Modularity and Design in Reactive Intelligence

Joanna J. Bryson and Lynn Andrea Stein
MIT Artificial Intelligence Laboratory, NE43-833
Cambridge, MA 02139, USA
joanna@ai.mit.edu , lynn.stein@olin.edu

Abstract robotics associated with reactive and behavior-based systems
are usually attributed to the loss of deliberate planning and/or
explicit representations. The real contribution of the reactive
paradigm was explained nearly a decade earlier: you can’t
learn something you don’t practically already know [Winston,
1975], nor, by extension, plan something you can’'t nearly
already do. The reason is simple combinatorics [Chapman,
1987; Wolpert, 1996]. As evolutionary linguists and case-
based reasoning researchers often tell us, what makes humans
so intelligent are our exceptional ability to store and transmit
solutions we manage to find [e.g. Hammond, 1990; Knéjht
al., 2000].
) Reactive and behavior-basedthus facilitate the advance
1 Introduction of Al in two ways. First, by severely deprecating both plan-
The last decade of research has shown impressive conveting and state (and consequently learning), the reactive ap-
gence on the gross characteristics of software architecturggoach increased by default the emphasis on one of the largest
for complete agents such as autonomous robots or virtugdroblems ofal and software in general: design. Second, the
reality (VR) characters [Kortenkamgt al, 1998; Sengers, behavior-based approach made fashionable a proven software
1999; Bryson, 2000a]. The field is now dominated by ‘hy- design methodology: modularity.
brid’, three-layer architectures [Gat, 1998]. The hybrids com- The primary contributions of this paper are methodolog-
bine: (1) behavior-based, the decomposition of intelli- ical. We provide more productive ways of creating hybrid
gence into simple, robust, reliable modules,réctive plan- Systems. This is not to say that developing good software is
ning, the ordering of expressed actions via carefully specifiedver easy, or that learning or productive planning should not
program structures, and (optionally) (@gliberative plan- be used to the fullest extent practical. In fact, we emphasize
ning, which may inform or create new plans or behaviors. the role of learning in our methodology. What w&ee saying

In this paper, we take the view that software design ands that we favor approaches to hybrid systems that facilitate
methodology are critical to the advances that have been madwiman design, because humans designers do most of the hard
in complete agents. We contribute architectural features thavork in artificial intelligence.
further facilitate the human engineering of these agents, in-
cluding the effort to incorporate reliable learning and plan-3 Fundamentals of Reactive Plans

ning into the agent. We do this by enhancing the prothe terms ‘reactive intelligence’, ‘reactive planning’ and ‘re-
grammability of reactive plans and reintroducing modularity 5¢tive plan’ appear to be closely related, but actually signify

to the organization of the ‘plan primitives’. In our system, e gevelopment of several different ided®eactive intelli-

plan primitives are not themselves modules, ierfaces gencecontrols a reactive agent — one that can respond very
to semi-autonomous behavior modules encapsulating Sp":'c,"'auickly to changes in its situation. Reactive intelligence has
ized state for learning and control. This brings hybrid archi-gometimes been equated with statelessness, but that associa-
tectures closer to multi-agent systems (MAS) and behaviorgy, js exaggerated. Reactive intelligerisessociated with
closer to active objects [van Eigt al, 2001]. We also present inima| representations and the lack of deliberation.

a methodology for constructing complete agents in the archi- Reagctive plannings something of an oxymoron. It de-

Software design is the hardest part of creating intel-
ligent agents. Therefore agent architectures should
be optimized as design tools. This paper presents
an architectural synthesis between the three-layer
architectures which dominate autonomous robotics
and virtual reality, and a more agent-oriented ap-
proach to viewing behavior modules. We provide
an approach, Behavior Oriented Design (BOD), for
rapid, maintainable development. We demonstrate
our approach by modeling primate learning.

tecture we describe, and some example agents. scribes the way reactive systems handle the problem tradi-
m . tionally addressed by conventional planning: action selection.
2 Intelligence by Design Action selection is the ongoing problem (for an autonomous

