pucks; AB, BC, CD, and DE; to favor
the earlier element of the pair. Transitivity is the ability to
generalize this pairing spontaneously (without further train-
ing) when first presented with the novel pairs such as AC,
AD, BD and so on. The behavior of the monkeys on this task
has already been modeled by Harris and McGonigle [1994],
who modeled the transitive capability as a prioritized stack
of production rules of the type ‘avoid E’ or ‘select A’. Based
on the nature of the errors the monkeys made, and their sep-
arate performance on three-item sets, different stacks were
built representing the rules learned by each monkey.

We begin by replicating a simplified version of Harris’s
system modeling a skilled monkey. To simplify the simu-
lation task, we model both the monkey and its testing envi-
ronment as a single intelligent agent with two behaviors. The
‘monkey’ has two pieces of variable state — its hand and its
visual attention, the test box has only a test-board for holding
two or three items.

life ⇒
〈〈

(no-test)⇒ new-test
(grasping)⇒ finish-test

⇒ elvis-choice

〉〉

elvis-choice⇒
〈 (see-red)⇒ noisy-grasp

(see-white)⇒ grasp-seen
(see-blue)⇒ grasp-seen

(see-green)⇒ grasp-seen

〉
(2)

noisy-grasp ⇒ 〈screech→ grasp-seen〉
This plan gives an example of each element type described

in Section 3, though the action pattern is gratuitous. Priority
is again listed from the top. The drive collection, life, has no
goal, so it never ends. New-test is a call to the test behavior
which randomly resets the test board; finish-test clears it. The
seeing primitives all map to a single method on the monkey
behavior, which performs a ‘visual’ scan of the test board and
leaves visual attention on an appropriately colored object, if
it exists. Grasp-seen, also a method on the monkey behavior,
is thus able to use deictic reference without variable passing.

We now enhance the model by forcing the monkey to learn
the ordering of the pucks. This also requires augmenting the
test-behavior to reward the monkey appropriately.

life ⇒
〈〈 (no-test)⇒ new-test

(rewarded)⇒ end-of-test
(grasping)⇒ elvis-reward

⇒ educated-grasp

〉〉

elvis-reward ⇒
〈 (find-red)⇒ reward-found

(find-white)⇒ reward-found
(find-blue)⇒ reward-found

(find-green)⇒ reward-found

〉
(3)

educated-grasp⇒ 〈adaptive-choice→ grasp-seen〉
end-of-test ⇒ 〈consider-reward→ finish-test〉

We add a new behavior, sequence learning, to the sys-
tem, which though ascribable to the monkey, is separate

from the existing monkey-body behavior. The sequence-
learner contains a list of known objects with weights, a ‘sig-
nificant difference’ and a ‘weight shift’. If the monkey is
correct in its discrimination, but its certainty was less than
significant-difference, then consider-reward adds weight-shift
to the weight of the winner, and renormalizes the weights in
the list. If it is wrong, consider-reward shifts the weight to the
loser.

The test machine is now in charge of both setting and re-
warding the behavior. The new primitive ‘find’ searches the
world for a colored puck, then if it is found, a reward (or lack
of reward) is given based on whether the machine is attend-
ing to the monkey’s hand or the test-board. The end-of-test
action-pattern calls actions in sequence from two different be-
haviors — the monkey’s sequence learner learns, then the test
box records and resets. Educated-grasp is now a method on
sequence-learner; it does visual examination, evaluation, and
the grasp.

The above is just the first two steps of the development of
a learning version of Harris’ model. This example demon-
strates how functionality can be easily added, and shifted be-
tween plans and behaviors. The second model above con-
verges to a correct solution within 150 trials, with significant-
difference set to .08, and weight-shift to .06. We have addi-
tional forthcoming results showing that adding another layer
of learning (the select-avoid rules) results in further charac-
teristics typical of primate learning.

The sequence-learning task is interesting because it illus-
trates not only the interaction between reactive plans and
modular behaviors, but also begins to model how a behav-
ior might be designed to learn a reactive plan. However, the
BOD methodology is not constrained to modeling only a sin-
gle agent. We are currently modeling conflict resolution in
primate colony social interactions in collaboration with Jes-
sica Flack of Emory University. In this work, we use different
processes to model different agents. Each agent has its own
instance of the behavior objects and its local copy of a POSH
plan.

7 Conclusions
Software engineering is the key problem of developing com-
plete agents. The advances made due to the reactive and
behavior-based movements come primarily because they
trade off slow or unreliable on-line processes of search and
learning for the one-time cost of development, and by em-
phasizing the use of modularity. These are not reasons to
fully abandon learning and search, but they are reasons to use
it only in constrained ways likely to be successful.

It is easiest to design action selection if one exploits the se-
quencing and prioritization skills of programmers. We have
shown how sequences can be adapted into powerful reactive
plans. One of the components we consider critical to success-
ful reactive planning, the BRP, is present to our knowledge
in only one architecture with a reasonably large user base,
TR [Nilsson, 1994]. Most other architectures either only al-
low for reactivitybetweenplans, or don’t allow for structured
plan elements at all. We have also created a mapping between
the three layer architectures that dominate complete agent re-



search today, and the original behavior-based architectures,
which are more like today’s MAS architectures. We suggest
that the primitive elements typical of the lowest layer of a
three-layer architecture should interface to semi-autonomous
behavior modules, which are comparable to high-level pro-
cesses in some three-layer architectures. This allows the ba-
sic actions coordinated by the reactive plans direct access to
appropriately processed state necessary for informing percep-
tion and determining the parameters of actuation.

