
The Behavior-Oriented Design of
Modular Agent Intelligence

Joanna J. Bryson

University of Bath, Department of Computer Science
Bath BA2 7AY, United Kingdom

jjb@cs.bath.ac.uk [+44] (0)1225 38 6811

Abstract. Behavior-Oriented Design (BOD) is a development methodology for
creating complex, complete agents such as virtual-reality characters, autonomous
robots, intelligent tutors or intelligent environments. BOD agents are modular,
but not multi-agent systems. They use hierarchical reactive plans to perform ar-
bitration between their component modules. BOD provides not only architectural
specifications for modules and plans, but a methodology for building them. The
BOD methodology is cyclic, consisting of rules for an initial decomposition and
heuristics for revising the specification over the process of development.

1 Introduction

This chapter examines how to build complete, complex agents (CCA). Acomplete agent
is an agent that can function naturally on its own, rather than being a dependent part of
a Multi-Agent System (MAS). Acomplex agentis one that has multiple, conflicting
goals, and multiple, mutually-exclusive means of achieving those goals. Examples of
complete, complex agents are autonomous robots, virtual reality (VR) characters, per-
sonified intelligent tutors or psychologically plausible artificial life (ALife) [2, 8, 25].
Being able to reliably program CCA is of great practical value both commercially, for
industrial, educational and entertainment products, and scientifically, for developing AI
models for the cognitive and behavioural sciences.

All of the methodologies I describe in this chapter are modular. The advantages
of treating a software system as modular rather than monolithic are well understood.
Modularity allows for the problem to be decomposed into simpler components which
are easier to build, maintain and understand. In particular, the object-oriented approach
to software engineering has shown that bundling behavior with the state it depends on
simplifies both development and maintenance.

The problem of when to treat a module as an individual actor, anagent, is currently
less well understood [3]. Unlike most chapters in this volume, this chapter separates
the issues of agency from the issues of MAS. This chapter addresses how to develop
and maintain a system that pursues a set of goals relatively autonomously, responding
to the challenges and opportunities of dynamic environments that are not fully pre-
dictable. However, it does this without agent communication languages, negotiation or
brokering. The assumption is that the system will be run on a single platform where no
module is likely to die without the entire system crashing, and that the system is being



developed by a relatively small team who can share code and interfaces. In other words,
the assumption is that this is in many respects a normal software engineering project,
except that it is producing an intelligent, proactive system.

2 The Previous State of the Art

The last decade of research has shown impressive convergence on the gross charac-
teristics of software architectures for CCA. The field is now dominated by ‘hybrid’,
three-layer architectures [19, 22]. These hybrids combine the following:

1. behavior-based AI(BBAI), the decomposition of intelligence into simple, robust,
reliable modules,

2. reactive planning, the ordering of expressed actions via carefully specified program
structures, and

3. (optionally)deliberative planning, which may inform or create new reactive plans,
or, in principle, even learn new behaviors.

In this section I will discuss these systems and their history in more detail. The
remainder of this chapter presents an improvement to three-layer architectures, called
Behavior-Oriented Design.

2.1 Behavior-Based Artificial Intelligence (BBAI)

BBAI was first developed by Brooks [6], at a time when there were several prominent
modular theories of natural intelligence being discussed [13, 17, 29]. In BBAI, intelli-
gence is composed of a large number of modular elements that are relatively simple to
design. Each element operates only in a particular context, which the module itself rec-
ognizes. In Brooks’ original proposal, these modules are finite state machines organized
into interactinglayers, which are themselves organized in a linear hierarchy or stack.
The behaviors have no access to each other’s internal state, but can monitor and/or alter
each other’s inputs and outputs. Layers are an organizational abstraction: the behaviors
of each layer achieve one of the agent’s goals, but a higher layer may subsume the goal
of a lower layer through the mechanism of affecting inputs and outputs. This is the
subsumption architecture[6].

BBAI has proved powerful because of the robustness and simplicity of the pro-
grams. Each behavior module is straight-forward enough to program reliably. BBAI
is also strongly associated withreactive intelligence, because the subsumption archi-
tecture was both behavior-based and reactive. Reactive intelligence operates with no
deliberation or search, thus eliciting the good response times critical for the successful
operation of real-time systems such as robots or interactive virtual reality [34].

The cost of reactive intelligence is engineering. The agent’s intelligence must be
designed by hand since it performs no search (including learning or planning) itself.
Although there have been some efforts made to learn or evolve BBAI programs off-
line [e.g. 23, 33], these efforts themselves take immense amounts of design, and have
not proved superior to hand-designed systems [32, 36]. Although behavior modules are
themselves definitionally easy to create, engineering the interactionsbetweenbehaviors



has proved difficult. Some authors have taken the approach of limiting behaviors to rep-
resentations that are easily combined [e.g. 1, 24], but this in turn limits the complexity
of the agent that can be created by limiting its most powerful building blocks.

