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Abstract

In this paper I discuss the role and sources of in-
novation in generating culture, and also the role of
modularity in preserving it. I also discuss the ex-
tent to which biological selection can underly cul-
tural evolution and the interaction between these.
Finally I present two sets of pilot experiments
mostly as ‘intuition pumps’ to explore the problem
of cultural stability and change. The first models
the impact of noisy transmission and modularity
on cultural stability. The second looks at the im-
pact on a culture if a biologically-adaptive variant
of one cultural trait is present.

Introduction
Innovation is a topic of great interest in the study
of cultural evolution. How do new behaviours and
ideas come to be established in a culture? The rea-
son for this interest is obvious — culture is after
all an amalgamation of past innovations, so the
study of innovation is also the study of the origins
of culture. However, the emphasis on novelty that
the term “innovation” elicits may not be the most
useful perspective for truly understanding culture
origins. For evolution, the main challenge ispre-
servinguseful traits. The most essential character-
istic of life is its capacity to reproduce — diversity
and increasing complexity, while also fascinating,
occur in other materials as well.

How difficult is preserving culture? Sperber
& Hirschfeld (2004; 2006) argue that due to the
noise inherent in the social transmission of be-
haviour, only a modular model of learning and
mind can explain cultural stability. They propose
the massive modularity hypothesis (Samuels 1998;
Carruthers 2005) as an alternative to the current
emphasis on imitation as a source of culture.

In this paper I examine the Sperber &
Hirschfeld argument in terms of reasoning from
our knowledge of information and of computation.
I then examine the conditions necessary for stabil-
ising cultural transmission in the face of noise us-
ing an agent-based model. Next, I extend the orig-
inal model to a situation where a more adaptive so-
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lution is available for one of the culture’s modules,
and examine the conditions by which the culture
can innovate or adapt to embrace that solution, in-
cluding looking at the impact on other strands of
the culture. The results are intriguing and not yet
fully analysed — I present them here as pilot work
in an exciting area of study.

Terms and Concepts: Cultural Evolution
and Innovation

Whether culture can (like life) be usefully thought
of as an evolutionary system is still a matter of
debate (Aunger 2000; Richerson & Boyd 2005).
While acknowledging this, in the present paper
I will not address that controversy directly, but
rather just assume an evolutionary perspective to-
wards culture. Indirectly, to the extent that this
work provides a useful perspective for explaining
and predicting cultural change, it can be viewed as
evidence for the hypothesis that culture evolves.

Taking then the selectionist perspective, inno-
vation might be usefully viewed as mistakes in the
cultural replication and preservation process that
happen to persist. Of course this perspective is
a simplification. There may well be intelligent
search performed by some individual ‘carrier’ of
the culture that is the root cause of some specific
‘defect in replication’, and any particular varia-
tion in culture may actually convey abiologically-
adaptive benefit. However, taking a meme’s-eye
view of innovation may help us understand the
processes that underly it (Dawkins 1976).

I take it as given thatsomecultural variation
happens as a result of blind chance and copying
errors. For the sake of simplicity therefore, this
will be the only sort of ‘invention’ I model here. I
presume that intelligent invention only accelerates
the pace of change by making actually adaptive
‘errors’ more frequent, but otherwise does not sub-
stantially change the process. In an effort to keep
this paper as clear as possible, I will call any devia-
tion from a culture an invention, and any invention
that reliably persists through cultural transmission
an innovation. My models show conditions where
an adaptive innovation can be made, and condi-
tions where innovations occur even though they
have no adaptive impact.



Background: Modularity and Cultural
Stability

In this paper I will be decompose the social com-
munication of behaviour into two levels of depth.
The rote replication of end effector positions or
end effects I will call ‘imitation’. By ‘imitation’
I do not necessarily mean a full transfer of be-
haviour. This latter would imply that two agents
have communicated not only actions but a model
between them, such that they have the same under-
standing of the role of the actions they imitate, and
the goals they might meet with those actions. One
of my main departures from Sperber & Hirschfeld
is that I believe that this shallow sort of imitation
can be an integral part of cultural transmission.

