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Abstract. This volume is intended to help advance the field of artificial neural
networks along the lines of complexity present in animal brains. In particular, we
are interested in examining the biological phenomena ofmodularityandspecial-
ized learning. These topics are already the subject of research in another area of
artificial intelligence. The design ofcomplete autonomous agents(CAA), such as
mobile robots or virtual reality characters, has been dominated by modular archi-
tectures and context-driven action selection and learning. In this chapter, we help
bridge the gap from neuroscience to artificial neural networks (ANN) by incor-
porating CAA. We do this both directly, by using CAA as a metaphor to consider
requirements for ANN, and indirectly, by using CAA research to better under-
stand and model neuroscience. We discuss the strengths and the limitations of
these forms of modeling, and propose as future work extensions to CAA inspired
by neuroscience.
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1 Introduction

Although artificial neural networks (ANN) are vast simplifications of real neural sys-
tems, they have been a useful technology for helping us think about and model highly
distributed systems of representation, control and learning. This work has proven useful
both in science, by providing models, paradigms and hypotheses to neuroscientists; and
to engineering, by providing adaptive control and classifier systems. In this chapter, we
will propose that another area of AI, the agent literature, may also further both science
and engineering. We also use agent software architectures to propose an ANN model
that addresses issues of modularity, specialized learning, and to some extent synchro-
nization.

ANNs can not so far be used for control systems that attempt to replicate the behav-
ioral complexity ofcompleteanimals. One reason is that the complexity of such systems
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Fig. 1. This chapter addresses the goal of advancing artificial neural networks (ANN)
through understanding neuroscience (BNN) via a third field, complete autonomous
agents (CAA). This assistance comes both directly, by providing understanding and
support for the requirements of such artificial systems, and indirectly, by providing an-
other AI model of biological intelligence .

effectively requires decomposition into modules and hierarchy (see [10] for discussion
and references.) This requirement is not theoretical, but practical. In theory, monolithic
systems may be Turing complete; but whether attacked by design or by learning, in
practice complex control requires decomposition into solvable subproblems.

This principle of modularity is one of several features that characterize the control
architectures thathavebeen successfully used for complete autonomous agents (CAA).
Such agents include autonomous mobile robots [35], virtual reality characters [55], and
intelligent environments or monitoring systems [17]. CAA, like animals, must process
complex, ambiguous perceptual information. They must also control many forms of
action and expression, often with multiple means for achieving any particular behavior.
They must also manage a large number of competing and possibly contradictory goals.
For example, an animal or animal-like robot may need to balance the need to find food
with the need to remain inconspicuous; a character-based tutoring system may need to
be clear but not boring; a household robot may need to do the laundry and cook dinner.
CAA are situated in the real world in real time. Consequently they must deal with
timeliness and synchrony: the order and duration of their expressed behaviors matter.

We begin this chapter with a discussion of modularity as found in nature, then re-
view the literature on CAA in this light. Next, we demonstrate the relevance of CAA to
neuroscience by describing a mapping between the common features of CAA architec-
tures and mammalian brain organization. We then examine the implications for learning
in the CAA context, which is necessarily specialized due to the representational archi-
tecture. We also propose a neural architecture for an agent capable of full, animal-like
learning, and future directions, inspired by neuroscience, for CAA itself.

2 Modularity in Nature

There are at least three types of modularity in mammalian brains. First, there isarchitec-
tural modularity. Neuroanatomy shows that the brain is composed of different organs
with different architectural structures. The types and connectivity of the nerve cells and
the synapses between them characterize different brain modules with different com-
putational capabilities. Examples of architectural modules include the neocortex, the
cerebellum, the thalamus, the hippocampus, periaqueductal gray matter and so forth:
the various organs of the fore, mid and hindbrains.



Second, there isfunctional modularity. This modularity is characterized by differ-
ences in utility which do not seem to be based on underlying differences in structure
or computational process. Rather, the modules seem to have specialized due to some
combination of necessary connectivity and individual history. Gross examples include
the visual vs. the auditory cortices. Sur et al. [56] have shown at least some level of
structural interchangeability between these cortices by using surgery on neonate ferrets.
There is also other convincing and less invasive evidence. For example, many function-
ally defined cortical regions such as V1 are in slightly different locations in different
people [45]. Many people recover capacities from temporarily debilitating strokes that
permanently disable sections of their brains, while others experience cortical remaps
after significant alterations of there body, such as the loss of a limb [50]. This evidence
indicates that one of the brain’s innate capabilities is to adaptively form functionally
modular organizations of neural processing.

