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1 Introduction

Scientific social trends ranging from dynamical systems theories to post-modernism have called
into question whether the apparent hierarchical structure of naturally-occurring intelligent be-
haviour actually derives from structured intelligence. These questions and perspectives overlook
substantial evidence from both neuroscience and biology more broadly that behaviour really is or-
ganised utilising both modularity and hierarchy. In mammal brains, modular structure starts from
cellular composition, and continues conspicuously through the existence of discrete regions with
differing processing capacities (Badre, 2008). We can discriminate a brain region by its consistent
and regular pattern of nerve-cell type and inter-cell connectivity, while these same features vary be-
tween regions. Hierarchy derives from the interaction between these modules. This is particularly
apparent when we can produce complex movements such as the production of particular words
(Mateer, Rapport II, & Polly, 1990) or grasping and transfer gestures (Graziano, Taylor, & Moore,
2002) by directly stimulating single cells.

Computer science tells us that a wide variety of possible computational architectures are able to
produce the same computational outcome (Turing, 1936). Why then would evolution select some-
thing so elaborate as a highly-regionally-differentiated vertebrate brain? As scientists we believe
that the most parsimonious explanation is the most probable. Similarly, the most simple structure
sufficient is the most likely to be discovered and maintained by evolution. However, recognis-
ing parsimony is not always easy (Dawkins, 1997; Myung, Forster, & Browne, 2000). Many factors
need to taken into consideration, such as path dependency (the impact of historical accident) and
metabolic efficiency.

Theoretical computer science can help us understand why evolution reliably finds structured
solutions. Efficiency is determined by task, in learning and information just as in physics (Wolpert,
1996). A modular brain addresses the variety of tasks intelligence requires with an efficiency that no
single representation could provide. And animal-like intelligence does require varied capabilities.
The most obvious example of this is the variety of sensory inputs we utilise. Light and sound each
provide us with information the other cannot — the same is true of somatic touch and internal
proprioception. The sensory organs that first detect these forms of information can already be
thought of as specialised modules of our overall intelligence, but so too could the various cortical
regions that process this information further downstream. Here the specialist regions may not be
specialised just to sensory modality, but rather to information structure. For example, the “visual
cortex” in fact processes spatial information more generally — it is also invoked in learning Braille
(Kauffman, Theoret, & Pascual-Leone, 2002).
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Following from the above brief introduction to the evidence of and explanations for structure
in natural intelligence, this chapter will next describe the history of ideas of structured control,
attempting to explain their periodic losses and resurgence. I then address a few of the criticisms that
underly current skepticism concerning structured control. Finally, I discuss the origins of intelligent
behaviour in the large, showing that modularity and hierarchy are pervasive in explaining the
varieties of intelligent behaviour found in nature.

2 The History of Theories of Structured Control

We often tend to think of scientific understanding as a monotonically increasing library of infor-
mation, but this is not the case. While we may accumulate data more or less like a collection, real
understanding requires the construction of theories. This construction is a social process. Scien-
tists are trained to know that science is never about certainty. Science is rather a dynamic process
concerned with approaching certainty through evidence and reason. Thus at any particular time,
leading experts on a topic will know a variety of hypotheses, the evidence for and against each
of them, and experts associated with each of these matters. Scientific understanding then is really
an aggregate term, reflecting a variety of dominant theories and individual hypotheses held at a
particular time.

In this section I review the last century of history concerning the scientific evidence for and
against structure playing a role in intelligent control. Given, as the previous section summarised,
the prevalence of evidence for structure in intelligence, understanding why there is any doubt in
the matter requires understanding the importance of theory on understanding, and the importance
of personality, philosophy, politics and history on theory.

2.1 Structure

One of the defining features of intelligent behaviour is the ordering of expressed individual ac-
tions into coherent, apparently rational patterns. From approximately 1951 until the mid 1980s, the
dominant theories in both psychology and artificial intelligence for explaining intelligent behaviour
held that hierarchical and sequential structures internal to the agent or animal underlie this ordered
expression (e.g. Lashley, 1951; Tinbergen, 1951; Piaget, 1954; Hull, 1943; Dawkins, 1976; McGonigle
& Chalmers, 1996). However, the last two decades have seen an increase of support for a more
dynamic theory of of intelligence (e.g Port & van Gelder, 1995; Botvinick, 2007). This new theory
holds that intelligence, like the brain itself, is actually composed of enormous numbers of small
processes operating in parallel. Several researchers in this new paradigm have claimed that be-
haviour controlled by hierarchy is necessarily rigid, brittle, and incapable of reacting quickly and
opportunistically to changes in the environment (Maes, 1991; Goldfield, 1995; Hendriks-Jansen,
1996; Seth, 2007). They suggest that the apparent hierarchical organisation of behaviour is not the
result of internal structured control, but it is rather only an inadequate model imposed on a far
more complex dynamic process.