2.2 Reactive Plans and Three-Layer Architectures

At roughly the same time as BBAI was emerging, so were reactive plans [16, 20]. Reac-
tive plans are powerful plan representations that provide for robust execution. A single
plan will work under many different contingencies given a sufficiently amenable con-
text. An agent can store a number of such plans in a library, then use context-based
preconditions to select one plan that should meet its current goals in the current envi-
ronment. The alternative — constructing a plan on demand — is a form of search and
consequently costly [12]. In keeping with the goal of all reactive intelligence, reactive
plans provide a way to avoid search during real-time execution.

A hybrid behavior-based system takes advantage of behaviors to give a planning
system very powerful primitives. This in turn allows the plan to be relatively high-level
and simple, a benefit to conventional planners as well as reactive plans [28]. Most three-
layer hybrid architectures (as described above) have a bottom layer of behaviors, which
serve as primitives to a second layer of reactive plans. They may then optionally has
a third ‘deliberative’ (searching) layer either to create new plans or to choose between
existing ones.

Consider this description of the ontology underlying three-layered architectures:

The three-layer architecture arises from the empirical observation that effective
algorithms for controlling mobile robots tend to fall into three distinct cate-
gories:
1. reactive control algorithms which map sensors directly onto actuators with

little or no internal state;
2. algorithms for governing routine sequences of activity which rely exten-

sively on internal state but perform no search; and
3. time-consuming (relative to the rate of change of the environment) search-

based algorithms such as planners.
Gat [19, p. 209]

In this description, behaviors are the simple stateless algorithms and reactive plans
serve as state- or context-keeping devices for ordering the activity of the behaviors. In
Gat’s own architecture, ATLANTIS, [18] the second, reactive-plan layer dominates the
agent: it monitors the agent’s goals and selects its actions. If the second layer becomes
stuck or uncertain, it can reduce the agent’s activity while consulting a third-level plan-
ner, while still monitoring the environment for indications of newer, more urgent goals.

3 Behavior-Oriented Design (BOD)

Despite the development of three-layer hybrid architectures, programming CCA is still
hard. Consequently, more approaches are being tried, including using MAS as archi-
tectures for single CCA [e.g. 35, 37]. I believe that the problem with three-layer archi-
tectures is that they tend to trivialise the behavior modules. The primary advantage of



the behavior-based approach and modular approaches in general is that they simplify
coding the agent by allowing the programming task to be decomposed. Unfortunately,
the drive to simplify the planning aspects of module coordination has lead many devel-
opers to tightly constrain what a behavior module can look like [24, fip]. Consequently,
the engineering problem has become hard again.

To address these issues, I have developed Behavior-Oriented Design (BOD) [8, 11].
BOD has two major engineering advantages over three-layer architectures:

1. Perception, action, learning and memory areall encapsulated in behavior modules.
They are expressed in standard programming languages, using object-oriented de-
sign (OOD) techniques.

2. The reactive plan structures used to arbitrate between these behavior modules are
also designed to be easily engineered by programmers familiar with conventional
programming languages.

One way to look at BOD is that the behaviors are used to determinehowan agent acts,
while the plans are used to largely determinewhenthose actions are expressed.

At first glance, it may appear that BOD differs from the three-layer approach in that
it has dropped the top, deliberative layer, but this is not the case. The real difference be-
tween my approach and Gat’s is the loss of the bottom layer of purely reactive modules.
I don’t believe that thereare many elements of intelligence that don’t require some
state. Perception requires memory: everything from very recent sensory information,
which can help disambiguate a sight or sound, to life-long learning, which can establish
expectations in the form of semantic knowledge about word meanings or a building’s
layout.

Under BOD, the behaviors are semi-autonomous modules, optionally with their own
processes. A behavior can store sensory experience and apply complex processes of
learning or deliberation across them. Or it can simply encapsulate clever algorithms for
performing tasks. Nevertheless, a BOD system is reactive. This is both because the indi-
vidual behaviors can respond immediately to salient sensory information, and because
arbitration between modules is controlled by reactive plans. The primitive elements of
the reactive plans arean interfaceto the behaviors; they are implemented as methods
on the objects that encode the behaviors. These methods should produce immediate
(or at least very rapid) results. Reactive plan primitives require a behavior to provide
an anytime response [14] on demand, but the behaviors are free to perform the sorts of
longer-term computations described by Gat continuously in the background. Thus all of
an agent’s behaviors (including behavior arbitration) can run continuously in parallel.
Only when actions are expressed externally to the agent are they likely to be subject to
action selection through behavior arbitration. Action selection is forced by competition
for resources, such as the location of visual attention or the position of the agent’s body
[4].