Thirdly, there istemporal modularity. This is when different computational con-
figurations cannot exist contemporaneously. There are at least two sorts of evidence
for temporal modularity. First, many regions of the brain appear to have local “winner
take all” connection wiring where a dominant “impulse” will inhibit competing im-
pulses [26, 28]. This neurological feature has been used to explain the fact that humans
can only perceive one interpretation of visually ambiguous stimuli at a time [48]. Sec-
ond, many cells in the brain are members of more than one assembly, and can perform
substantially different roles in only subtly different contexts (e.g. in the hippocampus
[34, 65].) This sort of temporal modularity is not yet well understood, but it could have
implications for individual differences in intellectual task performance such as insight
and metaphoric reasoning.

Fig. 2. An ambiguous image. This figure can be seen either as a vase or as two faces,
but not both at the same time. From [25, p. 213]

The presence of these forms of modularity in mammalian brains motivates modular
architectures in two ways. First, if we are interested in modeling the brain as a matter of
scientific interest, we will need to be able to replicate its modularity. Second, the pres-
ence of modularity in the best examples of intelligent control available indicates that
modularity is a useful means of organizing behavior. Evolution is not a perfect designer
— the mere presence of a solution in nature does not prove it is optimal. However, given
the extent and complexity to which the brain has evolved, it is at least worth treating the



utility of modularity as a hypothesis. We now consider further evidence for the utility
of modularity in another domain of intelligent control.

3 Common Features of Complete Autonomous Agents

Modularity is a key feature of most successful CAA architectures. Other architectural
features that have been found useful in CAA architectures are hierarchical and sequen-
tial structures for ordering the expression of behaviors, and dedicated, reactive alarm
systems capable of switching the focus of attention to different points in a control hi-
erarchy. In this section we review the evidence for the importance of these features. A
more extensive review is available in [7].

3.1 Skill Modules

One of the fundamental incentives for AI is the idea of having intelligent technology
as a companion, situated with us in our environment. However, this goal was long seen
as not technically feasible. Consequently, most early AI systems focussed on only a
restricted set of capabilities such as reasoning in a particular domain [6, 60]. Such sys-
tems were relatively unconstrained by issues such as timeliness or uncertainty about
their perceptions or actions. As a result, early attempts at building CAA, which utilized
these techniques, tended to be both slow and enormously costly [e.g.31, 44, 46].

Around 1986 a new paradigm based on greater modularity became established in
mobile robotics [40]. This paradigm, behavior-based AI (BBAI), favored niche-specific
solutions for CAA. BBAI agents feature modules composed of sensing and control spe-
cialized to a particular task to be executed in a particular situation. Such skill modules
are often referred to as “behaviors” in the CAA literature to this day, despite the fact
that they actuallygeneratebehavior rather than represent it. Further, much of expressed
behavior is supposed to emerge from the interaction of these ‘behaviors’ rather than
being generated by any one-to-one mapping. The most difficult part of the BBAI disci-
pline falls to the engineer: determining what behavioral modules the agent needs, and
guaranteeing that these modules do not interfere with each other in the normal operation
of the robot.

3.2 Action Selection

By the late 1990’s, modular “behavior” systems were ubiquitous in mobile robotics and
virtual reality [30, 35, 54]. Also by this time, the need for structured action selection
had become well accepted, despite initial resistance in the BBAI community. Structured
action selection is essentially the following of plans, and conventional planning was one
of the impracticalities of old-style CAA. However, although constructive planning is
too costly for real-time systems [16], action selection based onestablishedplans is not.
This technique, calledreactive planning, has been facilitated technologically as well as
culturally. Technologically, new plan representations were developed which were more
flexible and adaptive to dynamic environmental considerations [e.g.12, 22, 24, 47].



Some of the systems using these representations derive from traditional planning,
with behavior modules relegated to being mere plan primitives, but others maintain
the autonomy of the behavior modules, while allowing for an extra system to arbitrate
the timing of expressed actions. This latter approach also characterizes the relatively
new paradigm of multi-agent systems (MAS) which are now sometimes used to control
intelligent systems and environments [61]. Their coordination issues are similar to the
arbitration issues of BBAI, and will probably converge on similar solutions.