One of the most important aspects of the reactive revolutiomgent) of deciding what to do next. Conventional deliber-
of the late 1980's is often overlooked. The break-throughs irate planning assumes the segmentation of intelligent behavior

into the achievement of discrete goals. A deliberate plannealent to the process chaining where each element is essen-
constructs a sequence of steps guaranteed to move an agéatly an independent production, with a precondition set to
from its present state toward a goal state. Reactive planninghe firing of the prior element. A sequence is an additional
in contrast, chooses only the immediate next action, and bas@gece of control state; its elements may also occur in different
this choice on the current context. In most architectures utiorders in other sequences.

lizing this technique, reactive planning is facilitated by the

presence ofeactive plans.Reactive plans are stored struc- Basic Reactive Plans L
tures which, given the current context (both internal and en] N€ next element type supports the case when changes in cir-
vironmental), specify the next act. cumstance can affect the order in which a plan is executed.

We will quickly address the concemns some researcheri/e developed this idiom independently, and calledsban-
have with reactive planning. Hierarchical plans and centra/PetenceHowever, it occurs in a number of other architectures

ized behavior arbitratiorare biologically plausible [Byme L6-9- Fikeset al, 1972; Nilsson, 1994; Correia and Steiger-
and Russon, 1998; Prescettal, to appear]. They are suf- Car@0, 1995] and is so characteristic of reactive planning,
ficiently reactive to control robots in complex dynamic do- that we refer to the generic idiom asasic Reactive Plaor
mains [e.g. Kortenkampt al, 1998] and have been shown BRP. . . o .
experimentally to be as reactive as non-hierarchical, de- A BRP steps a tuple(rt,p,a), wherertis a priority,p is &
centralized systems [Bryson, 2000b]. Although they do pro-éléaser, and is an action. ABRPis a small set (typically
vide a single failure point, this can be addressed either by—) Of Plan stepg(m, pi,ai)+} associated with achieving a

standard MAS techniques [e.g. Bansalal, 1998], or ac- articular goal condition. The releaggris a conjunction of

cepted as a critical system, like a power supply or a brain. FiPo0leéan perceptual primitives which determine whether the
tep can execute. Each priorityis drawn from a total order.

nally, as demonstrated by coordinated MAS and in Sectioni h actiond: be eith her BRP
below, they do not preclude semi-autonomous behavior mod=a¢h action; may be either another or a sequence as

o described above.
ules operating in parallel. : . . .
P gmnp The order in which plan steps are expressed is determined

3.1 Basic Elements of Reactive Plans by two means: the releaser and the priority. If more than one
] , ,) . step is operable, then the priority determines which step’s
Reactive plans support action selection. At any given timgg executed. If no step can fire, then the BRP terminates. The
step, most agents have a number of actions which could pQg, priority step of a BRP is often, though not necessarily a
tentially be expressed, at least some of which cannot be &Xy54| condition. In that case, its releasgy, recognizes that
pressed simultaneously, for example sitting and walking. Inhe BRP has succeeded, and its actiorterminates the BRP.
architectures without centralized action selection, [e.g. Arkin, Tnhe details of the operation of a BRP are best explained
1990; Maes, 1990], the designer must fully characteftze ough an example. BRPs have been used to control such
each actionhow to determine when it might be expressed.omplex systems as mobile robots and flight simulators [Cor-
For engineers, it is generally easier to describe the desired bgsi; and Steiger-Gaip, 1995; Benson, 1996; Bryson and

havior in terms of sequences of events. This strategy is cOMycGonigle, 1998]. However, for clarity we draw this exam-
plicated by the non-determinism of environments. Severayie from blocks world. Assume that the world consists of

types of events may interrupt the completion of an intendedacks of colored blocks, and that an agent wants to hold a
action sequence. These events fall into two categories: (Ijjue block.

