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Abstract Transitive performance (TP) is a learning-based
behaviour exhibited by a wide range of species, where if
a subject has been taught to prefer A when presented with
the pair AB but to prefer B when presented with the pair
BC, then the subject will also prefer A when presented with
the novel pair AC. Most explanations of TP assume that
subjects recognize and learn an underlying sequence from
observing the training pairs. However, data from squir-
rel monkeys (Saimiri sciureus) and young children contra-
dict this, showing that when three different items (a triad)
are drawn from the sequence, subjects’ performance de-
grades systematically (McGonigle and Chalmers, Nature
267:694–696, 1977; Chalmers and McGonigle, Journal of
Experimental Child Psychology 37:355–377, 1984; Har-
ris and McGonigle, The Quarterly Journal of Experimental
Psychology 47B:319–348, 1994). We present here the two-
tier model, the first learning model of TP which accounts
for this systematic performance degradation. Our model
assumes primate TP is based on a general-purpose task
learning system rather than a special-purpose sequence-
learning system. It supports the hypothesis of Heckers et al.
(Hippocampus 14:153–162, 2004) that TP is an expression
of two separate general learning elements: one for associ-
ating actions and contexts, another for prioritising associa-
tions when more than one context is present. The two-tier
model also provides explanations for why phased training
is important for helping subjects learn the initial training
pairs and why some subjects fail to do so. It also supports
the Harris and McGonigle (The Quarterly Journal of Ex-
perimental Psychology 47B:319–348, 1994) explanation of
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why, once the training pairs have been acquired, subjects
perform transitive choice automatically on two-item diads,
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Introduction

Transitive inference (TI) is the process of reasoning
whereby one determines for some quality that if A > B
and B > C , then A > C . In some domains, such as inte-
gers or heights, this property holds for any A, B or C. For
other domains, such as primate dominance hierarchies, the
property does not necessarily hold (Wright 2001). Tran-
sitive performance (TP) refers to the same determination
as TI, but makes no claim about what cognitive processes
underlie the observed behaviour.

TP has become a significant benchmark task for psy-
chologists of both animal and human cognition and has
also prompted many modelling attempts. While it is well
known that mistakes often tell us more about the nature of
cognitive processes underlying behaviour than does flaw-
less performance, few models of TP account for failures
to learn the task. There are two types of mistakes to
account for. First, both human and animal subjects often
fail to meet criterion on acquiring the initial pair-relations
(e.g. A > B, B > C, . . .) despite careful training, though
if these pairs are acquired, subjects reliably display TP for
pairs of items arbitrarily drawn from the series. Second,
a set of data originally due to McGonigle and Chalmers
(1977) shows that both young children and monkeys sys-
tematically fail to generalise their ability to perform tran-
sitive ‘inference’ from the context of two different items to
that of three though if two of the three, items are the same
the new three-item context presents no problems (McGo-
nigle and Chalmers 1992).

Here we present a model of performance on the transitive
task that explains both types of mistakes. In doing so, we
reveal that the problem with previous artificial intelligence
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models of transitive inference is that they learn too well
to accurately model the target behaviour. The machine
learning techniques used too easily solve the problem
of finding local minima—finding a solution that while
better than the most similar alternatives is not the best
solution overall. We suggest that primates have more
trouble ignoring attractive locally-optimal solutions than
some previous models account for.

Our research supports suggestions of Heckers et al.
(2004) and others that TP relies on two separate learning
processes: one to associate each stimulus with an action,
and another to prioritise which stimulus-action association
is most salient in a context where more than one asso-
ciation is relevant. We call our model the two-tier model
because we dedicate a tier of associative learning to each of
the two learning problems. While multi-layer models have
already been attempted, previous models used backprop-
agation, which ensured globally optimal learning (e.g. De
Lillo et al. 2001; Frank et al. 2003). By contrast, our model
keeps its two tiers of learning independent and so errs ap-
propriately where other systems have learned to perform
flawlessly. This sort of system has been demonstrated as
useful for general-purpose task learning and performance
(Anderson 1993; Bryson and Stein 2001). As such, our
model supplies a simple solution to the question as to why
animals would need a special capacity for TP: they would
not.

In the next section we describe TP training, results and
effects, including a review of the McGonigle and Chalmers
(1977, 1992) triad data. We also describe a model due to
Harris (1988) which explains the triad performance by fully
trained individuals, but does not demonstrate learning. In
the following sections we describe our own model, experi-
ments and results. We discuss the implications of our model
and how it relates to other existing models. Our model’s re-
sults also produce testable predictions, which are discussed
at the end of the paper.

The task

Transitive inference and performance

Piaget (1954) described TI as an example of concrete op-
erational thought. That is, children become capable of TI
only when they become capable of mentally performing
the physical manipulations they would otherwise use to de-
termine the correct answer, normally at the age of about
6 years. For example, TI involves ordering the objects into
a sequence using the rules A > B and B > C , and then
observing the relation between A and C.

Yet Piaget was also aware of an ‘automatic’ variety
of TI in younger children, distinguished from true TI
by the subject’s inability to explain their performance
(Piaget 1928; Wright 2001). Since the 1970s, TP has been
demonstrated in young, pre-concrete-operational children
(Bryant and Trabasso 1971) and a variety of animals—e.g.
monkeys (McGonigle and Chalmers 1977), rats (Dusek and
Eichenbaum 1997) and pigeons (Fersen et al. 1991)—not

normally ascribed with concrete operational abilities.
Further, Siemann and Delius (1993) have shown that for
adult humans who learned to choose between pairs of
doors during an exploration-type computer game, there
was no difference in the performance of individuals who
formed explicit comparison models and those who did not
(N = 8 vs. 7 respectively; the presence of explicit models
were checked by verbal report at the end of testing). All of
these results cast doubt upon the belief that all TP reflects
true inference by the subject.

Characteristic TP effects

Besides the ‘inference’ itself, TP is characterised by a num-
ber of behavioural phenomena which have been taken to
indicate something about the cognitive processes under-
lying the behaviour (Bryant and Trabasso 1971). Some
researchers have questioned the significance of these ef-
fects, particularly the temporal aspect of the symbolic
distance effect (McGonigle and Chalmers 1992; Rapp
et al. 1996). Nevertheless, the following effects1 have
been shown broadly across experimental subjects, includ-
ing children, monkeys, rats, pigeons, and adults (Wynne
1998).

– The end anchor effect (EAE): subjects make an evalua-
tion faster and more accurately when a test pair contains
one of the end stimuli.

– The serial position effect (SPE): even taking into account
the EAE, subjects do more poorly the closer the stimuli
displayed are to the middle of the sequence.