Sperber & Hirschfeld (2004; 2006) argue that
due to the unreliability of both performing actions
and perceiving others’ acts, reliable cultural trans-
mission is exceedingly unlikely. Giving evidence
based on the known degradation of signal expe-
rienced in simple transmission chains of spoken
sentences (the party game of Telegraph [USA] or
Chinese Whispers [UK]), they draw doubt on the
current emphasis on imitation. Imitation is limited
to mere replication of apparent behaviour, and that
is in turn limited by constraints in our ability to
perceive other’s actions, or indeed to execute our
intended actions perfectly. Sperber & Hirschfeld
insist that what matters is the deep transfer of men-
tal models from one mind to another, not the shal-
low imitation of expressed behaviour.

How can this deep model be recovered from
limited perceptual information? Sperber &
Hirschfeld see no way, and use this implausibil-
ity as evidence that some information must come
from elsewhere. They suggest this missing infor-
mation is the information encapsulated in mod-
ules. Modules under standard massive modular-
ity may have both genetic and explicitly-learned
components. Thus extra information is available
to compliment the shallow information available
from perception and imitation.

People used to implementing artificial learning
systems and / or familiar with the mathematics or
logic of learning will probably find the above argu-
ments somewhat unsatisfying. After all, random
noise will cancel itself out if enough information
is gathered, and something that is not random is
also not noise, but rather some sort of signal which
might be useful. In general though I think Sper-
ber & Hirschfeld are correct, but that their model
could use further clarification and completeness.
Where does the extra information they postulated
as coming from modulesitself originally come
from? Biological evolution, cultural evolution
and individual learning are all forms of learning.
Therefore taken fundamentally as sources of in-
formation and knowledge, their power is essen-
tially identical (Wolpert 1996b; Best 1999). Thus
to some extent the Sperber & Hirschfeld argument

is overly compartmentalised. To say that the extra
information required to make sense of the noisy
social transmissionscomes frommodules is still
to beg a question of how the modules themselves
have come to support this process.

Although they are not completely explicit about
it — in fact, they are almost explicitly agnostic
on the topic (Sperber & Hirschfeld 2004, p. 41)
— it seems likely Sperber & Hirschfeld are im-
plying that some of what we commonly call ‘hu-
man culture’ is genetically encoded. This is prob-
lematic if we take the simple information-centred
definition of culture I ordinarily favour: that cul-
ture is all behaviour acquired from conspecifics
by non-genetic means (Bryson & Wood 2005;
Richerson & Boyd 2005). However, if we instead
take a more ordinary-language view of culture as
the aspects of behaviour such as language and so-
cial organisation which seem to vary between peo-
ples, then the idea of a genetic component be-
comes more sensible. There is relatively little con-
troversy for example thatsomeaspects of linguis-
tic competence must be genetic, though others are
clearly learned by individuals from their own or
another culture (Fitch 2005). From what we un-
derstand of the Baldwin effect, we should not even
be surprised if things that first evolve as cultural
variation could over time become at least partially
genetically entrenched (Hinton & Nowlan 1987;
Baldwin 1896).

Modularity and Learning

What Sperber & Hirschfeld really propose then
is that the automatic or implicit learning of cul-
ture from imitation cannot in itself account for
all the richness of human culture. Although they
acknowledge a possible complimentary role for
imitation-driven cultural transmission, their own
emphasis is on complex mental models underpin-
ning human behaviour. This process in turn re-
quires the explicit transfer of abstract / symbolic
knowledge. Symbols in themselves contain almost
no information, but cultural participants who un-
derstand them have high-information-content as-
sociations, orgrounding, for them. Under the
Sperber & Hirschfeld model, grounding encoded
in modules contains most of the information nec-
essary for the newly acquired behaviour.

This notion of the role of modules is quite sim-
ilar to one I have proposed in the context of ar-
tificial intelligence (Bryson 2000; 2001). In this
work I extended the model of modular organisa-
tion of intelligence known as Behavior Based Ar-
tificial Intelligence (BBAI) (Brooks 1991) to in-
clude module-based learning. The original insight
of BBAI was that real-time intelligence is best de-
composed into behaviour modules. ‘Best’ in this
context means

• responsive to the demands of an unpredictable
and rapidly changing environment,



• robust to the difficulties of both sensing and
control, and

• easily and reliably developed by programmers
and roboticists.