Hendriks-Jansen traces the hierarchical theory of behaviour organisation to the ethologist Mc-
Dougall (1923), who presented a theory of the hierarchy of instincts. Ethological theory during this
period, however, was dominated by Lorenz, who “denied the existence of superimposed mech-
anisms controlling the elements of groups” instead believing that “the occurrence of a particular
activity was only dependent on the external stimulation and on the threshold for release of that ac-
tivity.” (Baerends 1976 p. 726 cited in Hendriks-Jansen 1996 pp. 233–234). This theory had obvious
correlates with the then-popular black-box theories of Skinner (1935) and the behaviourists, though
these were actually agnostic as to the underlying organisation of behaviour. The behaviourists’ ag-
nosticism was itself a scientific-political position set in opposition to Freud.
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Lashley (1951) revitalised the hierarchical theory of behaviour with both data and reason. He
demonstrated that hierarchy is the only explanation for the speed of some action sequences, such
as those involved in human speech or the motions of the fingers on a musical instrument. Neural
processes are simply too slow to allow elements of such sequences to be independently triggered in
response to one another. Lashley therefore proposes that all the elements of such a sequence must
be simultaneously activated by a separate process — the definition of hierarchical organisation. The
exact neurological explanations of sequence learning are still an active area of research. However,
Lashley’s argument is well established. Items of a sequence are initially activated hierarchically, as a
set, and then released by a second mechanism (Salthouse, 1986; Henson, Norris, Page, & Baddeley,
1996; Davelaar, 2007).

From roughly the time of Lashley’s analysis, hierarchical models have dominated attempts to
model intelligence. Particularly notable are the models of Tinbergen (1951) and Hull (1943) in
ethology, Chomsky (1957) in linguistics, and Newell and Simon (1972) in artificial intelligence and
human problem solving. Mainstream psychology has been less concerned with creating specific
models of behaviour control, but generally assumes hierarchical organisation as either an implicit
or explicit consequence of goal-directed or cognitive theories of behaviour (Bruner, 1982). Staged
theories of development and learning are also hierarchical when they described complex skills
being composed of simpler, previously-developed ones (Piaget, 1954; Greenfield, 1991; Karmiloff-
Smith, 1992).

In a tribute to Tinbergen (his PhD supervisor), Dawkins (1976) extended Lashley’s argument
for hierarchical control. Dawkins used computational parsimony to argue for hierarchical theories.
Dawkins argues that it is more likely that a complex action sequence useful in multiple situations
should be evolved or learned a single time, and that it is also more efficient to store a single instance
of such a skill.

Dawkins’ arguments and proposals anticipate many of the techniques developed later for ro-
bust control in artificial intelligence. In particular, Brooks (1986, 1991b) advocates the decomposi-
tion of intelligence into task-specific modules. These modules, termed behaviours are in turn organ-
ised into fairly egalitarian networks of competence, termed levels. As the name implies, the levels
are themselves organised in a stack, with the highest level subsuming the goals of the lower levels,
though these are assumed to be operating in parallel. For each level, the levels below it provide
a reliable behavioural context for its operation. Ironically, although Brooks’ system, the Subsump-
tion Architecture, exploits both modular organisation and a simple, linear, goal-based hierarchy
of module coordination, his approach has been taken by journalists and philosophers as evidence
for homogeneous dynamical models intelligence (Kelly, 1995; Hendriks-Jansen, 1996). Shanahan
(2005) points out a similar inconsistency in some people’s perception of the Global Workspace The-
ory of conscious action selection.

More recently, many authors treat the hierarchical and modular structure of intelligence as obvi-
ous and accepted facts (Byrne, 1999; Prescott, Bryson, & Seth, 2007). Nevertheless, the controversy
persists (Barsalou, Breazeal, & Smith, 2007; Botvinick, 2007; Seth, 2007).