– The symbolic distance effect (SDE): even compensating
for the EAE, the further apart on the series two stimuli
are, the faster the subject makes the evaluation. This ef-
fect is generally taken to contradict any step-wise chain-
ing model of transitive inference (i.e. Piaget’s concrete
operations), since distant stimuli would require more
steps and therefore a longer reaction time (RT).

Training subjects for TP

Training a subject to perform TP is not trivial. Subjects
train on ordered pairs, typically in batches. Because of
the EAE, there must be at least five items (A, . . . , E) to
demonstrate transitivity on just one untrained pair (BD).
Seven or more items would give further information, but
successful training is notoriously difficult to achieve and
even children who can master five items often cannot master
seven. This is true even for simple sorting of ordered items
such as posts of different lengths (McGonigle and Chalmers
1996). Normally, though, stimuli are labelled in a non-
ordinal way, such as by colour or pattern, and controlled by
varying the assignment of rank by subject (e.g. one subject
may learn blue < green < brown while another brown <
blue < green).

1 This is a subset of all reported TI effects, see further Wynne (1998)
or Shultz and Vogel (2004).
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Table 1 Phases of training and testing used for children, taken from
Chalmers and McGonigle (1984, pp. 359–360)a

Phase Training and criteria

P1 Each pair in order (ED, DC, CB, BA) repeated until 9 of the
10 most recent trials correct. Reject if requires over 200
trials total.

P2a 4 of each pair in order. Criterion: 32 consecutive trials
correct Reject if requires over 200 trials total.

P2b 2 of each pair in order. Criterion: 16 consecutive trials
correct Reject if requires over 200 trials total.

P2c 1 of each pair in order. Criterion: 30 consecutive trials
correct No rejection criteria.

P3 1 of each pair randomly ordered. Criterion: 24 consecutive
trials correct. Reject if requires over 200 trials total.

T1 Diad tests: 6 sets of 10 pairs in random order
Reward unless failed training pair

T2a As in P3 for 32 trials. Unless 90% correct, redo P3
T2 Triad tests: 6 sets of 10 triads in random order, reward for all
T3 Extended version of T2

aMethodology for monkeys is similar

Subjects are first taught to use the testing apparatus; they
are presented with an object and rewarded for selecting it.
Next, they are trained on the first pair DE, where only one
element, D is rewarded.2 When subjects reach criterion,
they are trained on CD. After all pairs are successfully
trained, there is usually a phase of ordered repeated training
on all the pairs, but with fewer exposures per pair, which
is then followed by a period of random presentations of
training pairs (see phases P1–P3 in Table 1).

Once subjects are trained to criterion, they are exposed
to test pairs. In order to ensure that there is no training
of the test pairs, they are meant to be “nondiscriminatively
rewarded” (Bryant and Trabasso 1971). McGonigle and
Chalmers (1977) rewarded either choice on test pairs. This
is presumably the least disruptive non-discriminative re-
ward schedule, because whatever item is chosen is the one
the subject is most likely to have expected to be rewarded
for, and since learning tends to occur when expectations
are violated, it is less disruptive to meet those expectations.
Training pairs are often interspersed with test pairs during
the testing phase, with the training pairs still being differen-
tially rewarded. This has been found necessary to maintain
performance on the original training pairs.

Triad data sets

Table 1 finishes with a set of triad testing. These tests are
to date unique to the work of McGonigle and colleagues.
A triad test presents three rather than two stimuli drawn
from the set of stimuli for which subjects reached training
criterion. Trigram tests were originally designed to test Mc-
Gonigle and Chalmers’s Binary Sampling Theory of diadic

2 The psychological literature is not consistent about whether A or E
is the ‘higher’ (rewarded) end. This paper uses A as high.

TP (see Appendix A). Most subjects exhibit systematically
degraded TP on trigram tests.

Triadic testing has been criticised on the grounds that the
sudden presence of three items might confuse the subjects
and so degrade their performance. This criticism was ad-
dressed by McGonigle and Chalmers (1992) when they re-
peated their 1977 experiments to gather more data on RTs.
In 1992 they also tested their subjects on pseudo-trigrams,
in which one of the stimuli is presented in duplicate (e.g. A,
A, C; B, D, D). Subjects showed no significant performance
degradation in this case. The quality of the data set is further
supported by the fact that it was accounted for extremely
well by the model of Harris and McGonigle (1994), which
we describe next.

The production-rule-stack model

Our two-tier model was inspired by the best previous model
of the triad data set. This model is due to Harris (1988). The
production-rule-stack model is a static, non-learning model
of fully-trained subjects which accounts for the McGonigle
and Chalmers (1977) triad data, both in aggregate and as an
explanation of individual performances. This work helped
motivate the McGonigle and Chalmers (1992) study, and
was ultimately published by Harris and McGonigle (1994).

The Harris model is based on a production-rule stack.
Production rules come from artificial intelligence. They
are representations which tightly associate particular con-
texts or sensory preconditions with particular actions.
Preconditions indicate when a context is appropriate for
an individual to express the associated action. A stack is
a common representation from computer science. As the
name suggests, it is a set of objects which have to be vis-
ited in order: beginning with the first item at the ‘top’ of
the stack, the nth item must always be examined before
the n + 1th item. With a production-rule stack, production
rules are checked in order beginning from the top of the
stack. If, when checked, a production’s precondition is met
by the environment then the associated action is expressed.
For example, a precondition might be able to see A and an
action might be grab the item holding your visual attention.

The Harris production-rule-stack model requires the fol-
lowing assumptions:

I. The subject knows a set of rules of the nature “if A is
present, select A” or “if D is present, avoid D”.

II. The subject has a prioritisation of these rules.
For an example of the model, consider a subject with the

stack:

1. (A present) ⇒ select A
2. (E present) ⇒ avoid E
3. (D present) ⇒ avoid D
4. (B present) ⇒ select B

Here the top item (1) is assumed to have the highest priority.
If the subject is presented with a pair CD it begins working
down its rule stack. Rules 1 and 2 do not apply, since
neither A nor E is present in the test pair. However, rule
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3 indicates the subject should avoid D, so consequently it
selects C.

Harris and McGonigle make one more critical assump-
tion:

III. When there are more than two items present (as in
the triad test cases), an avoid rule results in random
selection between the items not currently attended to.

For example, consider the situation where there are three
blocks available B, C, E . If the subject is applying the rule
2 above, and has found and attended to a block E, the ‘avoid’
action means that it is equally likely to grasp either B or C.
This assumption explains the performance degradation of
children and monkeys shown in the triad data.

The Harris and McGonigle model statistically accounts
for the aggregate monkey data. For example, over all pos-
sible triads, the production-rule-stack hypothesis predicts
a distribution of 0, 25 and 75% for the lowest, middle
and highest items respectively. True inference of course
predicts 0, 0 and 100% respectively. The squirrel mon-
keys (Saimiri sciureus) in McGonigle and Chalmers (1977)
showed 1, 22 and 78% respectively. Further, Harris (1988)
was able to match the individual performance of most mon-
keys to a particular stack.