some combination of alarms, requests or opportunities may

make pursuing a different plan more relevant, and (2) somd Priority Releaser=- Action

combination of opportunities or difficulties may require the 4 (holding) (held 'blue)= goal

current ‘sequence’ to be reordered. We have determined < 3 (holding) =- drop-held, |059'fi>i>
element types for reactive plans which, when combined, sup 2 (fixed-on ’blue)=- grasp-top-of-stac

port both of these situations. 1 (blue-in-scene}- fixate-blue W
Simple Sequences In this case priority is strictly ordered and represented by

The first element type is a simple sequence of primitive acposition, with the highest priority step at the top. We refer to
tions: 11,12,...1h. In our own architecture, we call this ele- steps by priority.
ment amaction pattern Including the sequence as an element This single reactive plan can generate a large number of ex-
type is useful for two reasons. First, it allows an agent depressed sequential plans. In the initial context of a red block
signer to keep the system as simple as possible, which botftacked on a blue block, we might expect the plan 1-2—-3—-1-
makes it more likely to succeed, and communicates mor@—4 to execute. But if the agent is already fixated on blue
clearly to a subsequent designer the expected behavior of thahd fails to grasp the red block successfully on first attempt,
plan segment. Second, it allows for speed optimization of elethe expressed plan would look like 2-1-2-3-1-2—4. If the
ments that are reliably run in order, which can be particularlyunsuccessful grasp knocked the red block off the blue, the
useful in sequences of preconditions or in fine motor controlexpressed plan might be 2-1-2—-4. This BRP is identically
Executing a sequential plan involves priming or activatingrobust and opportunistic to changes caused by another agent.
the sequence, then releasing for execution the first primitive If an action fails repeatedly, then the above construction
acti;. The completion of any; releases the followingr1 might lead to an indefinite behavior cycle. This can be pre-
until no active elements remain. Notice that this@gequiv- vented through several means. Our competences allow a retry

limit to be set at the step level. Thuzampetence steépre- are not stand-alone, consumatory acts, but are interfaces to

ally a quadrupl€T, p,a,n), wheren is an optional maximum semi-autonomous behaviors which may be operating in par-

number of retries. Other systems often have generic rules fallel (see Section 4 below.) Thus the action ‘move’ in the

absence of progress or change. robot’s script merely confirms or transmits current target ve-
The most significant feature of a BRP is that it is relativelylocities to already active controllers. A moving robot does

easy to engineer. To build a BRP, the developer imagines aot stop rolling while its executive attends to its batteries or

worst-case scenario for solving a particular goal. The prioridits sensors.

ties are then set in the inverse order that the steps might have

to be executed. Next, preconditions are set, staPting fgr,om the-2 Discussion — Other Reactive Architectures

highest priority step, to determine whether it can fire. ForWe refer to reactive plan structures as described above as

each step, the preconditions are simplified by the assurandgarallel-rooted, Ordered Slip-stack Hierarchical (POSH) ac-

that the agent is already in the context of the current BRRjion selection. Although we freely distribute implementations

and that no higher priority step can fire. of this architecture in both C++ and Lisp / CLOS, we have
also implemented versions of POSH action selection in other

Plan Manipulation architectures [Bryson and Stein, 2001].

Finally, a reactive system must be able arbitrbtween The functionality of the BRP, which in our experience is a