2.2 Emergence

The competing theory, that responsive animal intelligence cannot possibly be governed by hierar-
chical control, has emerged from some of the practitioners of the dynamic hypothesis of cognition
(van Gelder, 1998). These researchers tend to seek a single mathematical system of representation
to be sufficient for describing and learning intelligent behaviour. Not all researchers that fit this
description are in-principle opposed to hierarchical structure. For example, since the mid 1990s,
much machine learning has exploited hierarchical hidden Markov models (Fine, Singer, & Tishby,
1998). Although these are provably equivalent to single-layer Markov models, learning systems
are simply easier to engineer when hierarchy is added. The same is true in neural network archi-
tectures, though here there are theoretical reasons to have at least two layers (Minsky & Papert,
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1969). Nevertheless, most researchers choose at least three, for purely practical engineering reasons
(Hansen & Salamon, 1990). Such approaches though are still relatively homogeneous, overlooking
the example of nature favouring modularity as well as hierarchy.

The theory of dynamic action expression suggests that complex dynamic or chaotic systems
operate within the brain producing the next behaviour not by selecting an element of a plan, but
rather as an emergent consequence of many parallel processes (e.g. Maes, 1991; Brooks, 1991a;
Goldfield, 1995; Kelso, 1995; Hendriks-Jansen, 1996; van Gelder, 1998; Barsalou et al., 2007; Seth,
2007). Evidence supporting the older hypothesis of structured hierarchical behaviour is seen to
have been biased by the hierarchical and sequential nature of human explicit thought and language.
In particular, because much theoretical work in psychology is conducted using computer models,
theories may be biased towards the workings and languages of the serial processors of the machines
available to most psychologists (Brooks, 1991a).

A fundamental appeal of the dynamic hypothesis is that it is necessarily correct, at least to some
level. Assuming a materialist stance, intelligence is known to be based in the parallel operation of
the body’s neural and endocrine systems. It is nearly as well accepted that human and animal
behaviour can be described as hierarchically ordered (Dawkins, 1976; Greenfield, 1991; Byrne &
Russon, 1998; Prescott et al., 2007). Though note even here that in response to the Byrne and Rus-
son (1998) target article on imitation of the hierarchical structure of behaviour, nearly a fifth of the
commentaries chosen to appear with the article questioned the existence of hierarchical control
(Vereijken & Whiting, 1998; Mac Aogáin, 1998; Jorion, 1998; Gardner & Heyes, 1998, of 21 commen-
taries).

The question is, given that there is statistically discriminable sequential and hierarchical order-
ing of behaviour, how and when are these behaviours so organised? Some argue that the order is
emergent, which is to say not encoded explicitly but rather a consequence of the interaction of a sys-
tem of simpler processes. Viewed from an atomic or even cellular level, this is of course necessarily
true of all behaviour — in fact, of all matter. Further, few would argue that animals have complete
structured behaviour plans that are expressed regardless of their environment. However, the struc-
ture of actions we see emerges not from an amorphous homogeneous being, but from the modular
and hierarchical neural control system found in vertebrates. It is natural and parsimonious for us
to conclude that this structure at least partially determines the patterns of action it generates.

3 The Confusion of Theories of Structured Control

Given the strong evidence from neuroscience for structured intelligent control, why does contro-
versy continue in this area? There are several possible reasons. First science is a political process
carried out by humans with deep personal concerns and values. In particular, the twentieth century
witnessed a large swing in human thought towards the importance of egalitarianism. Such polit-
ical influence has had documented effect on evolutionary theory (Sterelny, 2007) — it may have
influenced ethology as well. Second, as the mathematics of chaos and complexity became known,
it was correct scientific procedure as well as natural that its practitioners should try to account for
as much data as possible with this new approach. But finally, there have been a few specific influ-
ential theories that ultimately proved to be simply wrong. These wrong theories have turned some
scientists away from concepts associated with the theories. In this section I address a few of these
misconceptions.