Without triad data, there would be no way to discriminate
which rule set the monkeys use. However, with triad data,
the stacks are distinguishable because of their errors. For
example, the stack:

1′. (A present) ⇒ select A
2′. (B present) ⇒ select B
3′. (C present) ⇒ select C
4′. (D present) ⇒ select D

always selects B from the triad BCD by using rule 2′, while
the previous stack selects B 50% of the time and C 50%
because it bases its decision on rule 3.

There are eight discernible correct rule stacks of three
rules each, all of which reach criterion in training and
exhibit TP on all test pairs. There are actually 16 cor-
rect stacks of four rules, but triad experiments cannot dis-
criminate whether the lowest priority rule selects or avoids
(Harris and McGonigle 1994, p. 325).

Model

Our model has two tiers of learning: one to associate ac-
tions with stimuli (d in Fig. 1), and another to prioritise
association ‘rules’ (b in Fig. 1). For both learning tasks,
priority is represented with a weight, the value of which is
learned through reinforcement. Larger weights correspond
to higher priorities. Which ‘rule’ is fired is determined first
by which stimulus present is associated with the largest
weight, and then by which actions in that stimulus’ associ-
ated action list has the largest weight.

Our goal is not to improve on the Harris and McGonigle
(1994) outcome for modelling trained monkeys, since that
fit is already strong. Rather, our interest is in modelling
how that performance develops in live subjects.
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Fig. 1 The two-tier model. When the subject observes a set of
stimuli a a weight vector (b, the first tier) determines which item
present is most salient. This attracts visual attention c and determines
which rule vector (d, the second tier) selects the appropriate action
(select or avoid). This determines what item the subject grasps e. The
two vectors that were most recently active (b and one of d) are then
updated in response to the reward as per Eq. (1)

The two-tier model comprises a list of perceptual cate-
gories corresponding to the different stimuli seen. Half of
the subject’s task is to prioritise this list. The other half
of the task (the second tier of the model) is prioritising the
actions associated with each stimulus. The same learning
rule is applied to both tasks (see Eq. (1) below).

Figure 1 illustrates how a subject chooses a stimulus
under the two-tier model. At the beginning of a trial, the
subject is presented with a number of stimuli, generally two
or three. If any of the stimuli are novel, they are added to
the first tier by a process described below. Next, the subject
attends to the stimuli present with the highest priority. The
subject then examines the second tier of action prioritisa-
tion to express the highest-priority associated action. The
subject either selects the object it is attending to, or ‘avoids’
that object by grasping another object. If there is more than
one other object present and the subject is ‘avoiding,’ then
the object that is to be grasped is randomly chosen. For
both tiers, whenever more than one eligible tier element
has the same priority, one of these tier elements is selected
at random.

After a stimulus is selected, the subject is either rewarded
or not as appropriate. Weights for both tiers are updated
independently after every trial. We use a simple step func-
tion for weight adjustment which roughly approximates
known conditioning models (Waelti et al. 2001; Rescorla
and Wagner 1972).

As mentioned earlier, the same learning rule is used for
both tiers. All of the weights in a single list are normalised,
so that they always sum to 1. When a new stimulus is seen,
it receives the weight 1/N, where N is the current number
of distinct stimuli categories so far seen. New items in the
stimulus list are further associated with a new action list,
which is initialised with two actions, select and avoid, both
of which are given a starting weight of 0.5.

The weights for any particular list (the stimuli list in the
first tier or one of the action lists associated with a single



5

stimulus in the second tier) are represented as a vector
w. Consider the pair XY , where X is the list element the
subject attended to and Y is a near alternative,3 then wX and
wY are the weights associated with X and Y respectively.
The update rule for these weights is:

If X is correct and (wX − wY < τ ), add δ to wX;

else, if X is incorrect, add δ to wY . (1)

where τ and δ are free parameters, held constant for any
particular subject, but varied across subjects for the exper-
iments. τ is a threshold, over which reward is so expected
that it no longer prompts learning (Waelti et al. 2001). δ is
the amount a weight is changed by a single bout of learning.
If weight change occurs, w is subsequently renormalised.

Methods

Model testing through artificial life simulation

The experiments in this paper were performed using ar-
tificial life (ALife) simulations. An ALife model can be
thought of as a conventional (though meticulously spec-
ified) hypothesis. ALife experiments operate by running
simulations, then performing standard hypothesis testing to
see whether the simulated results are a good match to the
original data. For clarity, we will follow the convention of
referring to the artificial subjects in these experiments as
agents.4

Once a model has been built, the process of simulation
allows one to search broad parameter spaces that would
be relatively difficult or expensive to test in the laboratory.
These runs then serve as predictions from the model. If
desired, a relatively sparse set of these predictions, perhaps
those that are most surprising or vary most between differ-
ent versions of the hypothesis, can then be tested against
experiments with living subjects. Further validation of an
ALife model occurs when simulation results unexpectedly
converge with previously-observed, real-world phenom-
ena. This is the case for the experiments described below.
Further technical details of the simulation can be found in
Appendix B.

Experimental overview

To fully motivate the two-tier model, we run a preliminary
experiment with a single tier. This roughly corresponds
to existing models (e.g. Wynne 1998; Delius and Siemann
1998; Frank et al. 2003; Shultz and Vogel 2004) which
order the stimuli rather than productions. More elaborate

3 If X is a stimulus, Y is one of the other stimuli present chosen
randomly, unless the rule was avoid in which case it is the item
actually grasped. If X is an action then Y is the second-highest priority
action for that stimulus.
4 The term agent is actually intended to refer to any actor, artificial
or not, but it has become associated with AI software systems.

analysis and comparisons with these models are made later
in the Discussion section. Our second experiment shows
how the two-tier model works without being exposed to
the sort of phased learning required by primates, while
Experiment 3 shows the two-tier model with such training.
The final experiment shows that our model also accounts for
children’s performance on learning non-overlapping pairs
of stimuli (A > B, C > D).

Experiments

Experiment 1

Procedure

In the first experiment, we did not use the full two-tier ar-
chitecture, but rather tested the learning algorithm shown
in Eq. (1) in a single-tier model. There was only a sin-
gle vector with each element corresponding to a stimulus.
The agent chooses the stimulus corresponding to the vector
element with the highest-priority weight.

For training we exposed the artificial subjects to all train-
ing pairs in a random order for approximately 400 trials.
This training regime is sometimes used with rats (Wynne
1998).

Results and discussion

The single-tier system always learns to order the stimuli
perfectly, provided that τ is small enough. The last error
by these systems is normally made by the 100th trial and
weights stop fluctuating (or stabilise5) about 50 trials later.