4 Building an Agent with Good BOD

Behavior-Oriented Design is not just an architecture, but a design methodology, par-
tially inspired by Object-Oriented Design (OOD) [e.g. 26, 31]. The analogy between



BOD and OOD is not limited to the metaphor of the behavior and the object, nor to
the use of methods on the behavior objects as primitives to the reactive plans. The most
critical aspect of BOD is its emphasis on the design process itself.

The fundamental problem of using a modular approach is deciding what belongs
in a module — how many modules should there be, how powerful should they be, and
so on. In BBAI this problem is calledbehavior decomposition; obviously analogous
problems exist for OOD and MAS. BOD adopts the current accepted OOD practise
for solving object decomposition: it focuses on the agent’s adaptive state requirements,
then uses iterative design and a set of heuristics to refine the original decomposition.

BOD emphasizes cyclic design with rapid prototyping. The process of developing
an agent alternates between developing libraries of behaviors and the reactive plans to
control the expression of those behaviors, and the process of clarifying and simplifying
the agent by re-examining its behavior decomposition. The following sections explain
the BOD guidelines for both the initial decomposition and for recognizing and correct-
ing problems in the decomposition during the development process.

4.1 The Initial Decomposition

The initial decomposition is a set of steps. Executing them correctly is not critical, since
the main development strategy includes correcting assumptions from this stage of the
process. Nevertheless, good work at this stage greatly facilitates the rest of the process.

1. Specify at a high level what the agent is intended to do.
2. Describe likely activities in terms of sequences of actions. These sequences are the

the basis of the initial reactive plans.
3. Identify an initial list of sensory and action primitives from the previous list of

actions.
4. Identify the state necessary to enable the described primitives and drives. Cluster

related state elements and their dependent primitives into specifications for behav-
iors. This is the basis of the behavior library.

5. Identify and prioritize goals or drives that the agent may need to attend to. This
describes the initial roots for the reactive plan hierarchy (described below).

6. Select a first behavior to implement.

The lists compiled during this process should be kept, since they are an important
part of the documentation of the agent. The process of documenting BOD agents is
described below in Section 8.

4.2 Iterative Development

The heart of the BOD methodology is an iterative development process:

1. Select a part of the specification to implement next.
2. Extend the agent with that implementation:

– code behaviors and reactive plans, and
– test and debug that code.



3. Revise the current specification.

BOD’s iterative development cycle can be thought of as sort of a hand-cranked ver-
sion of the Expectation Maximization (EM) algorithm [15]. The first step is to elaborate
the current model, then the second is to revise the model to find the new optimum rep-
resentation. Of course, regardless of the optimizing process, the agent will continue to
grow in complexity. But if that growth is carefully monitored, guided and pruned, then
the resulting agent will be more elegant, easier to maintain, and easier to further adapt.

Unlike behaviors, which are simply coded directly in a standard object-oriented lan-
guage, reactive plans are stored in script files. The plan is normally read when the agent
is initialized, or “comes to life,” though in theory new plans could be added during
execution. The reactive plans for an agent grow in complexity over the course of devel-
opment. Also, multiple reactive plans may be developed for a single AI platform (and
set of behavior modules), each creating agents with different overall characteristics,
such as goals or personality.

Even when there are radically different plan scripts for the same platform or do-
main, there will generally only be one behavior library — one set of code. Each agent
will have its own instance or instances of behavior objects when it is running, and may
potentially save run-time state in its own persistent object storage. But it is worth mak-
ing an effort to support all scripts for a single platform or domain in a single library of
behavior code.

Testing should be done as frequently as possible. Using languages that do not re-
quire compiling or strong typing, such as lisp or perl, significantly speeds the develop-
ment process, though they may slow program execution time. “Optimize later”, one of
the modern mantras of software engineering, applies to programming languages too. In
my experience, the time spent developing an AI agent generally far outweighs the time
spent watching the agent run. Particularly for interactive real-time agents like robots and
VR characters, the bottle-necks are much more likely to be caused by motor constraints
or speech-recognition than by the intelligent control architecture.

The most interesting part of BOD’s iterative design cycle is the set of rules for
revising the specifications. However, understanding these rules requires understanding
BOD reactive plans. The following section explains the details of BOD action selection.
Section 6 returns to the question of knowing exactly how to optimize the agent.

5 BOD Reactive Plans

Reactive plans support action selection. At any given time step, most agents have a
number of actions which could potentially be expressed, at least some of which cannot
be expressed simultaneously, for example sitting and walking. In architectures without
centralized action selection, such as the Subsumption Architecture [6] or the Agent
Network Architecture (ANA) [27], the developer must fully characterizefor each action
how to determine when it should be expressed. This task grows in complexity with the
number of new behaviors. For engineers, it is generally easier to describe the desired
behavior in terms of sequences of events.