Structured action selection normally consists of both hierarchical and sequential
components. Hierarchies are necessary to reduce the search space for the next action.
They focus attention on a particular set of actions likely to be useful in the current
context. Sequences are a special case of this process where each action can be followed
very quickly and reliably by another, a necessity in certain kinds of fine control [32,
38]. Sequences are not adequately represented by simple chains of productions, partly
because their elements may participate in more than one sequence, but also because
of timing issues. This problem was discovered and addressed in the Soar architecture,
the best established production-based AI architecture, when it was applied to the CAA
problem [36].

3.3 Environment Monitoring

The difficulty with structured action selection in a dynamic environment is that it can
leave the agent unprepared to cope with sudden, unexpected events. Consequently, the
third necessary feature of CAA architectures is an independent, parallel environment
monitoring or ‘alarm’ system for switching attention. Such a system must operate in
parallel with the agent’s main attention, and must be able to recognize critical situations
very rapidly with minimal ‘cognitive’ overhead. That is, it cannot require the reactive
planning system itself, but must rely on simple perception. All modular CAA systems
have this feature. In the early BBAI system,everyaction was continuously monitoring
the environment with its specialized perception, prepared to take control of the agent
whenever necessary [5]. In systems closer to conventional planning, such as PRS [24],
control cycles between the conventional action selection and the monitoring system.
In our own system, context is quickly re-checked at the top, motivational level of the
hierarchy between every arbitration step, and the entire hierarchy is revisited on the
termination of any subtask [8].

4 Mapping CAA Features to Mammal Brain Structure

To summarize the last section, complete agent architectures have converged on three
sorts of architectural modules in order to support complex, reactive behavior. First, skill
modules — a functional decomposition of intelligent ability into skilled actions and
their supporting specialized perception and memory. Second, hierarchical structures
that support action selection, often known as reactive plans. These structures are used
to focus attention on behaviors likely to be useful in a particular circumstance and
provide temporal ordering for behavior. And third, an environment-monitoring or alarm



system for switching the focus of action-selection attention in response to highly salient
environmental events.

If this sort of organization is necessary or at least very useful for intelligent con-
trol, then it is also likely to be reflected in the organization of animal intelligence. As
we explained in the introduction, animals have evolved to face similar problems of in-
formation management. In this section, we look at how these CAA principles relate to
what is known of mammal brain architecture.

4.1 Skill Modules

In Section2 we discussed modularity in mammalian brains. Using that terminology, we
consider the skill modules of CAA to correspond roughly to functional modularity, par-
ticularly in the neocortex, and perhaps to some extent to temporal modularity. However,
there is no direct correlation between brain modularity and CAA skill modules. For ex-
ample, a skill module for grasping a visual target must incorporate the retinas, visual
cortex, associative cortices, motor pre-planning and motor coordination. It would also
need to exploit somatic and proprioceptive feedback from the grasping limb, though
some of this complexity might be masked by interfacing to other specialist modules.

The reason there is not a direct correlation between CAA skill modules to mam-
malian functional modules is because CAA modules tend to be end-to-end. That is,
they encapsulate both perception and action. Much of functional cortical modularity in
mammals tends to be more general, for example the visual, auditory, somatic and motor
cortices. Some of the temporal modularity in the parietal cortex and the hippocampal
formation may correspond more directly to CAA modularity, but this lacks the paral-
lelism typically recommended in CAA, and also the localized representation of percep-
tion and motor skills. Taking these sorts of context-specific parietal and hippocampal
representations along with some supporting perception and action representations from
other cortical areas is probably the best approximation of the typical CAA skill module.

Since a concern of this volume is modeling neural modularity in ANN, we should
point out that even though CAA skill modules aren’t typically analogous to cortical re-
gions, this is for reasons of practicality. Within the agent discipline, modularity in CAA
is primarily to support an orderly decomposition of intelligence into manageable, con-
structible units. But if one is more interested in modeling the brain directly, one could
well use known or theorized cortical modularity as a blueprint for skill decomposition
in a CAA agent [e.g.63]. We would also like to note that more primitive neural systems
such as those found in insects to some extent lack the generality of mammalian brains,
and more closely match common CAA modularity. For example, spiders have multi-
ple pairs of eyes, some of which seem to be dedicated to single skill modules, such as
mating [37].