plans. We do this with a third element type calledrive col- critical element of reactive planning, is surprisingly missing
lection, also based on the BRP. A ‘step’, or in this cadiiye ~ from several popular architectures. In effect, architectures us-
elementnow has five elementst, p,a,A,v). For a drive, the ing middle layers like PRS [Georgeff and Lansky, 1987] seem
priority and releasemandp are as in a BRP, but the actions to expect that most of behavior can be sequenced in advance,
are different.A is theroot of a BRP hierarchy, whilel is the and that being reactive is only necessary for dealing with ex-
currently activeelement of the drive. If a drive element is se- ternal interruptions by switching plans. On the other hand,
lected for action, but itsl is null because a BRP or sequence architectures such as subsumption [Brooks, 1991] or ANA
has just terminated, themis set to theA for that drive. The [Maes, 1990] expect that there is léitle regularity in the ar-
drive element begins action selection again from the root obitration of behavior that all actions must be considered for
its hierarchy. execution at all times. We have found the most expedient
This system improves reaction time by eliminating thesolution to the design problem of reactive planning is to cate-
stack that might be produced when traversing a plan hiergorize selection into things that need to be checked regularly,
archy. On every program cycle, the agent checks only th&hings that only need to be checked in a particular context,
drive-collection priorities, and at most one other set of prior-and things that one can get by not checking at all. These cat-
ities, if a is currently a BRP rather than a sequence. It alsggories correspond to our three types of plan elements: drive
allows the agent to periodically re-traverse its decision tregollections, competences, and action patterns.
and notice any context change. This approach also allows the
hierarchy of BRPs to contain cycles or oscillations, which are4 Semi-Autonomous Behavior Modules and
frequently useful patterns of behavior. Since there is no stack, the Role of Perceptual State
there is naobligationfor a competence chain to terminate.

The fifth member of a drive element, is an optional max- Besides emphasizing the use of modularity, the behavior-

. . . SRR - based movement also made an important engineering con-
imum frequencyat which this element is visited. This is a tribution by emphasizing specialized learning [e.g Brooks,

convenience for clarity, like the retry limif on the compe- 2 2N . e . i
tence steps — either could also be controlled through preco%ggl’ pp. 158-9]. Specializing leaming increases its praba

o ; ; ility of success, thus increasing its utility in a reliable agent.
ditions. The frequency in a real-time system sets a tempor imilarly, modularity simplifies program design, at least lo-
limit on how frequently a drive element may be executed. Forcally thus increasing the probability of correctness. Govern-
example, on a mobile robot [Bryson and McGonigle, 1998].”° 7' " : S >

: P : ; ing the interaction of multiple independent behavioral mod-

we had the highest priority drive-element check robot’s bat- e .
tery level, but this was only executed every two minutes. Thﬁﬂgjeciinthbeep?ec\j/lifcf)lggI?écggque have already addressed this
next highest priority was checking the robot’s sensors, whic . ; S .)
happened at 7Hz. Other, lower-priority processes then used Consider this descnptpn of stand_ard hybrid system;.
the remaining interspersed cycles. The three-layer architecture arises from the empir-

One further characteristic discriminates drive collections ~ ical observation that effective algorithms for con-
from competences / BRPs. Only one element of a compe- trolling mobile robots tend to fall into three distinct
tence is expected to be operating at any one time, but for a catégories: (1) reactive control algorithms which
drive collection, multiple drives may be effectively active si- map sensors dlrectly onto actuators with little or
multaneously. If a high-priority drive takes the attention of no internal state; (2) algorithms for governing rou-
the action-selection mechanism, the program state of any ac- tineé sequences of activity which rely gxtenswely on
tive lower drive is preserved. In the case of our robot, if the ~ Internal state but perform no search; and (3) time-
navigation drive is in the process of selecting a destination ~ consuming search-based algorithms such as plan-
when the battery needs to be checked, attention returns to Ners. [Gat, 1998, p. 209]
the selection process exactly where it left off once the batGat's view of three-layer architectures is particularly close

tery drive is finished. Further, action primitives in our systemto our own view of agent intelligence, because it puts con-

trol firmly in the middle, reactive-plan layer. The deliberative Usually only one behavior and one reactive plan will be
‘layer’ operates when prompted by requests. However, wectively developed at a time. We strongly suggest maintain-
differ on the notion that there are many actions which can reing the lists developed in the initial phase as documentation.
ally map sensors to actuators with little internal state or con\Where possible, such documentation should be part of active
sideration for the past. code. For example, the primitive list should be a file of code
Nearly all perception is ambiguous, and requires expectaspecifying the interface calls. Similarly, old reactive plans
tions rooted in experience to discriminate. For a mobile robotshould be preserved with their development history and used
this ‘experience’ may be from the last half a second, for dis-as a test suite as modifications are made to the behavior li-
criminating sonar ‘ghosts’, half a minute, to move around abraries.
bumped object invisible to sonar, or days, as in remember-
ing a local map. Primitive actions governed by the reac5.3 Revising the Specifications