The ability to pass criterion consistently without a train-
ing regime is very unlike primates, which normally need
a training regime and which do not always pass criterion.
Also unlike primates, this model performs perfectly on tri-
ads, since once the ordering is learned it will always select
the highest priority stimulus.

Figure 2 shows a typical result for when
∑N

n=1 n τ ≤ 1.
If τ > 0.1, then a stable solution for five items cannot be
reached. This is because there is no way that five weights
can be more than 0.1 different from each other and still
sum to 1 (see Eq. (1) and the discussion of normalisa-
tion). If τ = 0.1, then it is possible that the weights can
be [0, 0.1, 0.2, 0.3, 0.4] which sums to 1. For any value of
τ < 0.1 there are many possible stable solutions for learn-
ing the ordering of five items.

If learning cannot stabilise, the model’s behaviour is open
to a ‘hot hands’-like phenomenon (Gilovich et al. 1985),
where a solution that has recently been very successful may
get more weight than it deserves. When there is a chance
reiteration of one particular pair, the higher element of that

5 Normally in AI, agents are considered to have fully learned a task
only when their weights have stabilised (stopped changing). This of
course can not map directly to the animal research, where learning
must be judged by expressed behaviour.



6

0 100 200 300 400
0

0.1

0.2

0.3

0.4

0.5Fig. 2 A typical result for a
one-tier learning agent. X-axis:
trial number; Y-axis: weights of
the vector element
corresponding to each stimuli
(which sum to one). Free
variables are set to parameters:
τ = 0.08, δ = 0.02. The key for
the lines (in order from top
down as of trial 400) are A (•),
B (–), C ( ∗ ), D ( ), E ( )
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0.5Fig. 3 One-tier learning in an
agent with a ‘stupider’
parameter set: τ = 0.12,
δ = 0.02. This cannot find a
stable solution (see text) thus
occasionally gives wrong
responses. Key (top down for
trial 600): A (•), B (–), C ( ∗ ), D
( ), E ( )

pair can accumulate so much reinforcement that its weight
surpasses the element that should be above it. Thus the
agent over-estimates the value of an item because of its
recent ‘winning streak’. This is illustrated in Fig. 3. Even
so, however, these agents very rarely make mistakes and so
would easily pass training criterion.

These results provide one possible explanation for indi-
vidual differences in transitive task performance. Individ-
ual differences in stable discriminations between priorities
can affect the number of items that can be reliably ordered.

Experiment 2

Procedure

In the second experiment we used the two-tier model,
but still trained it by presenting training pairs in ran-
dom order. We tested learning in the two-tier model
across a range of parameter values: every combination

of τ drawn from {0.08, 0.1, 0.12, 0.14} and δ drawn from
{0.01, 0.02, 0.04, 0.08, 0.12, 0.16}. Twelve subjects were
run with each possible parameter combination for a total of
288 subjects.

Results and discussion

Only about one-fifth of two-tier agents learn the training
pairs entirely successfully (56 of 288, see Table 2, column
2 below). We do not know how this corresponds to primate
subjects without a training regime as such results have
not been reported, but we can assume that primates also
fail frequently, as this would justify the use of elaborate
training procedures.

Agents that learn the training pairs successfully perform
on triad testing exactly as described by Harris (1988) be-
cause a snapshot instance (that is, one with learning frozen)
of a successfully trained two-tier model is logically equiv-
alent to a production-rule stack.



7

Table 2 Production-rule-stack equivalents to solutions by Saimiri sciureus subjects (last column) and by two-tier AI subjects undergoing
various forms of traininga

Regime starting E D Regime starting AB Starting AB
No regime After training After testing After training After testing McGonigle and Chalmers (1992)

s(A)s(B)s(C) 8 51 41 – – –
s(A)s(B)a(E) 12 68 26 – – –
s(A)a(E)a(D) 3 – 1 4 2 2
s(A)a(E)s(B) 7 4 16 3 1 2
a(E)a(D)s(A) 9 – 1 57 50 –
a(E)a(D)a(C) 8 – – 59 47 1
a(E)s(A)a(D) 7 3 – 4 11 –
a(E)s(A)s(B) 2 1 13 – 3 –
Total correct 56 127 98 127 114 5
Total 288 144 144 144 144 7

aThe distribution of solutions for two-tier agents is strongly determined by the order training pairs are presented. The analysis of the live
monkeys’ correlated stacks reported in the last column was performed by Harris and McGonigle (1994)

0 100 200 300
0

0.1

0.2

0.3

0.4

0.5Fig. 4 Two-tier learning with
no training regime. Rules
learned in descending order of
priority: select D ( ), avoid C
( ∗ ), avoid B (–). The rules of
the bottom two stimuli are
rendered insignificant, see text.
The system cannot stabilise
because it is far from a complete
solution, but it behaves correctly
for every training pair except
C D. Parameters: τ = 0.08,
δ = 0.02

Figure 4 illustrates a typical, failing result. Rule selec-
tion is made very early in training and remains stable once
established, so is not depicted in these figures but rather
only in the accompanying legends. Nevertheless, the added
complication of rule learning defeats the simple training
regime used in the one-tier experiments. With this training
regime, the two-tier model generally learns either the solu-
tion shown in Fig. 4 or a symmetric one with the select B
and avoid C rules fighting for top priority.

There are only a limited number of accurate solu-
tions the two-tier model can have, corresponding to
the correct rule stacks enumerated by Harris (1988).
A correct solution must be either an ordered sequence
of selects [s(A)s(B)s(C)], a reverse order sequence of
avoids [a(E)a(D)a(C)] or an ordered cross of these (e.g.
[s(A)a(E)s(B)]). See Table 2, column 1 for a complete
list.

Although the rules learned by the typical, failing two-tier
agents have a very different order than just described, they
still perform well on the training task. For each failing
agent, only one training pair is incorrect: that containing

the two top-priority stimuli. For example, in Fig. 4, the
only training pair which cannot be handled is C D. Notice
that although the weights in Fig. 4 have not stabilised, the
behaviour has. Whether a(C) or s(D) is highest priority, the
agent will incorrectly grasp D when presented with C, D.
Such agents display something like the SPE by confusing
only central pairs. Taken in aggregate, the agents display
the full SPE: the most frequent errors involve the two cen-
tral pairs, but there are occasionally errors involving other
elements.

All the agents show the EAE. Agents quickly learn rules
which avoid making errors involving the two end stimuli.
For example, the agent in Fig. 4 may appear to neglect
the two end stimuli, since the weights of the stimulus-rule
pairs associated with those stimuli are very low. But in fact,
this agent gets the end pairs (AB and DE) correct 100%
of the time by associating the rule avoid with B and select
with D. By reducing the priority of the A and E rules, the
agent learned the ‘correct’ behaviour in the end-term cases.
Associating this knowledge with the inner member of the
end pair protects the agent from a possible incorrect rule
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associated with the outer member. However, this strategy
leaves such agents with no possible means to correctly learn
both middle pairs. The learning system fixates on trying to
resolve an impasse in the middle of the sequence, but the
learning algorithm, based on gradual change, cannot solve
that quandary.