Of course, action-selection sequences can seldom be specified precisely in advance,
due to the non-determinism of environments, including the unreliability of the agent’s



own sensing or actuation. Several types of events may interrupt the completion of an
intended action sequence. These events fall into two categories:

1. some combination of alarms, requests or opportunities may make pursuing a dif-
ferent plan more relevant, and

2. some combination of opportunities or difficulties may require the current ‘sequence’
to be reordered.

Thus the problems of action selection can be broken into three categories: things
that need to be checked regularly, things that only need to be checked in a particular
context, and things that do not strictly need to be checked at all.

BOD uses reactive plans to perform action selection through behavior arbitration.
Individual behavior modules should be simple enough to be programmed to only rec-
ommend one action at any particular instant. BOD reactive plans provide three types
of plan elements corresponding (respectively) to the three categories of action selection
above: drive collections, competences, and action patterns.

The rest of this section explains these three types of elements, in reverse of the
above order. BOD reactive plans are described more formally elsewhere [7, 10, 11].
This section gives a quick, informal introduction through examples.

5.1 Action Patterns: Some Things Always Follow

Theaction patternis a simple sequence of primitives. Primitives are either actions or
sensory predicates, and supported directly by the behaviors. Including the sequence as
an element type is useful for two reasons. First, it allows an agent designer to keep the
system as simple as possible, which both makes it more likely to succeed and communi-
cates more clearly to a subsequent designer the expected behavior of that plan segment.
Second, it allows for speed optimization of elements that are reliably run in order, which
can be particularly useful in sequences of preconditions or in fine motor control. Here’s
an example that might be useful to an artificial monkey:

〈get a banana→ peel a banana→ eat a banana〉 (1)

5.2 Competences: Some Things Depend on Context

A sequence isnot equivalent to the process ofchaining a set of productions, where
each element’s precondition is set to the fire its action as a consequence of the outcome
of the prior element. Besides the possibility of optimizing away the step of checking
preconditions, a sequence includes an additional piece of control state. Its elements
may also occur in different orders in other contexts, and there is no ambiguity if more
than one sequence’s element fires in a perceptually equivalent context.

The advantage of productions of course is that, within the confines of a particular
context, they allow for flexible behavior. Acompetencecombines the advantages of
both productions and sequences. Here is an example of the above sequence rewritten as
a competence:



(have hunger)⇒

x

〈 (full) ⇒ goal
(have a peeled banana)⇒ eat a banana

(have a banana)⇒ peel a banana
⇒ get a banana

〉
(2)

Rather than encoding a temporal ordering, a competence encodes aprioritization.
Priority increases in the direction of the vertical arrow on the left. Under this plan, if the
monkey is handed a peeled banana, she’ll eat it. If she has a whole banana, she’ll peel
it. Otherwise, she’ll try to get a banana. When the goal has been achieved, or if none of
the elements can fire, the competence terminates.

This sort of structure could lead to looping, for example if another, larger monkey
kept taking the banana away after our agent had peeled it but before she could eat it. To
allow termination in this circumstance, competence elements not only have priorities
and preconditions, but also (optional) retry limits. When an element has reached its
retry limit, it will no longer fire.

5.3 Drive Collections: Some Things Need to be Checked at All Times

Finally, there must be a way to arbitrate between plan elements or goals. There must be a
way to determine the current focus of action-selection attention — to deal with context
changes (whether environmental or internal) which require changing between plans,
rather than within them. Some hybrid architectures consider this problem the domain
of ‘deliberation’ or ‘introspection’ — the highest level of a three-layered architecture.
But BOD treats this problem as continuous with the general problem of action selection,
both in terms of constraints, such as the need for reactiveness, and of solution.

BOD uses a third element type, thedrive collectionfor this kind of attention. A
drive collection is very similar to a competence. However, it is designed never to ter-
minate — there is no goal condition. The drive collection is the root of the BOD plan
hierarchy, and the only element that executes on every program cycle (from hundreds
to thousands of times a second, depending on the implementation). The highest pri-
ority drive-collection element that triggers passes activation to whatever competence,
sequence or action primitive it is currently attending to. Or, if the agent has just been
initialized or the element’s last attendee has terminated, the element sets its attention to
the apex of its plan hierarchy.

life ⇒
〈〈 (something looming)⇒ avoid

(something loud)⇒ attend to threat
(hungry)⇒ forage

⇒ lounge around

〉〉
(3)

Drive-collection elements have another feature not shown in the above diagram:
they also allow for scheduling, so that a high priority element does not necessarily mo-
nopolize program cycles. This increases the parallelism and reactivity of BOD agents.