Under standard BBAI, the purpose of a behaviour
module is to perform some action or provide some
capacity for its agent. It consists therefore of in-
structions for whatever control is necessary for
those actions, but also of whatever perception is
necessary to guide those actions. This tight cou-
pling of sensing to action is a hallmark of BBAI. It
simplifies the problem of building intelligence by
restricting the problems worked on to a minimum
set of capacities each with only the most essential
detail to reliably execute its tasks. The strength
of the approach was not only argued but also
demonstrated in the first robots able to move au-
tonomously at animal-like speeds (Horswill 1993;
Brooks 1990).

My extension to BBAI stems from the obser-
vation that perception is more than just sensing.
At any one instant, sensing provides just too lit-
tle information to successfully disambiguate the
correct next action. Animals address this prob-
lem through systems of memory ranging from in-
tegrating recent signals through conventional ideas
of memory (e.g. map learning) and on through
genetically provided biases (Carlson 2000; Rao
1999). My extension of BBAI is to argue that
just as behaviour modules should contain the ded-
icated and specialised sensing necessary for their
actions, they should also contain the dedicated and
specialised memory necessary for both perception
and control. One advantage of this modularisation
of learning is that specialised representations can
be chosen that facilitate the particular sort of learn-
ing that each module needs. This increases the
probability that the individual agent will learn and
act successfully (Bryson 2001; Wolpert 1996a).

Bootstrapping Culture: The Law of Large
Numbers
From the above review it should be obvious that I
strongly support the idea that modules can and al-
most must support all learning1. This includes the
individual learning that underlies cultural trans-
mission and evolution. However, we must con-
sider the full process of internalising information
to guide behaviour, from evolution through devel-
opment and learning. We also need to account for
cultural transmission in the non-human species in
which it has been observed (Whitenet al. 1999;

1Strictly speaking, a homogeneous learning system
is Turing-equivalent to a modular one and so therefore
could in theory learn anything a modular one can. How-
ever, accurate learning is much, much less probable
without bias, and therefore will take much longer on av-
erage (Wolpert 1996a). For an animal or other real-time
system, this means it is less likely to succeed in time to
be used.

van Schaiket al. 2003; Perry & Manson 2003;
Kenwardet al. 2006). Even ants might be thought
of as having minor cultural differences between
colonies, since their members both determine and
learn new nest locations in a distributed, social
manner (Franks & Richardson 2006).

I believe Sperber & Hirschfeld are right to be
skeptical of one-shot imitation as a mechanism of
social transmission. Essentially, if a single signal
can transmit enough knowledge to really alter be-
haviour, then that knowledge must have been ac-
cumulated in a way that is information-equivalent
to a symbol anyway (Wood & Bryson 2007). In
this case, imitation is not fundamentally different
from explicit communication. Also, there is no
reason for inheritance in cultural evolution to be
limited to one or two parents and a single recombi-
nation event (Bryson 2008, p. 89–90). Rather, the
more information that can be gathered, the easier
it is to detect the salient signal inside the noise and
irrelevant detail.

This last point brings me back to the first thing
that will make anyone knowledgeable about infor-
mation theory uncomfortable about the Sperber &
Hirschfeld argument. In information theory and
statistics in general, we know that the surest way
to recover a signal from noisy input is to assume
that the true signal, the information, is the most
reliable part of the transmission. Everything that
is not part of that signal should be randomly dis-
tributed with respect to it. Given this situation,
by the Law of Large Numbers (in most of its ver-
sions) all a learner needs is enough examples to
derive the underlying signal by averaging over a
large amount of noisy input.

Experiment 1: Stability of Culture
with Noisy Transmission

The following experiments demonstrate the above
argument, and then move to explore some of its
consequences. They are abstract and not yet fully
analysed, so at this stage they should probably be
thought of as intuition pumps (Dennett 1995). I
present a modular model of a culture. The model
is agent-based (ABM). It is built in NetLogo, a
standard and freely-available ABM development
environment (Wilensky 1999). The code for the
model is available from the author, and from the
author’s Web site.

Model
An ABM consists of three parts:

1. an environmentwhere the agents are situated
and which determines their possible behaviour;

2. attributes, also known as parameters or variable
state, which describe the agents and what makes
them individual; and

3. behaviouror intelligence, the actual algorithms
which the agents use for control.



Figure 1: Culture degrading. Notice the presence of subcultures among neighbouring adults.

Figure 2: Culture recovering. The probability of generating incorrect actions has been reduced just 4%.



We find models easiest to communicate if we de-
scribe each of these in turn (Bryson, Ando, &
Lehmann 2007).