Nineteen percent of the time two-tier agents without a
training regime learn a correct solution. If successful learn-
ing were the simple consequence of the agents being at
chance for learning a rule about either the inner or the
outer element of the two end pairs, we would expect that
agents would learn both ends correctly 25% of the time,
only one end 50% of the time, and neither end 25% of the
time. We can dismiss this as the full explanation for the
agent’s failure: χ2(3, N = 288) = 35.68, p < 0.001. The
fact that the inner end-pair stimuli, B and D occur in twice
as many pairs as the end stimuli leads the two-tier model
to the case of using both inner rules 40% of the time (166
in 288), not 25%. When correct solutions are learned, they
come evenly from all parameter values, and seem evenly
distributed across all possible correct solutions (Table 2,
column 2).

We would obviously like to compare these results with
the outcomes of live primate subjects who fail to meet crite-
rion on the initial training for transitive learning. Although
no triad results were reported for monkeys or children that
missed criterion, one monkey subject, Roger, passed crite-
rion but still showed a consistent error between the third and
fourth item (Harris and McGonigle 1994, p. 332). Roger’s
errors are in keeping with the results of this model.

Experiment 3

Procedure

In the third experiment, we trained two-tier models using
the training regime in Table 1. We used the same range of
parameters as for the previous experiment again with 12
instances of each for a total of 288 AI subjects.

Results and discussion

Summarised in Table 2, our results are that 88% (254 of
288) of the AI agents successfully learn the training pairs
and therefore the TP task. This is slightly better than the
live, monkey subjects did, though not significantly given the
small number of monkeys (χ2(1, N = 7) = 0.42). Nearly
all successful software agents converge quickly, and the
ones that fail to meet criterion fail early, usually by
Phase 2a.

Successful learning for agents with phased training is
highly dependent on δ; when δ was large (values in
0.08, 0.12, 0.16), one in four agents failed, which is ac-
tually a tighter fit to the monkey failure rate than our
full aggregate result. Otherwise there were only a very
few failures (3), all of which had the lowest tested δ,
δ = 0.01 (Nδ=0.01 = 48). Since δ determines the rate of

weight change after training, it is unsurprising that a very
low δ results in a slow learner. Even when such agents
pass criterion, they may never learn a stable solution (see
e.g. Fig. 6). Interestingly, agents do sometimes learn when
δ > τ , which means that for any trial on which learning
occurs, the attended item will change places in the priority
stack.

One advantage of the two-tier model over a single learn-
ing tier can be seen in the fact that during initial training
stable representations are learned that involve rules with
nearly the same priority. This is because some rules will
never be compared. For example, items E and A do not occur
together in any of the training pairs, so there is no pressure
to differentiate their weights prior to TI testing (see Fig. 5,
phases P2b–P3). This is significant if neural systems have
limited capacities to discriminate different stable orderings
(see discussion for Experiment 2, and Cowan 2001; Bryson
and Lowe 1994; Gallistel et al.1991). For tasks involving
stimuli which never co-occur, the rule representation allows
for stable learning with either more items or larger values
of τ. A more natural example of such a task than TI would
be navigation, where some landmark features might never
occur in the same place.

Another thing to notice in the phased learning results
is that significant learning occurs during testing. This
phenomenon was also reported with monkeys (Harris and
McGonigle 1994). Learning occurs because rules that were
never compared (e.g. those triggered by any two non-
adjacent items) previously are now compared. If their
weights do not already happen to be at least τ apart,
learning is triggered, regardless of whether they were cor-
rect or how they are reinforced. This explains the util-
ity of continuing to differentially reinforce training pairs,
a common procedure during the testing phase of the TI
task.

Experiment 4

Procedure

De Lillo et al. (2001) model an experiment by de Boysson-
Bardies and O’Regan (1973) related to TP which gives
information on how children represent training pairs. In
their Experiment 4, de Boysson-Bardies and O’Regan
presented children with two non-overlapping pairs, AB,
C D.

de Boysson-Bardies and O’Regan were testing an ex-
planation of children’s TP which they call the labelling
strategy. This first assumes the children associate the la-
bels ‘big’ and ‘small’ with items in pairs, and then posits
a set of transformations to explain performance on interior
items. They test their theory by training children only on
the pairs A > B and C > D, then testing them on all pos-
sible combinations of stimuli (see the first two columns of
Table 3). Their labelling-strategy model successfully pre-
dicts that most children consider that A > D and B < C ,
rather than coming up with a complete ordering of the pairs
(e.g. A > B > C > D or C > D > A > B).
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Phased Training. Labelled lines
indicate the end of training and
testing phases (see Table 1).
This agent arrives at different
stable solutions at different
points, but they are all correct.
This solution is an example of
select (A, •), avoid (E, ),
avoid (D, ), see Table 2. It
also selects (B, –) and no rule is
learned for C ( ∗ ). This agent
succeeds with very ‘stupid’
parameters: τ = 0.12, δ = 0.06
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P3 T1 T2a T2Fig. 6 Phased Training where
learning slips during triad
testing. Rules: select A (•),
select B (–), and either avoid E
( ) or select C ( ∗ ).
Parameters: τ = 0.12, δ = 0.02

Table 3 Comparison of results from de Boysson-Bardies and
O’Regan (1973) Experiment 4, their labelling hypothesis, and the
two-tier modela

Subject Labelling Two-tier
Pair scores hypothesis hypothesis

A > B 88 100 100
A > C 52 50 50
A > D 85 100 87.5
B > C 27 0 12.5
B > D 50 50 50
C > D 87 100 100

aThe subjects were deliberately not trained to full performance on
the training pairs (AB andC D) but the models do not take this into
account. See Table 4 for explanation of the two-tier values

Modelling this experiment required no actual runs of
the two-tier model, because the results can be determined
analytically, see Table 4.

Results and discussion

The two-tier model on this task predicts that for each pair
the children learn

1. to focus on one item, and
2. to either select or avoid that item.

No rule will be learned for the other item, because the
weights learned from the first training session will deter-
mine the rest of the outcomes. Given this model, and as-
suming that all rules are equally likely to be learned across
all items, aggregate data for the two-tier model actually
matches the de Boysson-Bardies and O’Regan data better
than their own model does on the two pairs where the pre-
dictions differ (see Table 3). Note though that for individ-
uals, our model predicts 75% of children will consistently
choose A > D and B < C , while 25% will be completely
at chance for the first presentation of these pairs, because
25% of the children will have no applicable rule.