tive plans may depend on any of this information. We do . . .
not believe this information should be passed between ‘lay € most interesting part of the BOD methodology is the set

ers’ either by micro-management or as parameters. Rathe‘?f rules for revising the specifications. The main design prin-

in our model, the primitives of a reactive plan interface di- CIP1€ of BOD iswhen in doubt, favor simplicityA primitive

rectly to semi-autonomous behavior modules. Each modull$ Preferred to an action sequence, a sequence to a compe-
tence. Heuristics then indicate when the simple element must

maintains its own state and may possibly perform its owrh d dint | 0 idi ;
‘time-consuming’ processes (such as memory consolidatiof® ¢€COMPOSEd INto a More compliex oné. Lne guiding prin-

or search) in parallel to the main activity of the completec'ple is to reduce redundancy. If a particular plan or behavior

agent. Thus our view of agent control is very similar to Gat's, @l be reused, it should be. If only part ofaplan ora prjmitive
ction can be used, then a change in decomposition is called

except that (1) we increase the number, specificity and poterf In th f : 9= h o hould
tial simplicity of the modules composing his top layer, and bor'd n the casczq an action primitive, the pr|m|t(|jvehs ould
(2) we replace the notion of a bottom layer with the that of e decomposed into two or more primitives, and the origi-

an interface between the action selection module of the robdt! action replaced by a sequence. If a sequence sometimes
and its (other) behavior modules. needs to contain a cycle, or often does not need some of its

elements to fire, then it should really be a competence. A new
; plan element should have the same name and functionality as
5 Developing an Agent .) the primitive or sequence it replaces. This allows established
The process of developing an agent with these two attnbute@ans to continue operating without change.
POSH action selection and a behavior library, we call Behav- geactive plan elements should not require long or complex
ior Oriented Design. The analogy between BOD and OODyiggers. Perception should be handled at the behavior level;
is not limited to the metaphor of the behawor_ and t_he 0b5t should be a skill. A large number of triggers should be
ject, nor to the use of methods on the behavior objects agynyerted into a single perceptual primitive. Another prob-

primiti_ves to the reactive plans. The most crifcical aspect ofiem that crops up in competence design can be the presence

BOD is its emphasis on the design process itself. The olgy 15 many elements. More than seven elements in a com-

problem of behavior decomposition (and new, analogous ongetence, or difficulty in appropriately prioritizing or setting

for MAS) is solved by using state requirements, as in modyiggers, indicates that a competence needs to be decomposed

ern object decomposition. Also as in OOD, BOD emphasizesyiq two. If several of the elements can be seen as working

_cycl|c design with rapid prototyping. The_proqess _ofdevelop—t0 complete a subgoal, they may be moved to a child com-

ing an agent alternates between developing libraries of behayaence. If two or more of the elements always follow each

iors, and developing reactive plans to control the expressiogher in sequence, they should be converted into an action pat-

of those behaviors. tern. If the competence is actually trying to achieve its goal

5.1 The Initial Decomposition b_y two different means, then it shogld be b(oken into_ two
- ., .. sibling competences which are both inserted into the original

The steps of initial decomposition are as follows. (1) Spec'fycompetence’s parent

at a high level what the agent is intended to do. (2) Describe '

likely activities in terms of sequences of actions (prototype] L

reactive plans.) (3) Identify sensory and action primitives6 Example: Modeling Transitivity in a

from these sequences. (4) ldentify the state necessary for Non-Human Primate

these primitives, clustering them by shared state (prototype

behaviors). (5) Identify and prioritize goals or drives that theAlthough we have used our methodology on a mobile robot

agent may need to attend to (prototype POSH drive roots). (dBryson and McGonigle, 1998] and on virtual reality char-