References
Ronald Arkin. Integrating behavioral, perceptual and world

knowledge in reactive navigation.Robotics and Automa-
tion, 6(1):105–122, 1990.

Arvind K. Bansal, Kotagiri Ramohanarao, and Anand Rao.
Distributed storage of replicated beliefs to facilitate recov-
ery of distributed intelligent agents. In Munindar P. Singh,
Anand S. Rao, and Michael J. Wooldridge, editors,Intel-
ligent Agents IV (ATAL97), pages 77–92, Providence, RI,
1998. Springer.

Scott Benson. Learning Action Models for Reactive Au-
tonomous Agents. PhD thesis, Stanford University, Decem-
ber 1996. Department of Computer Science.

Rodney A. Brooks. Intelligence without representation.Arti-
ficial Intelligence, 47:139–159, 1991.

Joanna Bryson and Brendan McGonigle. Agent architecture
as object oriented design. In Munindar P. Singh, Anand S.
Rao, and Michael J. Wooldridge, editors,The Fourth Inter-
national Workshop on Agent Theories, Architectures, and
Languages (ATAL97), pages 15–30, Providence, RI, 1998.
Springer.

Joanna Bryson and Lynn Andrea Stein. Architectures and
idioms: Making progress in agent design. In C. Castel-
franchi and Y. Lesṕerance, editors,The Seventh Interna-
tional Workshop on Agent Theories, Architectures, and
Languages (ATAL2000). Springer, 2001.in press.

Joanna Bryson and Kristinn R. Thórisson. Dragons, bats &
evil knights: A three-layer design approach to character
based creative play.Virtual Reality, 2001. in press.

Joanna Bryson. Cross-paradigm analysis of autonomous
agent architecture.Journal of Experimental and Theoreti-
cal Artificial Intelligence, 12(2):165–190, 2000.

Joanna Bryson. Hierarchy and sequence vs. full parallelism
in reactive action selection architectures. InFrom Animals
to Animats 6 (SAB00), pages 147–156, Cambridge, MA,
2000. MIT Press.

Richard W. Byrne and Anne E. Russon. Learning by imita-
tion: a hierarchical approach.Brain and Behavioral Sci-
ences, 21(5):667–721, 1998.

David Chapman. Planning for conjunctive goals.Artificial
Intelligence, 32:333–378, 1987.

Luis Correia and A. Steiger-Garção. A useful autonomous
vehicle with a hierarchical behavior control. In F. Moran,
A. Moreno, J.J. Merelo, and P. Chacon, editors,Advances

in Artificial Life (Third European Conference on Artificial
Life), pages 625–639, Berlin, 1995. Springer.

Richard E. Fikes, Peter E. Hart, and Nils J. Nilsson. Learning
and executing generalized robot plans.Artificial Intelli-
gence, 3:251–288, 1972.

Erran Gat. Three-layer architectures. In David Kortenkamp,
R. Peter Bonasso, and Robin Murphy, editors,Artificial In-
telligence and Mobile Robots: Case Studies of Success-
ful Robot Systems, chapter 8, pages 195–210. MIT Press,
Cambridge, MA, 1998.

M. P. Georgeff and A. L. Lansky. Reactive reasoning and
planning. InProceedings of the Sixth National Conference
on Artificial Intelligence (AAAI-87), pages 677–682, Seat-
tle, WA, 1987.

Kristian J. Hammond. Case-based planning: A framework
for planning from experience.The Journal of Cognitive
Science, 14(3), September 1990.

Mitch R. Harris and Brendan O. McGonigle. A modle of
transitive choice.The Quarterly Journal of Experimental
Psychology, 47B(3):319–348, 1994.

Chris Knight, Michael Studdert-Kennedy, and James R. Hur-
ford, editors. The Evolutionary Emergence of Language:
Social function and the origins of linguistic form. Cam-
bridge University Press, 2000.

David Kortenkamp, R. Peter Bonasso, and Robin Murphy, ed-
itors.Artificial Intelligence and Mobile Robots: Case Stud-
ies of Successful Robot Systems. MIT Press, Cambridge,
MA, 1998.

Pattie Maes. Situated agents can have goals. In Pattie Maes,
editor,Designing Autonomous Agents : Theory and Prac-
tice from Biology to Engineering and back, pages 49–70.
MIT Press, Cambridge, MA, 1990.

Brendan McGonigle and Margaret Chalmers. Are monkeys
logical? Nature, 267, 1977.

Nils Nilsson. Teleo-reactive programs for agent control.Jour-
nal of Artificial Intelligence Research, 1:139–158, 1994.

Tony J. Prescott, Kevin Gurney, F. Montes Gonzalez, and Pe-
ter Redgrave. The evolution of action selection. In David
McFarland and O. Holland, editors,Towards the Whole
Iguana. MIT Press, Cambridge, MA, to appear.

Phoebe Sengers. Anti-Boxology: Agent Design in Cul-
tural Context. PhD thesis, School of Computer Science,
Carnegie Mellon University, 1999.

Rogier M. van Eijk, Frank S. de Boer, Wiebe van der Hoek,
and John-Jules Ch. Meyer. Generalised object-oriented
concepts for inter-agent communication. In C. Castel-
franchi and Y. Lesṕerance, editors,Intelligent Agents VII
(ATAL2000). Springer, 2001.

Patrick Winston. Learning structural descriptions from exam-
ples. In Patrick Winston, editor,The Psychology of Com-
puter Vision. McGraw-Hill Book Company, New York,
1975.

David H. Wolpert. The lack of A priori distinctions between
learning algorithms. Neural Computation, 8(7):1341–
1390, 1996.