10

Table 4 Explanation of two-tier predictions from Table 3a

Applicable Individual Aggregate
Pair rules predictions prediction

A > B s(A) 100 100.0
a(B) 100

A > C s(A), s(C) 50 50.0
s(A) 100
s(C) 0
None 50

A > D s(A), a(D) 100 87.5
s(A) 100
a(D) 100
None 50

B > C s(B), a(C) 0 12.5
s(B) 0
a(C) 0
None 50

B > D a(B), a(D) 50 50.0
a(B) 0
a(D) 100
None 50

C > D s(C) 100 100.0
a(D) 100

aFor each training pair, we assume each subject is at chance for
learning one rule (either a select or an avoid) to solve it. Since the
two rules are learned in isolation from each other, we also assume that
when both happen to be applicable, which rule has higher priority
is at chance. Predictions are for the percent chance of selecting as if
the rule shown under ‘pair’ holds. Individual predictions are based
on possible rule sets an individual might have acquired in training;
aggregate predictions assumes an even distribution of individuals

General discussion

We have achieved our goal of showing that a system like
that of Harris and McGonigle can be learned, and with a
simple, biologically-plausible learning algorithm.

Moreover, in doing so we have a produced a model that
displays the End Anchor and Serial Position effects, and
requires the same phased training that children and squirrel
monkeys require to have a similar number of subjects pass
criterion. That these features of the model were unintended
consequences of the two-tier structure further validates both
our model and the work of Harris and McGonigle (1994).

The parsimony of the two-tier model

The two-tier model, while apparently more baroque than
some other models (e.g. Wynne 1998; Delius and Sieman
1998), is actually parsimonious in that it also addresses
how animals know whether or not to represent stimuli as
elements of a sequence. In the two-tier model, they don’t
need to. The sequencing is of behavioural priorities, not
of items, and ordering behaviour priorities is a natural and
obligatory aspect of a multi-step task. It is important that
steps nearer the goal of the task have higher priority so that
an individual is able to take advantage of opportunities.

Thus the consummatory actions should always have the
highest priority (Tyrrell 1993; Bryson and Stein 2001).
Previous research has shown that primates are capable of
taking advantage of such opportunities, whereas pigeons
cannot (Terrace and McGonigle 1994).

Nevertheless, the quality of the fit still seems surpris-
ing. First, why would subjects focus only on a single item
as the precondition of an action? Why would they not
instead learn the appropriate action for each pair of stim-
uli when this would give a more accurate result? Second,
why would an ‘avoid’ action which non-deterministically
chooses between any other options be one of only two
possible actions?

We propose a possible explanation based on considering
the full individual history of the acquisition of the TP task:

1. In the earliest stages of training, when the subjects learn
to grasp an object for a reward, they learn the basic
rule structure associating any stimulus and the response
select.

2. When subjects are first presented with pairs, they are
initially trained on extended blocks of trials using just a
single pair. Subjects discover that they may select only
one object. We propose that at this stage subjects learn
two things: to discriminate stimuli, and also to inhibit
the select action in some contexts. This inhibition re-
sults in the avoid action being learned and associated
with some objects that, for whatever reason of individ-
ual history or preference, are highly salient (hold the
subject’s attention).

3. Finally, as they are exposed to more pairs of stimuli,
subjects must learn (or adjust) prioritisation between
neighbouring inhibition rules. This is the stage of learn-
ing that the two-tier model models.

The origin of the single-item cue is the original learned
behaviour pattern: the grasping of a single item. The ori-
gin of the two actions expressed by the subjects is also
accounted for.

This explanation assumes that animals are innately con-
servative in what they try to learn about, adding no more
features than are strictly necessary. Such a strategy is par-
simonious, and also reduces the degrees of freedom of the
problem, thus increasing the probability that the animal
will learn successfully.6

Our model is also parsimonious in that it provides for
nearly the entire set of TP effects described in Character-
istic TP effects section, except for the SDE. Accounting
for the SDE as well requires a further assumption: that the
process of selecting between two rules takes longer when
their priorities are less than τ apart, and that this effect is
exaggerated the closer the priorities are to each other. For
example, the ‘decision’ to act on one rule may require a
build-up of activation that is inhibited by competing rules in
proportion to their priority. Thus when two competing rules
are similarly weighted, this process is likely to both take
longer and be more arbitrary. This is essentially an elabora-

6 We use the term strategy here to mean an innate, evolved solution,
not something intentionally selected by the subjects.
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tion of a common assumption expressed in existing simple
associative models (Wynne 1998), and in other temporal
models based on neural activation (Glasspool 1995; Mc-
Donald and Lowe 1998). Shultz and Vogel (2004) present
a particularly nice model of this extra assumption as an
additional layer to their TP learning system. The small addi-
tional network they use accounts not only for the SDE, but
also for the contiguity effect—that humans respond more
quickly when the question (e.g. “which stick is longer”)
is correctly answered by an end-anchor item present in the
current pair (in this case, the longest stick seen in training).

Such a layer for solving the SDE could easily be added
onto the two-tier model. In the case of the two-tier model,
the result of this process would not produce the typical
SDE for every individual subject, because which pairs are
ambiguously close to each other depends on which of the
possible solutions the individual subject has learned, and
how well. However, the SDE appears to be an aggregate
rather than an individual effect (McGonigle and Chalmers
1992). We believe that an aggregate SDE would emerge
from our models since they display the serial position effect,
but we have not modelled this yet. We intend to explore the
SDE issue further in future work.

Related research

There is a vast cognitive modelling literature that uses pro-
duction rules. This literature is generated primarily by two
communities that use related technologies for creating their
models: Soar (Newell 1990) and ACT-R (Anderson 1993).
Of these, ACT-R is more similar to the two-tier model since
it also provides a single representational means of ordering
applicable productions. However, the learning system that
prioritises rules for ACT-R is not geared for creating a total
ordering of applicable rules with respect to each other, but
rather learns a utility value for each individual rule which
depends on its probability of success. For the TI task, every
item except the two end items will have the same utility,
thus the ‘rule stack’ learned is quite different from what is
learned by our system, and essentially only has two vari-
ants depending on whether select or avoid rules wind up
dominating.

Wood et al. (2004) have examined ACT-R on the TP task
including triad testing. We found that two of the five mon-
keys described in (Harris and McGonigle 1994) matched
one of the possible ACT-R solutions closer than a fully or-
dered production rule stack such as Harris originally postu-
lated, while the other three did seem to learn fully ordered
production stacks. The representations underlying both the
two-tier model and ACT-R could in theory represent either
solution. However, the basic theory behind ACT-R and its
actual learning system mandates the utility-based solution
only. The learning rule for the two-tier model will only sta-
bilise (that is, stop learning) if the weights attain a strong
ordering. However, as Fig. 4 shows, other sorts of equilibria
can also be found by this system which might approximate
the ACT-R response.