For working, non-toy examples of plans for complete BOD agents, see [7–9]; for
comparisons to other systems, see [7, 8]. This chapter emphasizes instead the engineer-
ing of BOD agents. The next sections return to the question of revising BOD specifica-
tions.



6 Revising BOD Specifications

A critical part of the BOD methodology is the set of rules for revising the specifications.
The fundamental design principle iswhen in doubt, favor simplicity.A primitive is
preferred to an action sequence, a sequence to a competence. Similarly, control state is
preferred to learned state, specialized learning to general purpose learning or planning.
Given this bias, heuristics are then used to indicate when a simple element should be
exchanged for a more complex one.

A guiding principle in all software engineering is to reduce redundancy. If a partic-
ular plan or behavior can be reused, it should be. As in OOD, if only part of a plan or a
primitive action can be used, then a change in decomposition is called for. In the case of
the action primitive, the primitive should be decomposed into two or more primitives,
and the original action replaced by a plan element, probably an action pattern. The new
plan element should have the same name and functionality as the original action. This
allows established plans to continue operating with only minimal change.

If a sequence sometimes needs to contain a cycle, or often does not need some of its
elements to fire, then it is really a competence, not an action pattern. If a competence
is actually deterministic, if it nearly always actually executes a fixed path through its
elements, then it should be simplified into a sequence.

Competences are really the basic level of operation for reactive plans, and learning
to write and debug them may take time. Here are two indications provided by compe-
tences that the specification of an agent needs to be redesigned:

– Complex Triggers: reactive plan elements should not require long or complex trig-
gers. Perception should be handled at the behavior level; it should be a skill. Thus a
large number of triggers may indicate the requirement for a new behavior or a new
method on an existing behavior to appropriately categorize the context for firing the
competence elements. Whether a new behavior or simply a new method is called for
is determined by whether or not more state is needed to make that categorization:
new state generally implies a new behavior.

– Too Many Elements: Competences usually need no more than 5 to 7 elements,
they may contain fewer. Sometimes competences get cluttered (and triggers com-
plicated) because they actually contain two different solutions to the same problem.
In this case, the competence should be split. If the two paths lead all the way to the
goal, then the competence is really two siblings which should be discriminated be-
tween at the level of the current competence’s parent. If the dual pathway is only for
part of the competence, then the original competence should contain two children.

Effectively every step of the competence but the highest priority one is a subgoal. If
there is more than one way to achieve that subgoal, trying to express both of them in the
same competence can split attention resources and lead to dithering or ‘trigger-flipping’
(where two plan elements serve only to activate each other’s precondition). The purpose
of a competence is to focus attention ononesolution at a time.

The heart of the BOD strategy is rapid prototyping. If one approach is too much
trouble or is giving debugging problems, try another. It is important to remember that
programmers’ experiences are the key selective pressures in BOD for keeping the agent



simple. BOD provides at least two paths to simplicity and clarity: modularity and hi-
erarchical reactive plans. Using cyclic development and some trial and error, the pro-
grammer should determine which path is best for a particular problem [5, 30]. This is
also why modularity and maintainability are key to BOD: programmers are to be en-
couraged to change the architecture of an agent when they find a better solution. Such
changes should be easy to make. Further, they should be transparent, or at least easy to
follow and understand, if another programmer encounters them.

Further heuristics, particularly with respect to prioritization and scheduling in drive
collections can be found elsewhere [8]. In the next section, I will instead give an ex-
ample of the most fundamental revision, trading off complexity in plans for that in
behaviors.

7 Trading Off Control and Learning

To demonstrate the differences between representational styles, let’s think about an in-
sect robot with two ‘feelers’ (bump sensors), but no other way of sensing its environ-
ment.

a

b
c

d e

Fig. 1. An insect-like robot with no long-range sensors (e.g. eyes) needs to use its feelers to find
its way around a box.

7.1 Control State Only

This plan is in the notation introduced earlier, except that words that reference parts of
control state rather than primitives are in bold face. Assume that the ‘walk’ primitives
take some time (say 5 seconds) and move the insect a couple of centimeters on the
diagram. Also, assume turning traces an arc rather than happening in place. This is
about the simplest program that can be written using entirely control state:



walk ⇒
x

〈 (left-feeler-hit)⇒ avoid-obstacle-left
(right-feeler-hit)⇒ avoid-obstacle-right

⇒ walk-straight

〉
(4)

avoid-obstacle-left⇒ 〈walk backwards→ walk right→ walk left〉 (5)

avoid-obstacle-right ⇒ 〈walk backwards→ walk left→ walk right〉 (6)