4.2 Action Selection

The basal ganglia has been proposed as the organ responsible for at least some aspects
of action selection [27, 43, 49, 51]. In a distributed parallel model of intelligence, one of
the main functions of action selection is to arbitrate between different competing behav-
iors. This process must take into account both the activation level of the various ‘input’



cortical channels and previous experience in the current or related action-selection con-
texts.

The basal ganglia is a group of functionally related structures in the forebrain, dien-
cephalon and midbrain. Its main ‘output’ centers — parts of the substantia nigra, ventral
tegmental area, and pallidum — send inhibitory signals to neural centers throughout the
brain which either directly or indirectly control voluntary movement, as well as other
cognitive and sensory systems [42]. Its ‘input’ comes through the striatum from relevant
subsystems in both the brainstem and the forebrain. Prescott et al. [49] have proposed a
model of this system whereby it performs action selection similar to that proven useful
in CAA architectures.

Arbitrating between subsystems is only part of the problem of action selection. Ac-
tion patterns must also be sequenced with appropriate durations to each step. The dura-
tion of many actions is too quick and intricate to be monitored via feedback, or left to the
vagaries of spreading activation from competing but unrelated systems [32, 38]. Further,
animals that have had their forebrains surgically removed have been shown capable of
conducting complex species-typical behaviors — they are simply unable to apply these
behaviors in appropriate contexts. In particular, the periaqueductal grey matter has been
implicated in complex species-typical behaviors such as mating rituals and predatory,
defensive and maternal maneuvers [39]. However, there appears to be little literature
as to exactly how such skills are coordinated. There is also little evidence that learned
skills would be stored in such areas. We do know that several cortical areas are involved
in recognizing the appropriate context for stored motor skills [e.g.1, 57]. Such cortical
involvement could be part of the interface between skill modules and action selection
(see further [8].)

4.3 Environment Monitoring

Our proposal for the mammalian equivalent to the environment monitoring and alarm
systems is more straight-forward. It is well established that the limbic system, par-
ticularly the amygdala and associated nuclei, is responsible for triggering emotional
responses to salient (particularly dangerous, but also reproductively significant) envi-
ronmental stimuli. Emotional responses are ways of creating large-scale context shifts
in the entire brain, including particularly shifts in attention and likely behavior [15, 18].
This can be in response either to basic perceptual stimuli, such as loud noises or rapidly
looming objects in the visual field, or to complex cortical perceptions, such as recog-
nizing particular people or situations [15]. Again, there can be no claim that this system
is fully understood, but it does, appropriately, send information to both the striatum and
the periaqueductal grey. Thus the amygdalic system meets our criteria for an alarm sys-
tem being interconnected with action selection, as well as biasing cortical / skill-module
activation.

4.4 Conclusion

In conclusion, it is difficult to produce an completely convincing mapping of CAA
attributes to neural subsystems, primarily because the workings of neural subsystems
are only beginning to be understood, but also because the levels of generalization are



not entirely compatible. The primary function of a CAA architecture is to facilitate a
programmer in developing an agent. Consequently, complexity is kept to a minimum,
and encapsulation is maximized. Evolution, on the other hand, will eagerly overload an
architectural module that has particular computational strengths with a large number of
different functions. Nevertheless, we have identified several theories from neuroscience
that are analogous to the features of CAA.

5 Adaptivity in Modular Systems

The modularity of an intelligence has obvious ramifications for learning. In particular,
the generic CAA architecture described in Section3, having three sorts of elements, has
three sorts of adaptability.

First and foremost, there is adaptivity within the skill modules or behaviors. A be-
havior module must have the ability to represent perceptual experience in a way that
provides for mapping motivation to appropriate actions. In other words, adaptive per-
ceptual statedefineswhat a behavior is and does. Specialized learning is ubiquitous in
nature, to the point that leading researchers consider it by far the dominant form of nat-
ural adaptivity [23, 52]. Such attributes are naturally modeled in CAA under behavior
oriented design [9].

Given that action selection requires structure, a natural extension of the CAA sys-
tems described above would allow the agent to learn new reactive plans. There are at
least three means by which this could be done. The most commonly attempted in AI is
by constructive planning. This is the process whereby plans are created by searching
for sets of primitives which, when applied in a particular order to the current situation,
would result in a particular goal situation [e.g.21, 62]. Another kind of search that has
been proposed but not seriously demonstrated is using a genetic algorithm (GA) or GA-
like approach to combine or mutate existing plans [e.g.14]. Another means of learning
plans is to acquire them socially, from other, more knowledgeable agents.

