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1 Introduction

This is a short paper relating representations of intelli-
gence between three fields: psychology, neuroscience
and artificial intelligence (AI). I particularly emphasize
the role of modularity in these three areas. Because space
is limited, I will assume a general familiarity with modu-
lar AI architectures, and concentrate on relating them to
natural intelligence1.

2 Modularity in Psychology

I will begin with an incredibly simple definition of mod-
ularity from the psychological literature, due to Flom-
baum et al. (2002): “Modularity is the thesis that the
mind contains independent input systems that, when en-
gaged, are restricted in the types of information that they
can consult.” This definition is useful for two reasons.
First, it introduces a very clean criteria for modularity:
that some part of the mind does not have access to some
other part of the mind. Given this simple criteria, any-
one who accepts the idea of implicit knowledge or un-
conscious action has already acknowledged that there is
some sort of modularity involved in human intelligence.

The second reason this quote is useful is the phrase
“independentinput systems”. This makes clear the ori-
gins of a great deal of the theory underlying modularity
in the psychological literature —The Modularity of Mind
by Fodor (1983). Although Fodor states that he believes
modularity may also exist in motor systems (p. 42) he
claims ignorance of these systems and concentrates on
perception. An entire school of research has followed
this lead (recently Coltheart, 1999; Downing et al., 2001;
Spelke, in press).

Even if Fodorian psychology research did consider
motor as well as perceptual modules, it would never
consider the sorts of tightly-coupled perception-motor
modules prevalent in artificial intelligence (e.g. Minsky,
1985; Brooks, 1991; Albus, 1997). This is because, for

Fodor, the purpose of modules is to translate the com-
plexity of raw sensory input into a common representa-
tion used by a general-purpose reasoning system which
chooses the course of action. Presumably, Fodorian mo-
tor modules would translate similarly generic instruc-
tions into the complexity of muscular control.

Fodor believes that the mind is constructed of both
verticalcapacities, the afore-mentioned modules special-
ized to task, andhorizontal capacities, things like the
general-purpose reasoning system. At this high level,
his theory is consistent with some AI work. For exam-
ple, although Minsky (1985) describes single modules
(or ‘agents’) capable of sensing, planning and action, he
also describes memory systems and organizational struc-
tures (e.g. the B-brain) which are accessible to or have
access to all agents. PRS and three-layered architectures
(e.g. Georgeff and Lansky, 1987; Bonasso et al., 1997)
also have both perception/action modules and monolithic
elements such as planners.

3 Modularity in Brains

I would now like to turn from psychology to neuro-
science. We have evidence of at least three sorts of mod-
ular decomposition in mammal brains2.

3.1 Modularity by organ

We know that different parts of the central nervous sys-
tem have radically different structure, in terms of differ-
ent component cells, different amounts of connectivity,
and different organizations of connectivity. Even if we
did not have behavioral evidence (as we do) that the neo-
cortex, cerebellum, hippocampus and so forth perform
different functions, we would suspect as materialists and
computer scientists that these organs must perform dif-
ferent computations, because of their different structure.
This point becomes more obvious when we realize there

1See Bryson (2000) for a review of the AI architectures mentioned here.
2Most of this discussion is true of vertebrate brains in general, but I am most familiar with primate brains so I restrict my claims.
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is no particular reason not to extend it to more peripheral
organs, such as the spinal chord, the retina or the cochlea.

3.2 Modularity by region

Even within an organ which is fairly structurally homo-
geneous (at least in considerations likely to affect the na-
ture of its computations) there are differences in func-
tion. In some cases these seem to be determined primar-
ily by connectivity: for example, the primary auditory
and visual cortices are areas of the neocortex that most
directly receive the sensory input of the two systems.
It has been suggested that other regions are modular by
function, such as the ‘fusiform face area’ or the ‘parahip-
pocampal place area’ (Downing et al., 2001). However,
given the amazing diversity of cortical computation even
in single regions (Kauffman et al., 2002, e.g.), it may
be that such apparent specialization also reflects connec-
tivity, this time toward subcortical brain organs special-
ized for purposes such as social interaction and navi-
gation (the amygdalic and hippocampal systems respec-
tively.) Some cortical regions are steps along a stream
of processing, e.g. regions dedicated to identifying low-
level features such as line orientations (Hubel, 1988), or
to higher-level concepts such as categories of objects or
tasks (Freedman et al., 2001) or personal identity (Perrett
et al., 1992).