3.1 Modularity Does Not Require Language, Strict Encapsulation or Innate-
ness

One reason scientists such as Elman et al. (1996) or Barsalou et al. (2007) reject modularity as an ex-
planation of human intelligence is because they are really rejecting one particular characterisation
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of it. In psychology, the best known description of modularity is due to Fodor (1983). One of the pri-
mary criteria Fodor provides for recognising a module is that a module must be innate, not learned.
The lifelong interplay between genes and environment makes many developmental psychologists
and biologists uncomfortable with the entire category of innateness (e.g. Thelen & Smith, 1994;
Elman et al., 1996; Donnai & Karmiloff-Smith, 2000; Griffiths, 2001). Of course, innateness has no
bearing on the functional or computational characteristics of modularity. Many proponents of psy-
chological modularity believe that modules develop over the ontogeny of an organism (e.g. Bates,
1999; Carruthers, 2005; Sperber & Hirschfeld, 2006). Here the idea is that regions or subnetworks of
the brain specialise to particular tasks in a response to experience, in an ontogenetic recapitulation
of the evolution of the neural specialisation we see in the brain’s various regions.

Similarly, Barsalou et al. (2007) reject modular theories because modules must be fully encapsu-
lated — that is, they cannot affect each other at the level of data or representation. This characteri-
sation is also due to Fodor (1983), though in AI it was particularly popularised by Brooks (1991b).
Not every modular system shares this characteristic either, the brain being an obvious exception.
But in AI too, memory can be usefully stored in modules, possibly with special-purpose represen-
tations, yet still made accessible to other modules via interfaces (Bryson, 2000a, 2001; Thórisson,
Pennock, List, & DiPirro, 2004; Metta, Fitzpatrick, & Natale, 2006).

Another confusion that Fodor (1983) introduced is the claim that modules only support per-
ception and action, and must be combined into a true mind via a layer composed of general in-
telligence that translates between them. This somewhat bizarre claim has not only been accepted
but modified and extended to imply that modules can only be integrated with language, and that
this explains human exceptionality (Carruthers, 2003; Spelke, 2003; Chomsky, 2000). While there
is no question that language substantially affects human intelligence and culture, as has already
been explained modular systems exist throughout natural and artificial intelligence, in systems
well-integrated without language. Human exceptionalism in accumulating culture probably sub-
stantially predates language, and in fact must account for language itself (Buckley & Steele, 2002;
Bryson, 2009).

3.2 Hierarchical Organisation Does Not Imply Slow, Autocratic or Fragile Con-
trol

In the introduction I mentioned that the presence of hierarchical control in the brain was demon-
strated in neuroscience by the production of complex movements by directly stimulating single
cells. Examples include speaking particular words in humans (Mateer et al., 1990) and making
grasp and transfer gestures appropriate to scramble feeding in macaques (Graziano et al., 2002).
Considering such cells to be near an apex of a pyramid of top-down control is the classic error of
reasoning that has motivated much anti-hierarchical rhetoric. Rather, such cells should be thought
of as a juncture, an intersection between two overlapping hierarchies (see Figure 1). The first hier-
archy generates behaviour when the cell is highly stimulated. The second hierarchy is the combi-
nation of motivation and perceived opportunity that would ordinarily bring activation and other
information to the cell when neuroscientists were not the ones stimulating it. In terms of flow of
information through the brain, the two hierarchies can be seen as inverted from one another (see
figure). Neighbouring cells in the same layer of the hierarchy receive nearly the same set of in-
puts and distribute nearly the same sort of outputs. These neighbouring cells will generally be
interconnected to each other through patterns of mutual inhibition and excitation, simplifying the
coordination problem between cells at the same level (Riesenhuber & Poggio, 1999).

The firing of each such cell is sufficient to generate behaviour involving the the further process-
ing of millions of cells — not only is the action executed by thousands of muscle cells signalled by
thousands of afferent nerves, but also the basic signal is further modulated and controlled by brain
structures such as the cerebellum and basic feedback control loops in the spine. But what causes
these cells to fire in the first place is at least as complex — a system of not only perception and sen-
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Figure 1: A gross abstraction of neu-
ral control. Hierarchical organisation
can occur within columns, where peer
nodes on the level of hierarchy each
specialise as an apex for processing a
certain set of sensory information, and
for generating a certain form of be-
havioural control. Moderation between
nodes at the same level of hierarchy
happens both through mutual excita-
tion and inhibition, and through exec-
utive control (c.f. Redgrave, Prescott, &
Gurney, 1999).

sor fusion, but also attention and goal arbitration. The normal stimulus for such an action requires
recognition of external stimuli, itself a hierarchical process fusing information from the many cells
that compose sensory apparatus with learned categories. Any normal environment contains many
such recognisable stimuli, and which one an animal attends to must itself be governed in a way
appropriate to the animal’s current needs (Redgrave, Prescott, & Gurney, 1999).