Select a first behavior to implement. acters [Bryson and Tdrisson, 2001], we find artificial life
(ALife) more conducive for quantitative comparisons [e.qg.
5.2 The Development Process Bryson, 2000b] and for communicating with researchers. We

The remainder of the development process is not linear. Ithus illustrate BOD by building an ALife model of primate
consists of the following elements, applied repeatedly as apntelligence. Unfortunately, this shows only degenerate ex-
propriate: coding behaviors, coding reactive plans, testinggmples of drive collections, but space is limited.

and debugging code, and revising the specifications made in We begin by modeling the ability of a monkey to perform
the initial phase. transitive inference [McGonigle and Chalmers, 1977]. This

task is interesting, because it was initially believed to re-from the existing monkey-body behavior. The sequence-
quire reasoning, which was in turn considered to require lantearner contains a list of known objects with weights, a ‘sig-
guage. Squirrel monkeysgimiri scuireuy were trained on nificant difference’ and a ‘weight shift’. If the monkey is
four pairs of colored pucks; AB, BC, CD, and DE; to favor correct in its discrimination, but its certainty was less than
the earlier element of the pair. Transitivity is the ability to significant-difference, then consider-reward adds weight-shift
generalize this pairing spontaneously (without further trainto the weight of the winner, and renormalizes the weights in
ing) when first presented with the novel pairs such as ACthe list. Ifitis wrong, consider-reward shifts the weight to the
AD, BD and so on. The behavior of the monkeys on this taskoser.
has already been modeled by Harris and McGonigle [1994], The test machine is now in charge of both setting and re-
who modeled the transitive capability as a prioritized stackwarding the behavior. The new primitive ‘find’ searches the
of production rules of the type ‘avoid E’ or ‘select A. Based world for a colored puck, then if it is found, a reward (or lack
on the nature of the errors the monkeys made, and their sepf reward) is given based on whether the machine is attend-
arate performance on three-item sets, different stacks weiieig to the monkey’s hand or the test-board. The end-of-test
built representing the rules learned by each monkey. action-pattern calls actions in sequence from two different be-
We begin by replicating a simplified version of Harris’s haviors — the monkey’s sequence learner learns, then the test
system modeling a skilled monkey. To simplify the simu- box records and resets. Educated-grasp is now a method on
lation task, we model both the monkey and its testing envisequence-learner; it does visual examination, evaluation, and
ronment as a single intelligent agent with two behaviors. Thehe grasp.
‘monkey’ has two pieces of variable state — its hand and its The above is just the first two steps of the development of
visual attention, the test box has only a test-board for holding learning version of Harris’ model. This example demon-

two or three items. strates how functionality can be easily added, and shifted be-
tween plans and behaviors. The second model above con-

(no-test)= new-test verges to a correct solution within 150 trials, with significant-

life = << (grasping)=- finish-test >> difference set to .08, and weight-shift to .06. We have addi-

— elvis-choice tional forthcoming results showing that adding another layer

of learning (the select-avoid rules) results in further charac-

(see-red)= noisy-grasp > teristics typical of primate learning.
2)

(see-white)=- grasp-seen The sequence-learning task is interesting because it illus-