Constructive planning is the most intuitively obvious source of a plan, at least in our
culture. However, this intuition probably tells us more about what our consciousness
spends time doing than about how we actually acquire most of our behavior patterns.
The capacity for constructive planning is an essential feature of Soar and of most three-
layer-architectures; however it is one that is still underutilized in practice. We suspect
this will always be the case, as it will be for GA type models of “thinking”, because
of the combinatoric difficulties of planning and search [16]. Winston [66] states that
learning can only take place when one nearly knows the answer already: this is certainly
true of learning plans. Search-like algorithms for planning in real-time agents can only
work in highly constrained situations, among a set of likely solutions.

Social or mimetic learning addresses this problem of constraining possible solu-
tions. Observing the actions of another intelligent agent provides the necessary bias.
This may be as simple as a mother animal leading her children to a location where they
are likely to find food, or as complex as the imitation of complex, hierarchical behav-
ioral patterns (in our terminology, plans) [13, 64]. This may not seem a particularly
promising way to increase intelligence, since the agent can only learn what is present
in its society, but this is not the case. First, since an agent uses its own intelligence to



find the solution within some particular confines, it may enhance the solution it is being
presented with. This is famously the case when young language learners regularize con-
structed languages [3, 33]. Secondly, a communicating culture may well contain more
intelligence than any individual member of it, leading to the notion of cultural evolu-
tion and mimetics [20]. Thus although the use of social learning in AI is only beginning
to be explored [e.g.53], we believe it will be an important capacity of future artificial
agents.

Finally, we have the problem of learningnewfunctional and/or skill modules. Al-
though there are many PhD theses on this topic [a good recent example is19], in the
taxonomy presented in this paper, most such efforts would fall under the parameter
learning for a single skill module or behavior. Learning full new representations and
algorithms for actions is beyond the current state of the art for machine learning. Such
a system would almost certainly have to be built on top of a fine-grain distributed rep-
resentation — essentially it should be an ANN. However, again, the state of the art in
ANN does not allow for the learning and representation of such complex and diverse
modules.

6 Requirements for a Behavior Learning System

If the current state of the art were not an obstacle, what would a system capable ofall
threeforms of adaptivity described in the previous section look like? We think it would
require at minimum the elements shown in Figure3(a). In this section, we will explain
this model.

Consider first the behavior or skill module system (Figure3(b)). The representation
of the CAA skill modules has been split into two functional modules: the Behavior Long
Term Memory (BLTM) and the Perceptual Short Term Memory (PSTM). The persistent
representation of the skill modules’ representations and algorithms belong in the former,
the current perceptual memory in the latter. There is further a Working Memory (WM)
where the representation of the behaviors from the BLTM can be modified to current
conditions, for example compensating for tiredness or high wind. In a neurological
model, some of these representations might overlap each other in the same organs, for
example in different networks within the neocortex or the cerebellum. As in BBAI, the
skill modules contain both perception and action, though notice the bidirectional arrows
indicating expectation setting for perception.

The full path for expressed action is shown in Figure3(c). This takes into account
both standard action selection and environment monitoring. Here, with the learning
arcs removed, we can see recommendations flowing from the behavior system to action
selection (AS). Action selection also takes into account timing provided by a time ac-
cumulator (TA, see below) and recent action selections (decisions) stored in episodic
short term memory (ESTM). Expressed action takes into account current perceptual
information in PSTM as well as the current modulated version of the behaviors in WM.

We have also provided a separate path for basic perceptual reflexes such as alarm
at loud noises or sudden visual looming. The module for recognizing these effects is
labeled SP for Special Perception. In nature this system also has connections to the
cortical system, so that reflexive fear responses can be developed for complex stimuli,
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Fig. 3. An architecture for allowing adaptation within skill modules, of new plans, and
of new skill modules. Icons for sensing and action are on the lower left and right respec-
tively. Dashed lines show the flow of information during an active, attending system.
Dotted lines are pathways for consolidation and learning. The heavy solid line is the
path of expressed behavior; the double line represents the constant perceptual pathway
for environmental alerts. The fine lines indicate references: the system pointed to refer-
ences representations in the system pointed from.

but this capacity is not necessary for a minimal fully-learning CAA configuration. It is,
however, necessary to isolate the fundamental system from possible modification by the
skill module learning system.