The fact that the brain is essentially concurrent also allows an explanation for how hierarchically-
structured behaviour can avoid the fragility normally associated with single-point control, and also
avoid latencies associated with having to revisit every step of a hierarchy (a criticism of hierarchy
due to Maes, 1991). Forebrain gating systems may focus attention directly on computation at one
subtask, even though a hierarchically-organised path brought attention to that task in the first place
(Rensink, 2000; Bryson & McGonigle, 1998). The sort of distributed system described above and
shown in Figure 1 is also robust to damage, as such networks adapt dynamically to account for
data — they are perpetually learning in order to make more reliable predictions. Thus if damage
removes part of the network, neighbouring cells adapt to fill in the gap in control.

My own work has shown in artificial intelligence that hierarchy working in interaction with con-
current modules can control mobile robots navigating ordinary office space (Bryson & McGonigle,
1998) and play complex real-time computer games like Capture the Flag against human opponents
(Partington & Bryson, 2005). Further, I have shown that such hierarchical structure with switching
attention can out-perform a ‘fully aware’ system at controlling an agent with multiple goals and
threats in a fairly rich environment (Bryson, 2000b). In this last case I argue that my system worked
better purely because it was easier to design and to adjust. Because the hierarchy reduced the com-
plexity of the search space the designer has to parse, the program is sufficiently easier to optimise
that this compensates for any loss of information through neglect of available options. The same
combinatorics confront evolution and development in biology as confront human designers. Thus
hierarchical structures provides advantages in all three cases.
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4 Modularity in Control Extends Beyond Intelligence

So far I have described modularity as a decomposition of intelligent control for the purpose of
reliability and / or efficiency. A sufficient though not necessary characteristic of modularity is for
each module to have a distinct system of representation for storing acquired information. Once
we begin to think about control as being decomposed modularly, we can also begin extending our
understanding of intelligence into an understanding of the biological and evolutionary origins of
cognition. This in turn can help us understand species-level differences in cognition and related
traits, such as life history.

Modularity is already argued outside of psychology and neuroscience in evolutionary biol-
ogy. Evolutionary developmental biology argues that physiological modularity, encoded by the
genome, underlies and accelerates contemporary tetrapod evolutionary processes (Kirschner, Ger-
hart, & Norton, 2006; Müller, 2008). Single mutations do not tend to make miniscule alterations to
an animal, but rather to add, subtract or alter complexes of interrelated traits. For example, the
shape of the beaks of Darwin’s finches on the Galapagos is controlled by only two genes, and the
same genes account for general head shape, skull thickness etc. so that a bird will always be able
to support its own beak (Campàs, Mallarino, Herrel, Abzhanov, & Brenner, 2010). My own work
assigns exactly this role to modularity in the development of AI systems. Plasticity should only be
made available where intelligence cannot practically be provided in advance by the developer, for
example if a robot will be required to learn its own navigation routes in unknown buildings. Where
such learning must take place, it should be performed in purpose-built modules that support the
learning to the maximum extent possible (Bryson, 2001, 2003).

Can reasoning about modularity give insight into species-level differences in cognition? What
needs to be explained? Cognition is often portrayed as being a universally useful ability. If this
is true, we need to explain the diversity of cognitive capacities. We may be tempted to take an
implicitly Lamarkian view, thinking that somehow humans are just particularly lucky or fittest,
but in fact the discrepancies in fitness between extant species are not great (Kimura, 1985). Rather,
extant species represent a position in a space of possible evolutionary tradeoffs. The best-known
example of such a tradeoff is the quantity of offspring versus the amount of parental investment per
offspring. We can think of species as ranged along an axis of variation between investing a great
deal in a very small number of offspring (as with juvenile apes) or very little in a large number of
offspring (as with fungus spores). Extant variation in cognitive abilities, ranging from apes through
protozoa, indicates that there must be some compensating tradeoff or tradeoffs against cognition,
creating axes of cognitive variation.