Environment The first model has a very simple
environment. It is entirely social, with no intrinsic
reward provided for any behaviour. Space is de-
scribed as a torus — really, a square but the left
and right edges connect, as do the top and bot-
tom, so that the code and statistics do not have to
deal with exceptional agents that live at the edge
of their world. Agents occupy every possible lo-
cation in the grid; each has eight neighbours it can
observe.

Agent Attributes Agents have three types of at-
tributes (Bryson, Ando, & Lehmann 2007):

1. static parameterswhich vary only between ex-
perimental conditions,

2. run-dependent parameterswhich vary per run
and often per individual but are fixed at the be-
ginning of the run, and

3. dynamic parameterswhich change within a sin-
gle agent’s lifetime.

Besides having eight neighbours, the most fun-
damental static parameter in this model is the
agents’ modules. All agents have the same number
of modules. Although the exact number of mod-
ules is run-dependent, how they operate is static.
Each module is very simple — it essentially cor-
responds to a context the agent may find itself in.
Each agent has a single behaviour that it currently
expresses in that context;whichbehaviour among
many possible is learned socially (see algorithm
below). For convenience in visualisation (but not
in explication) there are exactly as many possible
behaviours for each context / module as there are
modules.

Since the agents acquire their behaviour so-
cially, they need to be able to keep track of what
behaviour they have seen. Thus each agent has as-
sociated with each module a memory. The size of
this memory is the same as the number of possible
actions. The agent remembers how many times it
has seen each action it has witnessed in each con-
text. Thus the content of this memory is a dynamic
parameter.

Besides the contents of its memory, the only
other dynamic parameter of an agent is its age. At
the very beginning of a simulation, age is assigned
randomly to each agent from the full range of pos-
sible values. Subsequently, any new agent starts
with age 0.

Besides the number of modules, there are a
number of other run-dependent parameters:

• Each agent’s (X, Y) position in social space.
This determines which eight agents are its
neighbours.

• The number of ‘years’ spent as a child and as
an adult. The difference is that no one learns

socially from children.

• The number of acts performed per ‘year’. This
in combination with the lifespan and the size
of the culture determines how much each agent
will experience in its ‘life’.

• The probability of a perception error and the
probability of an action error. If one agent per-
forms an action error, all of its neighbours will
see an unintended behaviour in a particular con-
text. If one agent experiences a perception error,
then it is the only agent that’s knowledge is af-
fected. In both cases, an error means a value for
an action is randomly drawn from all possible
acts. For the sake of simplicity, in the experi-
ments discussed here the only probability var-
ied was of action error. This is more likely than
perception error to cause perturbations of cul-
ture, since it can bias eight neighbours’ beliefs
the same way.
This variable is somewhat dynamic, in that it
can be varied during the course of a simulation
by the experimenter. This allows for a relatively
easy search for a threshold value below which
the culture is stable an above which the cul-
ture degrades. However, nothing the agents do
changes this value, so from their perspective it
is run-dependent.

• The weight given to the seed culture at the be-
ginning of the simulation. At the beginning of
the simulation, all the first generation of agents
have their memories set to some initial cultural
value for each context. This value is set by the
experimenter. If the weight is five, the agents
have a memory equivalent to having seen other
agents perform that action five times. This pa-
rameter has no other role in the simulation after
the first generation has died.

For visualisation, the field of agents is visible
as a square. The agents are arrow shaped. The
agents are coloured to indicate their age: children
are light and adults dark. The viewer can be set
to examine any one behaviour context for all the
agents. The beliefs / chosen action of each agent
for that context is then visualised as the angle at
which the agent points. Theangle = (360∗ i)/N ,
wherei is the number of this particular context,
andN is the number of contexts and therefore also
the number of possible beliefs. There is also a
chart which shows the what percentage of agents
conform to their original beliefs in the seed cul-
ture for the first four contexts. Since all contexts
are functionally identical, these first four can be
treated as a small random sample of modules.

Agent Behaviour On every program cycle, ev-
ery adult agent chooses one of its modules at ran-
dom. It then checks its memory for that context
and expresses whatever action it has itself most of-
ten witnessed in that context. If multiple actions
have been seen the same number of times, and this



number is the maximum number for all actions,
then tied actions are chosen between at random.
Assuming there is some Probability of Action Er-
ror (PAE), the agent then has aPAE chance of
choosing an action randomly from all possible val-
ues and expressing it. Otherwise, it expresses its
module’s true value.