7.2 Deictic State as Well

If we are willing to include a behavior with just one bit of variable state in it, then we
can simplify the control state for the program. In the behaviordeictic-avoid, the bit
hit-left? serves as a deictic variable the-side-I-just-hit-on.Avoid-hit andcompensate-
avoid (primitivesdeictic-avoidsupports) turn in the appropriate direction by accessing
this variable. This allows a reduction in redundancy in the plan, including the elimina-
tion of one of the action patterns.

deictic-avoid
hit-left?

avoid-hit, feeler-hit,

compensate-avoid
oo

feeler info
oo

walk ⇒
x

〈
(feeler-hit)⇒ avoid-obstacle

⇒ walk-straight

〉
(7)

avoid-obstacle⇒ 〈walk backwards→ avoid hit→ compensate avoid〉 (8)

7.3 Specialized Instead of Deictic State

Instead of using a simple reference, we could also use a more complicated representa-
tion, say an allocentric representation of where the obstacle is relative to the bug, that is
updated automatically as the bug moves and forgotten as the bug moves away from the
location of the impact. Since this strategy requires the state to be updated continuously
as the bug moves, walking must be a method (find-way) on this behavior.

specialized-avoid
local-mapstore-obstacle

back-up, find-wayoo
feeler info

oo

walk ⇒
x

〈
(feeler-hit)⇒ react-to-bump

⇒ find-way

〉
(9)

react-to-bump ⇒ 〈store-obstacle→ walk backwards〉 (10)

If this is really the only navigation ability our bug has, then the vast increase in
complexity of the behaviorspecialized-avoiddoes not justify the savings in control
state. On the other hand, if our bug already has some kind of allocentric representation,
then it might be sensible to piggy-back the feeler information on top of it. For example,
if the bug has a vector created by a multi-faceted eye representing approximate distance
to visible obstacles, but has bumped into something hard to see (like a window), it
might be parsimonious to store the bump information in the vision vector, providing
that updating the information with the bug’s own motion isn’t too much trouble. Insects
actually seem able to do something like this [21], and I’ve done it with a robot [9].



8 Documenting a BOD Agent

As I said at the end of Section 6, maintainability and clarity of design are key to the
BOD development process. This is best acheived through self-documenting code. “Self-
documenting” is something of a misnomer, because of course the process takes disci-
pline. The primary argument for incorporating documentation into functioning code is
that this is the only way to ensure that the documentation will never get out of synchro-
nization with the rest of the software project. The primary argument against this strategy
is that code is never really that easy to read, and will never be concisely summarized.
BOD at least somewhat overcomes this problem by having two types of summary built
into the agent’s software architecture. The reactive plans summarize the aims and objec-
tives of the agent, and the plan-primitive / behavior interface documents at a high level
the expressed actions of the various behaviors. Further information, such as documen-
tation on the adaptive state used by the agent, can be found in the code of the behavior
modules.

8.1 Guidelines for Maintaining Self-Documentation

The following are guidelines to the discipline of making sure BOD agents are self-
documented:

Document the plan / behavior interface in one program file.As explained earlier,
the primitives of the POSH reactive plans must be defined in terms of methods on the
behavior objects. For each behavior library, there should be one code file that creates
this interface. In my implementations of POSH action selection, each primitive must
be wrapped in an object which is either anact or a sense. The code executed when
that object is triggered is usually only one or two lines long, typically a method call on
some behavior object. I cluster the primitives by the behaviors that support them, and
use program comments to make the divisions between behaviors clear.

This is the main documentation for the specification — it is the only file likely to
have both currentand intendedspecifications listed. This is where I list the names of
behaviors and primitives determined during decomposition, even before they have been
implemented. Intended reactive plans are usually written as scripts (see below.)

Each behavior should have its own program file.Every behavior will be well com-
mented automatically if it is really implemented as an object. One can easily see the
state and representations in the class definition. Even in languages that don’t require
methods to be defined in the class declaration, it is only good style to include all the
methods of a class in the same source file with the class definition.

Keep and comment reactive plan scripts.This is the suggestion that requires the
most discipline, but having a documented history of the development of an agent can
be critical to understanding some of its nuances. Documenting plan scripts effectively
documents the history of the agent’s development — it is easy to determine when be-
haviors were added or modified by seeing what primitives are present in a script. Those
who can’t remember history are doomed to repeat old mistakes. Keeping a complete set
of working scripts documenting stages of the agents development also provides a test
suite, useful when major changes are made to behavior libraries.

Script comments should contain:



– Its name, to flag if it has been copied and changed without updating the comment.
– What script(s) it was derived from. Most scripts are improvements of older working

scripts, though some are shortened versions of a script that needs to be debugged.
– The date it was created.
– The date it started working, if significantly different. Since writing scripts is part of

the specification process, some scripts will be ambitious plans for the future rather
than working code.