One of the axes of cognitive variation is the speed with which learning takes place. Even within
species, the vertebrate brain consists of modules which learn at a variety of rates. Quick-learning
systems can rapidly gather data from direct experience, but only because they can recognise and
represent that information with sparse representations (Teyler & Discenna, 1986; McClelland, Mc-
Naughton, & O’Reilly, 1995). The categories necessary for these sparse representations are formed
through slower systems which extract generalisations from large quantities of data, possibly con-
sidering repeated presentations(Louie & Wilson, 2001). This is one of the standard theories of the
computational function of the hippocampal system — that it quickly gathers episodic memories
which can then be used to train cortical systems on semantic knowledge. This episodic data itself
relies on cortical / semantic category representation to provide a sufficiently sparse representa-
tion for storing large amounts of information in a confined brain region (Teyler & Discenna, 1986;
McClelland et al., 1995; Louie & Wilson, 2001; Rogers & McClelland, 2004; Foster & Wilson, 2006).

Not every aspect of individual behaviour is learned. A great deal of behaviour is determined
genetically, including (as the behaviourists eventually discovered) which sorts of stimuli can be as-
sociated with which types of action (Gallistel, Brown, Carey, Gelman, & Keil, 1991). This is true not
only from the perspective of the architecture of the brain, but also the morphological characteristics
of the body, which determine the possible range of an animal’s actions, its capacities of perception,
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and its metabolic needs (Nehmzow, Smithers, & McGonigle, 1993; Pfeifer, 1999; Paul, 2004). Genetic
evolution might also be viewed as a process of learning — a means by which species and therefore
individuals within species acquire behaviour.

If we are willing to think of learning (or at least behaviour acquisition) in this way — as some-
thing that sometimes occurs outside of an individual — then we can postulate a continuum of
adaptation processes running from individual development and learning through evolution and
speciation. The computational costs and benefits of modularity and hierarchy are the same in all
these cases. Thus we find modular architectures throughout nature: interacting but very different
representations that generate behaviour. Genes in a genome, nerve cells in a brain, individuals in a
society, species in an ecosystem — each of these levels of hierarchy has particular mechanisms for
producing behaviour, and of acquiring and representing variation, and of performing optimisation
across the possible behaviours. Each layer itself contains modules composed of relatively more ho-
mogeneous individual elements expressing relatively similar strategies across a relatively narrow
spread of variation. For example, we can see in tetrapod embryos stable selection for two different
types of development: a robust core spinal area where each cell is autonomous and controls its own
expression, and the elaborated limb regions where hierarchical control of gene expression allows
the relatively rapid evolution of novel forms (Winslow, Takimoto-Kimura, & Burke, 2007). Neither
representation usurps the other, though one (the spinal version) is older. The hierarchical represen-
tation increases evolvability so is adaptive, but also depends on a more robust representation at the
core. Within these modules, further sub-modules develop which become limbs, digits, and organs
(Müller, 2008).

We can similarly think of species as modules within an ecosystem. If all currently-present life on
Earth has evolved from a single replicator, then the fact that the subsets of individuals that engage
in recombination of their genotypes is not entirely arbitrary is interesting. Which couples co-parent
offspring depends not only on physical proximity, but also on species. Thus a species might be
thought of as a modularised search mechanism, which optimises a particular behavioural strategy
which is encoded in that species’ genotype.

One interesting tradeoff helps bridge two of the levels I described earlier — the individual vs.
the society. This is the inclusive-fitness tradeoff. This tradeoff determines how much effort an
individual gives to its own reproductive success vs. its relatives’ (see e.g. West, Griffin, & Gardner,
2007). For example, one is twice as related to one’s own children than to one’s nieces or nephews,
so inclusive fitness tells us that we should be twice as ready to invest effort in our own children
as sibling’s (Hamilton, 1964). Of course, breeding can incur significant costs. Normally, one is not
considered to be altruistic if one invests effort in one’s offspring, but is this simplistic definition
really justified? Altruism is not a mystery of evolution, but rather a measure of where along a
spectrum of potential inclusive-fitness investments a species happens to lie. Individuals from more
altruistic species invest more heavily in the reproductive success of their extended kin, though still
presumably the cost is in proportion to their kin’s benefit and relatedness.

In humans and other cognitive social species, behaviour is acquired not only from genetics but
from culture — from social transmission. We might choose to define kin in terms of sharing any
inherited traits which control the inclusive-fitness tradeoff, whether biological or cultural. This
leap allows us to generalise our explanation of altruism further. Levels of individual altruism
may reflect not only species-level strategies, but also context- or personality- based variation in
individual strategies. For example, Rutte and Taborsky (2007) have demonstrated that individuals
of some species behave more altruistically when they experience or even witness more altruistic
behaviour themselves. This presumably facilitates more rapid adaptation to social vs. individual
strategies, in response to the current environmental context.