“Expressing an action” in the simulation is man-
ifest as asking all eight of its neighbours to add one
count to that action’s value, indicating that action
has been witnessed once more in that context. If
there were a probability of perception error, at this
point a random value might be introduced into an
individual’s memory rather than the act expressed.
However it is best practice to limit the number
of parameters on a model for simplifying analy-
sis, and since perceptual errors have less impact
on culture than action errors I did not manipulate
the rate of perception error in the experiments pre-
sented here.

When an agent reaches its age limit, it dies.
When an agent dies, it is immediately replaced
with a new agent of 0 age. This new agent has
a completely empty mind. It has the same number
of modules as the rest of the agents in the simu-
lation, but every possible value for every module
is given 0 weight. Thus its initial actions will be
entirely random.

Results
Cultural stability is directly correlated to the num-
ber of exposures to an action that an agent is likely
to experience for each action in its lifetime. Thus
the longer adult life, and the more actions that oc-
cur per year, the more stable culture. On the other
hand, having more modules decreases the number
of actionsper module, so this is negatively corre-
lated to stability, as of course is thePAE.

The tendency to ignore children’s behaviour
(which is initially essentially arbitrary) has been
proposed as a mechanism of cultural stabil-
ity.However, because even children after one year
are more likely to express their culture’s values
for any module than any other value, shortening
“childhood” — or at least, the period where chil-
dren do not serve as cultural models —increases
cultural stability. Of course this is not the only
attribute of childhood. If I had modelled it also
as a period when more is time devoted to obser-
vation of others (perhaps by increasing the neigh-
bourhood size for children), then a longer child-
hood would have been more beneficial.

Figure 1 shows a run with parameters set such
that the culture is fairly stable, but not sufficiently
so to stop degradation (forgetting) of the culture.
Since we are observing thei = 0 context mod-
ule, the agents conforming to the original culture
are pointing straight up. Notice that young agents
(the light / yellow agents) may be oriented in any
direction since they will not have seen many ex-
pressions of behaviour in this context yet. How-

ever, where adults (dark / blue agents) are misori-
ented, they often are so in company. Thus the same
mechanisms that largely preserve culture can also
serve to form and preserve subcultures.

Figure 2 shows the same simulation in the fu-
ture. However, just after the previous snapshot,
the probability of action error was lowered from
94% to 90%. Notice this does not simply freeze
the decline of the culture, but actually results in
the initiation of a rapid recovery. This is because
the level of conformity to the original culture was
still > 1/N . If culture had degraded to total chaos,
then reducing thePAE would have lead to con-
formity as well, but not necessarily to the origi-
nal value. Note also that a culture will never have
100% conformity because of the ignorance of chil-
dren, but with a lowPAE a stable culture will
achieve a high level of conformance.

Discussion
The idea that a module might take only a few dis-
crete values may seem such an extreme abstrac-
tion that it renders the model meaningless. How-
ever, we know that animals including humans are
extremely inclined to categorise perceptual data.
Even in continuous domains such as the light
spectrum, humans are far more sensitive to varia-
tion near the “boundaries” between named colours
than well within them (Harnad 1987). This em-
phasises the role both Sperber & Hirschfeld and I
hypothesise for modules in learning in general, of
which social learning is a special case. Through
some combination of genetics and experience the
agent is assumed to know a set of categories or
concepts, which learning facilitates a choice be-
tween.

Social learning may also facilitate the discov-
ery of newcategories and modules by signalling
through variations in behaviour a perceptual dif-
ference an agent had not otherwise detected (Bates
1999; Bryson 2008). However, module construc-
tion is not modelled in the current simulations.

Experiment 2: Innovation
In the first model we already witnessed the forma-
tion of subcultures. Since these can be stable for a
few years or even generations, they might already
be viewed as innovations. In the second set of
experiments we observe what happens when one
possible value for a culture model is more adaptive
than the one currently dominant in the culture. To
do this, we have to introduce reproductive varia-
tion into the model.

In the previous simulation, reproduction was al-
ways at exactly replacement rate. To keep the ex-
periment simple, a mechanism of selective repro-
duction was chosen that kept a full environment as
themaximumnumber of agents. Thus, for the non-
adaptive culture values, reproduction was lowered
below replacement rate.