– The date and reasons it was abandoned, if it was abandoned.
– Possibly, dates and explanations of any changes. Normally, changes shouldn’t hap-

pen in a script once it works (or is abandoned) — they should be made in new
scripts, and the old ones kept for a record.

8.2 BOD and Code Reuse

One aspect of OOD that I have not yet explicitely touched on is the issue of code
reuse. Code reuse is of course one of the main purposes of both modularity and good
documentation. We can think of CCA code as breaking into three categories:

1. Code useful to all agents.For BOD, this code is primarily embedded in the POSH
planning system. POSH reactive plans are the one set of patterns I believe to be
generally useful to modular agents, but not to modular programs which do not have
agency.

2. Code useful to most agents on a particular platform or domain.By the nature of
the BOD methodology, most of this code will wind up in the library of behaviors.
However, because this is not the main criteria for determining whether code is in
a plan or a behavior, it is possible that some aspects of the reactive plans will also
be shared between all agents inhabiting a single platform. Nevertheless, behavior
modules can and should be treated exactly as a code library.

3. Code useful only to a single agent.Because much of what determines one individual
from another is their goals and priorities, the reactive plans will generally succinctly
specify individual differences. Though again, it is possible that some behaviors in
the behavior library will also only be expressed / referenced by a single agent. Much
of what is unique to an agent will not be its program code, but the state within its
behavior modules while it is running — this is what encodes its experience and
memories.

9 Conclusions

Excellent software engineering is key to developing complete, complex agents. The
advances of the last fifteen years in CCA due to the reactive and behavior-based move-
ments come primarily from two engineering-related sources:

1. the trade-off of slow or unreliable on-line processes of search and learning for the
one-time cost of development, and

2. the use of modularity.



Of course, the techniques of learning and planning cannot and should not be abandoned:
some things can only be determined by an agent at run time. However, constraining
learning with specialized representations and constraining planning searches to likely
solution spaces greatly increases the probability that an agent can reliably perform suc-
cessfully. Providing these representations and solution spaces is the job of software
engineers, and as such should exploit the progress made in the art of software engineer-
ing.

In this chapter I have described the recent state-of-the-art in CCA design, and then
described an improvement, the Behavior-Oriented Design methodology. This method-
ology brings CCA development closer to conventional software engineering, particu-
larly OOD, but with the addition of a collection of organizational idioms and develop-
ment heuristics that are uniquely important to developing AI.

References

[fip] FIPA-OS: A component-based toolkit enabling rapid development of fipa compli-
ant agents. http://fipa-os.sourceforge.net.

[1] Arkin, R. C. (1998).Behavior-Based Robotics. MIT Press, Cambridge, MA.
[2] Ballin, D. (2000). Special issue: Intelligent virtual agents.Virtual Reality, 5(2).
[3] Bertolini, D., Busetta, P., Molani, A., Nori, M., and Perini, A. (2002). Designing

peer-to-peer applications: an agent-oriented approach. In this volume.
[4] Blumberg, B. M. (1996).Old Tricks, New Dogs: Ethology and Interactive Crea-

tures. PhD thesis, MIT. Media Laboratory, Learning and Common Sense Section.
[5] Boehm, B. W. (1986). A spiral model of software development and enhancement.

ACM SIGSOFT Software Engineering Notes, 11(4):22–32.
[6] Brooks, R. A. (1986). A robust layered control system for a mobile robot.IEEE

Journal of Robotics and Automation, RA-2:14–23.
[7] Bryson, J. J. (2000). Hierarchy and sequence vs. full parallelism in reactive action

selection architectures. InFrom Animals to Animats 6 (SAB00), pages 147–156,
Cambridge, MA. MIT Press.

[8] Bryson, J. J. (2001).Intelligence by Design: Principles of Modularity and Coordi-
nation for Engineering Complex Adaptive Agents. PhD thesis, MIT, Department of
EECS, Cambridge, MA. AI Technical Report 2001-003.

[9] Bryson, J. J. and McGonigle, B. (1998). Agent architecture as object oriented
design. In Singh, M. P., Rao, A. S., and Wooldridge, M. J., editors,The Fourth
International Workshop on Agent Theories, Architectures, and Languages (ATAL97),
pages 15–30. Springer-Verlag.

[10] Bryson, J. J. and Stein, L. A. (2001a). Architectures and idioms: Making progress
in agent design. In Castelfranchi, C. and Lespérance, Y., editors,The Seventh Inter-
national Workshop on Agent Theories, Architectures, and Languages (ATAL2000).
Springer.

[11] Bryson, J. J. and Stein, L. A. (2001b). Modularity and design in reactive in-
telligence. InProceedings of the 17th International Joint Conference on Artificial
Intelligence, pages 1115–1120, Seattle. Morgan Kaufmann.

[12] Chapman, D. (1987). Planning for conjunctive goals.Artificial Intelligence,
32:333–378.