To make action selection adaptive (Figure3(d)) we provide first a time accumula-
tor (TA) as proposed by P̈oppel [48] and Henson [29] and episodic short term memory
(ESTM) as postulated by a large number of researchers (see [41] for experiments and
review.) Episodic long term memory (ELTM) is included for good measure — as con-
solidated experience, it might also represent other forms of semantic memory, or it
might actually be homologous with BLTM.

Finally, in keeping with [41, 58], this model assumes that many of the modules make
reference to the state of other modules rather than maintaining complete descriptions
themselves. This is considered an important attribute of any system which needs to
hold a large number of things which are learned very quickly, because it allows for a



relatively small amount of state. Such reference is considered important in computer
science as a means to reduce the probability of conflicting data sets, and is also a likely
feature of evolved systems, where existing organization is often exploited by a variety
of means.

7 Future Directions: From Neuroscience to CAA

Fortunately, we do not expect that implementing such a complex system is necessary
for most CAA applications. In general, the adaptive needs of the agent can be antici-
pated in advance by the designer, or discovered and implemented during the process of
developing the agent. We do, however, suspect that some of the systems being discov-
ered and explored in neuroscience may soon become standard functional modules in
CAA, in the same way that action selection and alarm systems are now. We finish our
chapter with some lessons from neuroscience which might further CAA, and hopefully
therefore indirectly benefit the ANN community.

We expect that one of the capacities often ascribed to the hindbrain, that of smooth-
ing behavior, should be broken into a separate module. This allows modules that create
motor plans to operate at a relatively coarse granularity. It also allows for the combina-
tion of influences from multiple modules and the current situation of the agent without
complicating those skill modules. The only CAA architecture we know that explicitly
has such a unit is Ymir [59], where the Action Scheduler selects the most efficacious
way to express messages given the agent’s current occupations. For example, if the
agent has decided “cognitively” to agree with something, but it is currently engaged in
listening rather than speaking, it may nod its head rather than say “yes” and interrupt the
other speaker. This sort of capacity is also present in a number of new AI graphics pack-
ages which allow for the generation of smooth images from a script of discrete events
[2, 4]. The fact that such work is not yet seen in robotics may be partially due to the
fact that a physical agent can take advantage of physics and mechanics to do much of
its smoothing [11], but as robots attempt more complex feats such as balancing on two
legs, providing for smoothed or balanced motions may well deserve dedicated modules
or models similar to those cited above.

We also expect that having comprehensive but sparsely represented records of episodic
events will become a standard mechanism. Episodic records are useful for compliment-
ing and simplifying reactive plans by recording state about previous attempts and ac-
tions, thus reducing the chance that an agent may show inappropriate perseveration or
redundancy when trying to solve a problem. Further, as mentioned previously, episodic
memory can be a good source for consolidating semantic information, such as notic-
ing regularities in the environment or the agent’s own performance. These records can
in turn be used by specialized learning systems for particular problems, even if a full-
blown skill learning system has not been implemented.

Many researchers are currently working on emotion modules for CAA. We remain
skeptical of the need for an independent emotion module for two reasons. First, there
is a great deal of evidence that the basic emotions evolved independently at different
times in our history. This suggests that a single emotion module might not be appropri-
ate. Second, emotions are intimately involved in action selection. In fact, Damasio [18]



implies that any species-typical behavior pattern is effectively an emotional response.
This suggests that it is impossible to separate emotions from motivation in action selec-
tion.

8 Conclusions

In this chapter we have attempted to further the advance of ANN by unifying it and neu-
roscience with another branch of artificial intelligence: complete autonomous agents.
We have described both the utility and costs of modularity, and explained the sorts of
mechanisms the CAA field has found necessary to work with these systems. We have
discussed how these mechanisms relate to neuroscience, and in turn have suggested how
current advances in neuroscience might further the field of CAA. We have also pro-
posed a complex model for a modular agent intelligence capable of true mammal-like
learning, which would rely heavily on ANN representations. ANN, with its distributed
representations for machine learning, is the most promising field for developing a sys-
tem capable of developing its own representations and algorithms. Unfortunately, to
date such learning is, as far as we know, beyond the state of the art.

Although our future work section focussed on our own area, CAA, we hope that
the advances in this area of AI can also contribute to the advance of neural networks
research. We expect that a modular ANN would require both similar types of modules
and similar interfaces between them as we have described here. Further, we hope that
as the field of CAA advances, it can become as useful a tool for helping brain scientists
think about and model the sorts of representations and interactions they are attempting
to understand.
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