De Lillo et al. (2001) present a backpropagation model
which displays the SDE (see Characteristic TP effects sec-
tion), but does not account for the McGonigle and Chalmers
(1977) triad results. Backpropagation is a machine-learning
technique which allows weight changes to be determined
across layers of vectors simultaneously (Hertz et al. 1991).
Similar to the two-tier model, De Lillo et al. (2001) use a
two-layered approach. The difference in outcomes between
these models shows the importance of not only the basic
architecture but also the learning algorithm and primitives.

No learning system can operate successfully in a rea-
sonable amount of time without being provided with bias
(Wolpert 1996). The very structure of a network, its con-
nectivity and its connections to sensing and action, serves
as that bias. If the two output units of the De Lillo et al.
model were connected to select and avoid instead of ordinal
positions on the board (left and right), their model would be
fairly similar to ours, and might even learn the task. How-
ever, for the two-tier model these ‘layers’ were separated in
different modules, the results of each of which were neces-
sary for the action sequence. The output of the first ‘layer’
determines not only which rule is chosen, but also which
item is being visually fixated when that rule is chosen. This
is critical to the operation of the avoid rule, particularly in
the triad case. Further, the main purpose of backpropaga-
tion as an algorithm is to avoid the kind of mistakes that the
two-tier system made when not trained with phased train-
ing. This is done by sharing learned information across the
layers of the system. Our research gives evidence that in
real primates, there are two discrete learning systems in-
volved in TP. As mentioned in the introduction, this theory
has been strongly supported by the neuroscience literature,
including both fMRI and lesion work (Heckers et al. 2004;
Alvarado and Bachevalier 2000).

Shultz and Vogel (2004) present a recent model of all
known TP effects. Like ours, their model is feed forward
with no propagation, and split into two different layers.
However, all of the pair learning and TP is generated in the
first layer which is a simple single-layer network.7 As such,
the Shultz and Vogel (2004) model can neither exhibit any
failures to reach criteria, nor replicate the triad data. The
second layer of their network is dedicated to representing a
competitive response network (choosing the ‘left’ or ‘right’
item when asked for ‘longer’ or ‘shorter’ element). This is
the layer which accounts for the SDE and contiguity effect,
as reviewed earlier. If this second layer of the Shultz and
Vogel (2004) model were added as a third tier of our model,
the new three-tier model might also display CE and SDE.

O’Reilly and Rudy (2001) proposed a Coordination
Account model of transitive inference which, like all the
models reviewed here, is not based on logical inference.
However, their model is more like the Binary Sampling
Theory, hypothesising that intervening items were effec-
tively ‘imagined’ by the hippocampus. Also like the Binary

7 Shultz and Vogel refer to this layer as a Cascade Correlation (CC)
network (Fahlman and Lebiere 1990). However, the single-layer TI
problem is so simple (as we demonstrate in Experiment 1) that the
CC algorithm never adds any hidden units.
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Sampling Theory, O’Reilly and Rudy (2001) violate the
serial position effect and the SDE.

When testing their theory on live rats, Van Elzakker
et al. (2003) rediscovered both the SDE and the contiguity
effect.8 These results inspired a theory similar to the
value transfer theory (von Fersen et al. 1991; Zentall and
Sherburne 1994), where each item elicits an excitation
roughly monotonic with its place in the sequence. This
excitation results not from a sequential representation,
but from simple association. Firstly, the end items are
strongly reinforced (either positively or negatively), while
all intermediate items are reinforced roughly equivalently,
as per simple conditioning. Second, the items near the end
items have their weights shifted perceptibly up or down,
due to frequent association with either a very positive or a
very negative item. This association leads to successful TP
on items that are sufficiently far apart, but has little effect
on central pairs (particularly on long lists such as 6-pair,
7-item sequences).

Frank et al. (2003) then built a second model of TI reflect-
ing these results. Similar to De Lillo et al. (2001), both the
2003 and the 2001 models used backpropagation for their
learning regime, though in a far more elaborate (and mod-
ular) architecture intended to replicate brain structure. The
2003 model extended the 2001 to include an additional dif-
ferential learning aspect for the stimuli which “swamped”
(p. 352) the part of the model (still embedded) which had
previously run counter to the SDE. However, again, this
model relies on simple ordering of the stimuli so cannot
replicate Harris’ match to individual performance on tri-
ads.

The Frank et al. (2003) model could presumably be ex-
tended again to learn orderings of performance rules instead
of stimuli. However, at least for pigeons, there is strong ev-
idence of value-transfer behaviour (Siemann et al. 1996).
It is also well established that primates and pigeons repre-
sent sequences differently (Terrace and McGonigle 1994),
so differences in their TP are perhaps less surprising than
a difference between primates and rats. However, unlike
testing for both human and non-human primates, standard
procedure for testing and training rats on TP requires using
olfactory cues to dig directly for food. This may trigger
a different, possibly older, olfactory-lobe learning system
(c.f. Hurliman et al. 2005). Certainly some olfactory learn-
ing of food cues in rats is amygdalic (Bermúdez-Rattoni
et al. 1983), a fact overlooked in some early hippocampal
modelling work (McClelland et al. 1995).

We now turn to existing criticism of the Harris (1988)
model, which underlies our own. Van Elzakker et al. (2003)
assert incorrectly that Harris’ model depends on another
McGonigle and Chalmers (1992) theory, the ‘symbolic
distance view’. This assertion is incorrect; Harris’ model
clearly in no way assumes an underlying sequential
representation. Van Elzakker et al. also mistakenly claim
that normalisation cannot account for the sort of variation
in performance between series of different lengths. If the

8 In animals, the contiguity effect can only be expressed in terms of
favouring the rewarded end of a series.

normalisation is combined with a stabilising factor (e.g.
our ‘significant difference’, τ) their reported results (p.
339) are accounted for—the ease of learning the next
inner pair from the end anchors is approximately the
same regardless of series length. This is significant with
respect to our model only due to our claim about the SDE
above; for Van Elzakker et al. (2003) nowhere address a
model actually like Harris’. Van Elzakker et al. principle
objection is to those who think that the hippocampus is per-
forming ‘inference-like’ computations on learned stimuli.
Neither tier of our model actually performs inference-like
computations. In terms of neurological correlates for our
model, Heckers et al. (2004) suggests original pair learning
may occur in the parahippocampal gyrus, while many
researchers suggest that relational processes like prioriti-
sation between rule pairs takes place in the hippocampus
(c.f. Alvarado and Bachevalier 2000; Baxter and Murray
2001; Heckers et al. 2004; Buckmaster et al. 2004).