[13] Chomsky, N. (1980). Rules and representations.Brain and Behavioral Sciences,
3:1–61.

[14] Dean, T. and Boddy, M. (1988). An analysis of time-dependent planning. In
Proceedings of the Seventh National Conference on Artificial Intelligence (AAAI-
88), pages 49–54, Saint Paul, Minnesota, USA. AAAI Press/MIT Press.

[15] Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood
from incomplete data via the EM algorithm.Journal of the Royal Statistical Society
series B, 39:1–38.

[16] Firby, J. (1987). An investigation into reactive planning in complex domains.
In Proceedings of the National Conference on Artificial Intelligence (AAAI), pages
202–207.

[17] Fodor, J. A. (1983).The Modularity of Mind. Bradford Books. MIT Press, Cam-
bridge, MA.

[18] Gat, E. (1991).Reliable Goal-Directed Reactive Control of Autonomous Mobile
Robots. PhD thesis, Virginia Polytechnic Institute and State University.

[19] Gat, E. (1998). Three-layer architectures. In Kortenkamp, D., Bonasso, R. P.,
and Murphy, R., editors,Artificial Intelligence and Mobile Robots: Case Studies of
Successful Robot Systems, pages 195–210. MIT Press, Cambridge, MA.

[20] Georgeff, M. P. and Lansky, A. L. (1987). Reactive reasoning and planning. In
Proceedings of the Sixth National Conference on Artificial Intelligence (AAAI-87),
pages 677–682, Seattle, WA.

[21] Hartmann, G. and Wehner, R. (1995). The ant’s path integration system: A neural
architecture.Bilogical Cybernetics, 73:483–497.

[22] Hexmoor, H., Horswill, I., and Kortenkamp, D. (1997). Special issue: Software
architectures for hardware agents.Journal of Experimental & Theoretical Artificial
Intelligence, 9(2/3).

[23] Humphrys, M. (1997).Action Selection methods using Reinforcement Learning.
PhD thesis, University of Cambridge.

[24] Konolige, K. and Myers, K. (1998). The Saphira architecture for autonomous
mobile robots. In Kortenkamp, D., Bonasso, R. P., and Murphy, R., editors,Arti-
ficial Intelligence and Mobile Robots: Case Studies of Successful Robot Systems,
chapter 9, pages 211–242. MIT Press, Cambridge, MA.

[25] Kortenkamp, D., Bonasso, R. P., and Murphy, R., editors (1998).Artificial Intel-
ligence and Mobile Robots: Case Studies of Successful Robot Systems. MIT Press,
Cambridge, MA.

[26] Larman, C. (2001). Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and the Unified Process. Prentice Hall,2nd edition.

[27] Maes, P. (1990). Situated agents can have goals. In Maes, P., editor,Designing
Autonomous Agents : Theory and Practice from Biology to Engineering and back,
pages 49–70. MIT Press, Cambridge, MA.

[28] Malcolm, C. and Smithers, T. (1990). Symbol grounding via a hybrid architecture
in an autonomous assembly system. In Maes, P., editor,Designing Autonomous
Agents: Theory and Practice from Biology to Engineering and Back, pages 123–144.
MIT Press, Cambridge, MA.

[29] Minsky, M. (1985). The Society of Mind. Simon and Schuster Inc., New York,
NY.



[30] Parnas, D. L. and Clements, P. C. (1986). A rational design process: How and why
to fake it. IEEE Transactions on Software Engineering, SE-12(2):251–7.

[31] Parnas, D. L., Clements, P. C., and Weiss, D. M. (1985). The modular structure of
complex systems.IEEE Transactions on Software Engineering, SE-11(3):259–266.

[32] Pauls, J. (2001). Pigs and people.in preperation.
[33] Perkins, S. (1998).Incremental Acquisition of Complex Visual Behaviour using

Genetic Programming and Shaping. PhD thesis, University of Edinburgh. Depart-
ment of Artificial Intelligence.

[34] Sengers, P. (1998). Do the thing right: An architecture for action expression. In
Sycara, K. P. and Wooldridge, M., editors,Proceedings of the Second International
Conference on Autonomous Agents, pages 24–31. ACM Press.

[35] Sierra, C., de M̀antaras, R. L., and Busquets, D. (2001). Multiagent bidding mech-
anisms for robot qualitative navigation. In Castelfranchi, C. and Lespérance, Y.,
editors,The Seventh International Workshop on Agent Theories, Architectures, and
Languages (ATAL2000). Springer.

[36] Tyrrell, T. (1993). Computational Mechanisms for Action Selection. PhD thesis,
University of Edinburgh. Centre for Cognitive Science.

[37] van Breemen, A. (2002). Integrating agents in software applications. In this
volume.