Model
The model is largely as described before, with
only one exception: reproduction.

Environment The environment is largely un-
changed, except that there is now one context
which can be differentially rewarded. Which con-
text this is can be set by the experimenter.

Agent Attributes There is one new attribute, a
run-dependent parameter reflecting Selective Ad-
vantage,SA, described below.

Agent Behaviour One module or context is
chosen by the experimenter to be selectively re-
warded. For that module, only one value is right
or “true”. When an agent dies, if it does not hold
the correct value, then its probability of being re-
placed is reduced bySA. On the other hand, if
an agent does have the adaptive belief, not only
will it certainly reproduce, but also if one of its
neighbouring spaces is available, it will create one
additional offspring.

Note that because all agents are identical, there
is no change ingeneticdistributions due to this ad-
vantage. What a parent leaves to its child or chil-
dren is only its neighbours — its social network.

Results and Discussion
Ironically, my explorations of the parameter space
have shown that a culture needs to be strongly dis-
posed towards stability in order for a new tradition
to take root. If culture degrades easily, then even
when agents stumble on the adaptive subculture
they forget it again within a few generations. Ob-
viously, however, it takes considerable disruption
for a stable culture to loose its existing values so it
can change to the adaptive ones. As the model is
currently built, this disruption takes the form of the
loss of neighbours and therefore the lower proba-
bility of discriminating the cultural values accu-
rately. When one isolated subculture does stumble
on the adaptive value and begin refilling the space
around it, then the propensity for stability returns.

If the culture parameters are set to a lower level
of stability, then the dominant culture can stop
dominating earlier, but any new subculture has
significantly more difficulty maintaining its value.
The adaptive subculture in particular becomes sur-
rounded by juveniles who are relatively open to
influence — both to random patterns of other ju-
veniles and to the influence of members of other
neighbouring subcultures. Because it will still be
disproportionately wide-spread in the culture, the
ring of juveniles is particularly vulnerable to in-
vasion by the original, non-adaptive value held by
that culture. Since they surround the core of ‘true’
(adaptive) believers, they will generally sway their
behaviour and the true belief is lost.

Another significant factor determining the out-
comes for this simulation is the probability of
stumbling on the correct answer in the first place.

Recall that in all these simulations all behaviours
are equally probable for naı̈ve agents. If there
are too many possible values for the module that
is subject to selection, the agents are unlikely to
find the rewarded value in time to save themselves
from extinction. If the simulation were changed
so that the agents were even slightly more intelli-
gent in their search — for example, if they could
remember neighbours that failed to reproduce or
succeeded in having two children, this would in-
crease the probability of the correct action being
chosen (Hinton & Nowlan 1987).

Although only one module was subject to se-
lective pressure, the cultural norms for other mod-
ules also change. This might be because the same
agents that are likely to discover the adaptive in-
novation had a general tendency for invention. Al-
though all the agents have identical programs and
are seeded randomly at the beginning of the simu-
lation, the population is not entirely homogeneous.
Chance patterns of distribution of age — the only
differentiation between agents in the initial pop-
ulation — can lead to some patches of space be-
ing more or less likely to deviate from the cultural
norm and form a subculture. Due to the policy
of reproduction by replacement, age patterns are
fairly stable. Another explanation is that change
simply occurs due to the drop in cultural stability
with the reduction of numbers. However, since the
other modules are not having their original culture
actively selected against, in some cases they re-
cover their original value after the population sta-
bilises (see chart in lower right of Figure 4).

Another unanticipated result from this experi-
ment was that the pattern of regrowth after the
adaptive behaviour was discovered lead to large
regions of adjacent age cohorts. This in turn seems
to lead to the emergence in many but not all of the
module contexts not subject to selection of mul-
tiple stable cultures. Figure 4 shows an example
of one such. This may have analogues in natu-
ral culture, where age cohorts may communicate
predominantly internally rather than mixing with
other ages. Even where there is a mix of ages, it is
possible for age cohorts to focus their social learn-
ing attention on their peers.

The figures show a run where thePAE was
set to what was in the non-selective condition a
fairly stable value, particularly given the number
of modules in the culture. Figure 3 shows the cul-
tural values for the context / module subject to se-
lective pressure when the number of agents hold-
ing the adaptive belief has just begun to outnumber
number conforming to the original culture. Fig-
ure 4 shows the same run after the population has
recovered. This figure observes not the context
subject to selection, but one of the other contexts
where the values are arbitrary from a selective per-
spective. This context has now formed multiple
sizeable, stable subcultures. Notice the pattern of
ages in the agents as indicated by their colour.