Delius and Siemann (1998) also offer a critique of Harris.
While accurately describing Harris’ model (p. 128), they
inaccurately claim that the model would have no special
problem with circular series (A > B, B > C, C > A). In
fact, while the model would learn and perform in this con-
text, no more than two pairs would be correctly represented
at a time, and any correct answers on the third would be the
result of either uncertainty or of an instability in the learned
pairs. This accurately reflects how monkeys perform on this
particular task: for a large number of initial trials there is one
pair they seldom get right, though eventually they suddenly
solve the entire problem (Alvarado and Bachevalier 2000).
We assume this performance shift reflects a recruitment of
new resources beyond those modelled here—possibly the
identification of one pair as a separate, disjoint task. Delius
and Siemann (1998) also assert that the Harris model can-
not represent and compare two items from two disjoint se-
ries (e.g. A > B > C ; a > b > c), but this probably false
since it is a simple extension of our Experiment 4. Delius
and Siemann (1998) also claim that Harris’ model cannot
easily be converted to a neural one, an issue our model has
addressed.

Conclusions and predictions

We have presented a new model, the two-tier model, which
accounts for the learning of TP in both squirrel monkeys
and human children younger than 6. This is the first
learning model which accounts for the systematic degrada-
tion in primate performance when subjects are presented
with three stimuli rather than just two (McGonigle and
Chalmers 1977; Chalmers and McGonigle 1984; Harris
and McGonigle 1994). We provide a novel explanation
for subjects’ failures to pass criterion when being trained
for transitive inference, which is already supported by
errors observed by one monkey that passed criterion. We
have also provided a better explanation for the results of
de Boysson-Bardies and O’Regan (1973) on children’s
performance when trained on two non-overlapping pairs.
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Our model makes a number of testable predictions. For
example:

1. Visual attention should settle on the item associated with
a rule just before the grasp is made—in the case of an
avoid rule, this would not be the same item as the one
selected.

2. In general, RTs and visual scanning behaviour should
be discernibly different for select and avoid rules.

3. If subjects who fail to pass criterion on training pairs
are given triad testing, most should show a misordered
priority stack with high priority rules for neighbouring
pairs of non-endpoint stimuli.

4. For individual subjects, the ordering of a newly pre-
sented item (as in de Boysson-Bardies and O’Regan,
Experiment 3) should be determined by the existing rule
stack. For example, if the rule stack is all selects as in
Eq. 2.5, a new item would be positioned last or second
to last, if they were all avoids it would be positioned
first.

Testing these predictions on primates requires running
triad experiments after TP pair training in order to discrim-
inate which rules were learned by individual subjects.

Appendix A: the binary sampling model

In one of the earliest responses to Bryant and Trabasso
(1971), McGonigle and Chalmers (1977) not only demon-
strated non-human animal learning of TP, but also proposed
a model to account for the errors the animals made. Their
subjects were squirrel monkeys (Saimiri sciureus). Like hu-
man children, these monkeys tend to score only around 90%
on the pair B D. To explain this, McGonigle and Chalmers
proposed the binary-sampling theory. This theory assumes
that:

– Subjects consider not only the items visible, but also
items that might be expected to be visible. That is, they
take into account elements associated with the current
stimulus, especially intervening stimuli associated with
both.

– Subjects consider only two of these possible elements,
choosing the pair at random. If they were trained on that
pair, they perform as trained; otherwise they perform at
chance, unless one of the items is an end item, A or E,
in which case they perform by selecting or avoiding the
item, respectively.

– If the subject chooses an item that is only expected, not
actually present, it obviously cannot act on that selection
(e.g. grasp the item). However, selection reinforces con-
sideration of that item, which makes it likely the next
pair the animal considers includes one of the higher-
valued of the items displayed.

Thus for the pair B D, this model assumes an equal chance
the monkey will focus on BC , C D, or B D. Either estab-
lished training pair results in the monkey selecting B, while
the pair B D results in an even (therefore 17%) chance of
either element being chosen. This predicts that the subjects

would select B about 83% of the time, which is near to the
average actual performance of 85%.

The binary-sampling theory can be viewed as a naive
probabilistic model—it incorporates the concept of expec-
tation, but not in a full-fledged probabilistic framework. It
proved controversial both because of lack of parsimony (or
explanation) for the ‘imagining’ the extra items, and for
apparently contradicting the SDE, since further-apart pairs
may require more operations (though see McGonigle and
Chalmers 1992). What is significant to the present model
is that it motivated McGonigle and Chalmers to generate a
data set showing the results of testing monkeys (and later
children Chalmers and McGonigle 1984) on triads of three
items. The binary-sampling theory predicts that for the triad
BC D there is a 17% chance D will be chosen (half of the
times B D is attended to), a 33% chance C will be chosen (all
of the times C D is attended to) and a 50% chance of B (all
of BC plus half of B D). Any model using a fully sequential
representation, or indeed true TP, would of course predict
0, 0 and 100%. In fact, the monkeys showed 3, 36 and
61%, respectively. Six-year-old human children showed a
similar pattern on triad results (Chalmers and McGonigle
1984). While this is a fairly good match, the Harris (1988)
production-rule model provides a significantly better one.

Appendix B: details of the simulation

The ALife agents were written in the Common Lisp Ob-
ject System (CLOS) (Steele 1990), a standard program-
ming language frequently used for artificial intelligence.
The code was developed under the Behavior Oriented
Design methodology, developed by one of the authors
(Bryson 2001), and implemented on top of a graphical
software development environment for CLOS called Lisp-
Works (Xanalys 2001).9

The artificial intelligence (AI) program that runs the sim-
ulations controls not only the learning agents but also the
operation of the test apparatus including the recording of
results. The program is modular, and the knowledge in the
modules representing different real-world agents (the sub-
jects, apparatus and operator) is kept isolated from the other
agents’ knowledge. That is, although the testing-apparatus
modules contain knowledge about the correct solution of
the experiment, the test subject has no direct access to this
knowledge except as evidenced by the reward.

On each trial, the testing agent (the apparatus) generates
an n-gram (either diad or triad) as appropriate to the current
phase of the experiment and places its element in the test-
board. The learning agent (the subject) then selects one
of the options by transferring it from the test-board to its
hand. The apparatus determines whether the subject has
chosen correctly and provides reinforcement with either a
‘peanut or a ‘buzzer token. The apparatus also records the
trial results, and ends the trial by clearing the testing area.

9 A personal edition of LispWorks (which runs on all platforms) is
available for free download from its manufacturers, and all software
used in this paper is available from the authors.
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When the subject is presented with the test-board it se-
lects an object as described (see Fig. 1). When the subject
receives reinforcement, it applies the learning rule in Eq.
(1) based on its current variable state (its expectations), its
current context (the contents of the test board and its hand,
and the rules to which it is attending) and the presence or
absence of the ‘peanut reward.’

In Experiments 1 and 2, an indefinite number of trials
were run until the simulation was terminated by the human
experimenter. In Experiment 3, the apparatus was enhanced
to run the training and testing procedure shown in Table 1.
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