(ézg(_ag?éue?]); g:gzg_zggg trates not only the interaction between reactive plans and
) modular behaviors, but also begins to model how a behav-
noisy-grasp = (screech— grasp-seen ior might be designed to learn a reactive plan. However, the
This plan gives an example of each element type describeBOD methodology is not constrained to modeling only a sin-
in Section 3, though the action pattern is gratuitous. Priorityd!€ @gent. We are currently modeling conflict resolution in
is again listed from the top. The drive collection, life, has noPfimate colony social interactions in collaboration with Jes-
goal, so it never ends. New-test is a call to the test behaviotic@ Flack of Emory University. In this work, we use different
which randomly resets the test board; finish-test clears it. Th@rocesses to model different agents. Each agent has its own
seeing primitives all map to a single method on the monkeynstance of the behavior objects and its local copy of a POSH
behavior, which performs a ‘visual’ scan of the test board andP'an-
leaves visual attention on an appropriately colored object, if
it exists. Grasp-seen, also a method on the monkey behaviof, Conclusions

is thus able to use deictic reference without variable passing.) . .
We now enhance the model by forcing the monkey to lear>0ftware engineering is the key problem of developing com-

the ordering of the pucks. This also requires augmenting thBlete agents. The advances made due to the reactive and
test-behavior to reward the monkey appropriately. behavior-based movements come primarily because they
trade off slow or unreliable on-line processes of search and

learning for the one-time cost of development, and by em-
>> phasizing the use of modularity. These are not reasons to

elvis-choice = <

(no-test)= new-test

life = << (rewarded)=- end-of-test fully abandon learning and search, but they are reasons to use

it only in constrained ways likely to be successful.
= educated-grasp Itis easiest to design action selection if one exploits the se-
(find-red)=- reward-found quencing and prioritization skills of programmers. We have
(find-white) = reward-found> 3) shown how sequences can be adapted into powerful reactive

(grasping)=- elvis-reward

(find-blue)= reward-found plans. One of the components we consider critical to success-
(find-green)= reward-found ful reactive planning, the BRP, is present to our knowledge
end-of-test = (consider-reward- finish-tes} TR [N|Isson,_ 1_994]. Most other architectures either only al-
low for reactivitybetweerplans, or don't allow for structured
We add a new behavior, sequence learning, to the sygplan elements at all. We have also created a mapping between
tem, which though ascribable to the monkey, is separatéhe three layer architectures that dominate complete agent re-

elvis-reward = <

search today, and the original behavior-based architectures, in Artificial Life (Third European Conference on Atrtificial
which are more like today’s MAS architectures. We suggest Life), pages 625-639, Berlin, 1995. Springer.

that the primitive elements typical of the lowest layer of aRichard E. Fikes, Peter E. Hart, and Nils J. Nilsson. Learning
three-layer architecture should interface to semi-autonomous ang executing generalized robot planartificial Intelli-
behavior modules, which are comparable to high-level pro- gence 3:251-288, 1972.

cesses in some three-layer architectures. This allows the b
sic actions coordinated by the reactive plans direct access
appropriately processed state necessary for informing percep-
tion and determining the parameters of actuation.

%rran Gat. Three-layer architectures. In David Kortenkamp,
R. Peter Bonasso, and Robin Murphy, editémtificial In-
telligence and Mobile Robots: Case Studies of Success-
ful Robot Systemghapter 8, pages 195-210. MIT Press,
Cambridge, MA, 1998.

References M. P. Georgeff and A. L. Lansky. Reactive reasoning and
Ronald Arkin. Integrating behavioral, perceptual and world planning. InProceedings of the Sixth National Conference
knowledge in reactive navigatiorRobotics and Automa- on Artificial Intelligence (AAAI-87)pages 677-682, Seat-

tion, 6(1):105-122, 1990. tle, WA, 1987.

Arvind K. Bansal, Kotagiri Ramohanarao, and Anand RaoKristian J. Hammond. Case-based planning: A framework
Distributed storage of replicated beliefs to facilitate recov- for planning from experienceThe Journal of Cognitive
ery of distributed intelligent agents. In Munindar P. Singh, Science14(3), September 1990.

Anand S. Rao, and Michael J. Wooldridge, editdréel- \itch R. Harris and Brendan O. McGonigle. A modle of
ligent Agents IV (ATAL97)pages 77-92, Providence, RI, transitive choice.The Quarterly Journal of Experimental
1998. Springer. Psychology47B(3):319-348, 1994.