Figure 3: The threshold where an adaptive innovation beginning to dominate a culture.

Figure 4: The impact of adaptive selection for new values in one module on the cultural values of another.



Conclusions and Discussion

In this paper I have examined and to a large extent
supported the proposal of Sperber & Hirschfeld
(2006), while at the same time clarifying some de-
tails of how their system might work. The modules
they describe utilise information previously ac-
quired either by the species (encoded genetically)
or by the individual’s learning, which of course
may also be channelled by the species through cul-
ture.

The model I have presented demonstrates the
ability of a culture to be stable in the face of
enormous errors in communication. The famous
‘poverty of the stimulus’ is simulated by the high
level of noise in the actions actually generated by
the agents. Agents are nevertheless able to derive a
signal because of the Law of Large Numbers and
the fact the errors are unbiased. In these simu-
lations all behaviour contexts are equally proba-
ble and all social demonstrations equally salient.
In human culture we know that rare but impor-
tant cultural behaviours such as rituals tend to
be associated with high emotion salience indica-
tors such as music which may assist in empha-
sising particular memories (LeDoux 1996). For
example, in medieval England the relatively bor-
ing and seldom-performed but essential task of pa-
trolling the parish boundaries was made salient to
young boys by beating them at boundary stones
so the boys would remember the stones’ locations
(Darian-Smith 2002).

The models also show circumstances in which
innovations can not only take place but take hold.
Strong tendencies towards conformity can give
rise to small stable subcultures even in strictly ar-
bitrary environments, as shown in Experiment 1.
Experiment 2 explores the conditions necessary
for acquisition of a newly-adaptive norm — that
is, an action selected by the environment. In addi-
tion, it also shows that society-wide displacements
of one cultural norm for another can take place for
no direct adaptive reason, but simply as a side-
effect of the disruption to the society necessary
for another, more urgent change in cultural norms.
This incidental disruption could be dangerous if a
norm that is adaptively-neutral in the current, lo-
cal environmental context actually held adaptive
salience in some larger-scale environmental con-
text, for example in times of a natural disruption
such as flooding. On the other hand, if the soci-
ety is too conservative — that is, makes too few
“errors” in behaviour replication, then inventions
seldom occur and innovations are never adopted.

One difference between my work and that of
Sperber & Hirschfeld —- I do not believe they
are correct to assume that identical internal mod-
els necessarily underly apparently identical con-
nections between contexts and expressed actions.
The conformance demonstrated here is based on
shallow imitation. To some extent, it is quite

likely that agents with similar brains and similar
experiences will wind up forming similar internal
models or theories in order to generate similar be-
haviour. However, it is possible that multiple mod-
els would result in the same or at least categori-
cally indiscriminable behaviour. For example, one
might obey law due to concerns about an afterlife,
due to an elaborate model of the importance of the
rule of law and the power of social contagion, or
simply because one is evolved to unthinkingly be-
have like others around you, and most of them are
lawful. These three models would be indiscrim-
inable from the perspective only of your observ-
ing the law. Similarly, Steels & Kaplan (1999)
demonstrates the difference in underlying lexicon
models for robots that have “perfectly” learned a
shared language. In all circumstances the robots
say and reference the same objects, yet the inter-
nal representation they require for grounding the
terms as mappings to their sensor and motor states
vary considerably between robots. Thus model
conformance is not a necessary part of social con-
formance, and may in fact provide a useful source
of variation to the populations’ inventions.

The simulations I have described beg much fur-
ther analysis. For example there should be a more
thorough exploration of the effects of developmen-
tal differences in communication on the adaptation
of cultures to new circumstances or to the opportu-
nities of adaptive innovations. Further, the sponta-
neous emergence of stable subcultures in both sets
of experiments might be seen as examples of sym-
patric speciation — a process normally attributed
to sexual selection. Clearly no equivalent of sexual
selection takes place here. Although the model is
intended to be one of cultural evolution, it might
easily be extended to model biological evolution
to study this process. Or, one might hypothesise
that cultural evolution underlies the beginning of
sympatric speciation, and the process is then ge-
netically consolidated. These projects are left as
future work.
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