Where levels of altruism are personality based, the distribution of such personalities in a pop-
ulation is still subject to selection. Where they respond to recent individual experience, this is an
example of a tradeoff being adjusted ‘on the fly’ based on individual experience. Of course, even
where phenotypic plasticity is exploited this way, the range of possible individual variation and
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the mechanisms for assessing appropriate levels of investment are also subject to selection.
To return to our starting point, there must also be a set of fitness tradeoffs that relate to the ex-

pression of cognition itself. Here too the tradeoffs concern the intersection of two of my proposed
levels for representing behaviour. Cognition is a special case of individual plasticity, and the trade-
offs between individual plasticity and biological evolution are beginning to be well understood
(Hinton & Nowlan, 1987; Maynard Smith, 1987; Borenstein, Meilijson, & Ruppin, 2006; Paenke,
Sendhoff, & Kawecki, 2007). Individual plasticity can accelerate biological evolution, but biologi-
cal evolution provides greater reliability than individual learning. Thus in a stable environment,
selection generally favours the reduction of individual plasticity, but in periods of rapid environ-
mental change (including where that change is caused by ecological dynamics e.g. in the number
or proportion of species), there will be more pressure for individual plasticity. Interestingly, even
in stable environments, the presence of individual plasticity can sometimes decelerate evolution as
the genome becomes very near the optimum. This is because learning at this point becomes suffi-
ciently reliable that there is no selective pressure to eliminate the final amount of variation from the
optimum. Thus phenotypic plasticity may be a key factor in maintaining sufficient genetic varia-
tion in the population to allow robustness in the case that a previously-stable selective environment
suddenly does change.

Tradeoffs concerning cognition occur between species as well as within them (Lefebvre, Reader,
& Sol, 2004; Barrickman, Bastian, Isler, & van Schaik, 2008). Species that commit to highly cogni-
tive strategies may compensate for the uncertainty of individual learning by providing epigenetic
information transmission such as social transmission of behaviour. Species that rely on social trans-
mission though pay a penalty not only in terms of metabolic cognitive cost, but also in terms of ex-
tended life history which decelerates the rate of biological evolution. Culture could in theory allow
species to take advantage of massive increases in both the rate of acquisition of new information
and the reliability of learning due to concurrency — the ability to exploit the cognitive capacity of
many individuals simultaneously (Bryson, 2009). However in practice only humans seem to exploit
this capacity fully and then only in very-recent history from an evolutionary perspective (Ambrose,
2001).

The main constraints on using culture as a source of behaviour have to do with the probability
of transmitting information into the next generation. This is determined by a number of factors,
such as the rate of information transmission between individuals, the amount of time individuals
spend in proximity, and the average and maximum lifespans of the individuals (Bryson, Bilovich,
& Čače, 2009). Of course, not every agent needs to learn all behaviours in a culture. There must
only be a sufficient number of individuals in the population carrying a culture that a particular
behaviour is reliably carried forward from generation to generation by at least some individuals.
The probability of social learning can be even lower if the probability of individual discovery of the
behaviour is sufficiently high to compensate.

In this section then I have argued that modularity can be seen as a useful organisational prin-
ciple for developing adaptive behaviour across a wide range of representations. These represen-
tations — genes, nerve cells, individuals, societies, species — each support adaptation, and have
a variety of mechanisms for operating within modules, between modules, and between the lay-
ers of hierarchy determined by the representational substrate. Neural or psychological modularity
such as the majority of this chapter has discussed is then just a special case of generally useful
organisational strategies.

5 Conclusion

My argument in this chapter has been that hierarchical structures, including modularity, are per-
vasive in natural intelligence — though so too are concurrent solutions. The reason for this is
simple combinatorial complexity. Control and design are more easily addressed when broken into
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units, both as parallel modules and as layers of control. AI researchers often neglect the hierarchi-
cal nature of their own solutions, as they build homogeneous networks for control, yet keep these
networks small and simple while having the items that they control be well-designed powerful
operators. Similarly some natural scientists argue vociferously against modular models of mind
while never doubting that the brain, the limbs and the sense organs operate in different ways and
make different contributions into intelligent behaviour. In this chapter I have illustrated how mod-
ularity and hierarchy pervade intelligence, from genetic evolution through the neural structure of
vertebrate brains, the accumulation of social learning by a society, and the differentiation of species’
behaviour in an ecosystem.
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