3.3 Modularity by context

Even within a given region, the semantics of a particu-
lar cell’s firing seems to be dependent on the context in
which it fires. This has been demonstrated in the hip-
pocampus (Kobayashi et al., 1997), in sensory cortices
mapping receptive fields (Sen et al., 2001), and in the
prefrontal cortex (Asaad et al., 2000). I believe that the
extent of the consequences of thistemporalmodularity
have not been fully recognized. It may be that some com-
putations are mutually exclusive because their represen-
tations cannot be active at the same time. Further, in-
dividual differences in developing these representations
(Skaggs and McNaughton, 1998, e.g.) might account for
individual differences in insight and generalization based
on the relative accessibility of two representations.

3.4 Discussion

I would argue that modularity by region could be consid-
ered analogous to Fodor’s vertical capacities, the things
he calls ‘modules.’ They also correspond to AIbehav-
iors, as proposed by Brooks (1991), and used widely in
modular AI. However, it may take a stream of several
cortical areas (for example) to correspond to one Fodor-
ian module, and an even longer stream of processing to
create a full Brooksian behavior connecting perception
to action.

Modularity by organ is a more analogous to hori-
zontal capacity — organs are often specialized to task
rather than perceptual domain and help the agent as a
whole. On the other hand, there are many more organs,
and their functioning more intertwined with the regular
modules, than I think either Fodor or three-layered agent
architectures imply. For example, a great deal of seman-
tic knowledge seems to be stored in specialized cortical
regions rather than being associated tightly with a plan-
ner as is the model of PRS. Minsky’s ‘Society of Mind’
or Soar (Newell, 1990) might be closer models of this
knowledge distribution, but neither of these systems have
as many sorts of specialized processing as the brain has
dedicated organs.

Temporal modularity — modularity by context — is
not generally shown in modular AI; it has more in com-
mon with traditional computing systems. Modular AI
systems tend to have all modules operating continuously
in parallel. However, Soar has always had the notion of
problem space to constrain search to a particular context
(Laird and Rosenbloom, 1996). Developers of a related
but simpler system, ACT-R, tried to do away with prob-
lem spaces in order to simplify the system, but found
them necessary for successful problem-solving (Ander-
son and Matessa, 1998).

4 Module Coordination and
Structured Action Selection

My own AI research has been into the management
and design of modular AI. I have come to the conclu-
sion that 1) Semantic and task memory should be stored
in specialized representations within behaviors (percep-
tion/action vertical modules), and 2) ordering the behav-
ior of such modules is best done using a specialized, hori-
zontal module for sequencing behavior. This sequencing
module is not a full planning system, but rather a system
for running established reactive plans (see Bryson and
Stein, 2001a, for further details).

I believe that this behavior sequencing is directed by
a number of specialized organs in mammals. For exam-
ple, the affective forebrain systems including the amyg-
dala help redirect attention out of a complex plan se-
quence in response to urgent environmental stimuli such
as loud noises. The amygdala can also learn to respond
to frequently salient stimuli such as particular sounds,
people or rooms. The basal ganglia has recently been
implicated in arbitrating between competing subsystems
(Mink, 1996; Redgrave et al., 1999). The periaqueductal
gray has been implicated in action sequencing for com-
plex, species-typical tasks (Carlson, 2000; Lonstein and
Stern, 1997).
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Other horizontal / organ-based biological modules
that I believe would have useful analogs for AI sys-
tems include the cerebellum, which provides dynamic
smoothing between discrete position targets, and the hip-
pocampus, which seems to provide for both episodic
memory and task learning (see further discussion in
Bryson and Stein, 2001b).

5 Deliberation

Deliberation, or conscious attention to a task, still seems
deeply mysterious to me. Although I have been studying
planning and modularity with an eye to biological plau-
sibility for over a decade, and although the accessibility
difference that determines explicit from implicit knowl-
edge is a key indicator of modularity3, I still see no sys-
tematic difference (other than qualia) between conscious
and unconscious thought other than a marked increase in
cortical activity (Dehaene et al., 2001, 1998).

I am not convinced that consciousness is isomorphic
with having self-knowledge, although clearly having a
good representation of oneself is useful to planning. Nor
is it with having language, although language may fun-
damentallyalter the nature of consciousness, both by al-
lowing shorthand concept reference in what is clearly a
limited capacity system, and by increasing coherence as
a consequence of language’s sequential temporal nature
(Spelke, in press). But I could easily construct an AI
straw-being that might have either or both of these at-
tributes but not seem particularly more alive or aware
than any other AI system.

Most intriguing to me are a number of recent results
showing that 1) humans can learn complex tasks with-
out explicitly understanding them and further 2) humans
who do gain an explicit understanding showno perfor-
mance differencefrom those who do not (Siemann and
Delius, 1993; Bechara et al., 1995; Greene et al., 2001).
I suspect two things. First, that Dennett (2001) is abso-
lutely right in thinking that, as we come to understand
consciousness, we’ll realize we have been covering sev-
eral disparate functions with that one term, none of which
are magic, and second, that two of these functions will be
focusing search and ordering behavior in time.
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