Scott Benson. Learning Action Models for Reactive Au- Chris Knight, Michael Studdert-Kennedy, and James R. Hur-
tonomous Agent$hD thesis, Stanford University, Decem- ford, editors. The Evolutionary Emergence of Language:

ber 1996. Department of Computer Science. Social function and the origins of linguistic formCam-
Rodney A. Brooks. Intelligence without representatiéirti- bridge University Press, 2000.
ficial Intelligence 47:139-159, 1991. David Kortenkamp, R. Peter Bonasso, and Robin Murphy, ed-

Joanna Bryson and Brendan McGonigle. Agent architecture @tors.ArtificiaI Intelligence and Mobile Robots: Case Stud-

as object oriented design. In Munindar P. Singh, Anand S. :\7sAoigsgLéccessful Robot SystendIT Press, Cambridge,
Rao, and Michael J. Wooldridge, editoie Fourth Inter- ' '

national Workshop on Agent Theories, Architectures, andPattie Maes. Situated agents can have goals. In Pattie Maes,
Languages (ATAL97pages 15-30, Providence, RI, 1998. editor, Designing Autonomous Agents : Theory and Prac-
Springer. tice from Biology to Engineering and bagsages 49-70.

. . MIT Press, Cambridge, MA, 1990.
Joanna Bryson and Lynn Andrea Stein. Architectures and .
idioms: Making progress in agent design. In C. CastelBrendan McGonigle and Margaret Chalmers. Are monkeys

franchi and Y. Lesprance, editorsThe Seventh Interna- logical? Naturg 267, 1977,
tional Workshop on Agent Theories, Architectures, andNils Nilsson. Teleo-reactive programs for agent contfolr-
Languages (ATAL2000%pringer, 2001in press nal of Artificial Intelligence Resear¢ii:139-158, 1994.

Joanna Bryson and Kristinn R. @tisson. Dragons, bats & Tony J. Prescott, Kevin Gurney, F. Montes Gonzalez, and Pe-
evil knights: A three-layer design approach to character ter Redgrave. The evolution of action selection. In David
based creative playirtual Reality, 2001.in press McFarland and O. Holland, editor§owards the Whole

. . | MIT P i MA .
Joanna Bryson. Cross-paradigm analysis of autonomous guana ress, Cambridge, + {0 appear

agent architectureJournal of Experimental and Theoreti- Phoebe Sengers. Anti-Boxology: Agent Design in Cul-
cal Artificial Intelligence 12(2):165-190, 2000. tural Context PhD thesis, School of Computer Science,

3 B Hi h q all leli Carnegie Mellon University, 1999.
oanna Bryson. Hierarchy and sequence vs. full parallelis . i ,
in reactive action selection architectures.Fom Animals rEQog|er M. van Eijk, Frank S. de Boer, Wiebe van der Hoek,

to Animats 6 (SABOQpages 147—156, Cambridge, MA and John-Jules Ch. Meyer. Generalised object-oriented
2000. MIT Press ' ' ' concepts for inter-agent communication. In C. Castel-

franchi and Y. Lesprance, editorsntelligent Agents VI
Richard W. Byrne and Anne E. Russon. Learning by imita- (ATAL2000) Springer, 2001.

tion: a h|er§1rch|cal approactBrain and Behavioral Sci- Patrick Winston. Learning structural descriptions from exam-
ences21(5):667-721, 1998. ples. In Patrick Winston, editofhe Psychology of Com-

David Chapman. Planning for conjunctive goakttificial puter Vision McGraw-Hill Book Company, New York,
Intelligence 32:333-378, 1987. 1975.

Luis Correia and A. Steiger-Garg. A useful autonomous David H. Wolpert. The lack of A priori distinctions between
vehicle with a hierarchical behavior control. In F. Moran, learning algorithms. Neural Computation 8(7):1341—
A. Moreno, J.J. Merelo, and P. Chacon, editéxdyances 1390, 1996.

