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Abstract

One of the defining features of intelligent behaviour is the ordering of individual expressed ac-
tions into coherent, apparently rational patterns. Psychology has long assumed that hierarchi-
cal and sequential structures internal to the intelligent agent underlie this expression. Recently
these assumptions have been challenged by claims that behaviour controlled by such structures
is necessarily rigid, brittle, and incapable of reacting quickly and opportunistically to changes
in the environment (Hendriks-Jansen 1996, Goldfield 1995, Brooks 1991a). This dissertation
is intended to support the hypothesis that sequential and hierarchical structures are necessary
to intelligent behaviour, and to refute the above claims of their impracticality. Three forms of
supporting evidence are provided:

• a demonstration in the form of experimental results in two domains that structured intel-
ligence can lead to robust and reactive behaviour,

• a review of recent research results and paradigmatic trends within artificial intelligence,
and

• a similar examination of related research in natural intelligence.

The experimental domains are an autonomous mobile robot, and a simulated rodent situated
in a simulated natural environment. Autonomous mobile robots are the standard platform for
demonstrating the advantages of less structured reactive architectures, in this domain qualita-
tively similar results are shown to the reactive literature. In the simulated domain, quantitative
comparisons were possible, and the structured approach taken in this dissertation shows sig-
nificantly better results than the best fully parallel, reactive architecture previously reported
(Tyrrell 1993).

The approach to synthetic intelligence used in these experiments exploits the advantages of hi-
erarchy and sequence within a distributed cognitive architecture where at least partially modu-
lar subsystems execute in parallel. By successfully integrating these two strategies of control,
it avoids the rigidity normally associated with hierarchical control, while retaining the advan-
tages in combating combinatorial complexity of the action selection problem.

This dissertation also makes contributions by demonstrating the artificial intelligence archi-
tectures can be considered and tested as psychological hypotheses. It provides an explanatory
chapter for enabling psychologists to examine this literature, and a review of recent agents ar-
chitectures analysed as hypotheses and compared to the approach used in experiments. It also
includes a discussion of various methodologies of artificial intelligence research, and their
appropriateness for psychological laboratories.
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Chapter 1

Introduction

1.1 Thesis

One of the defining features of intelligent behaviour is the ordering of individual expressed

actions into coherent, apparently rational patterns. From approximately 1951 until the mid

1980s, the dominant theories in both psychology and artificial intelligence for explaining in-

telligent behaviour held that hierarchical and sequential structures internal to the agent or an-

imal underlie this ordered expression (e.g. Lashley 1951, Tinbergen 1951, Piaget 1954, Hull

1943, Dawkins 1976, McGonigle & Chalmers 1996). However, the last two decades have seen

an increase of support for a more dynamic theory of of intelligence (see Port & van Gelder

1995, for a review). This new theory holds that intelligence, like the brain itself, is actually

composed of enormous numbers of small processes operating in parallel. Several researchers

in this new paradigm have claimed that behaviour controlled by hierarchy is necessarily rigid,

brittle, and incapable of reacting quickly and opportunistically to changes in the environment

(Hendriks-Jansen 1996, Goldfield 1995, Maes 1991). They suggest that the apparent hierar-

chical organisation of behaviour is not the result of internal structured control, but it is rather

only an inadequate model imposed on a far more complex dynamic process.

This dissertation presents a body of research examining the claim that hierarchy and sequence

are not integral to intelligence, and concludes that this stance is not justified. This dissertation

is primarily concerned with examining models of dynamic intelligence, both in the literature

and the laboratory. A review of the last decade’s artificial intelligence literature in this area

indicates a need for both distributed and hierarchical control in the same system. This is fol-

lowed by laboratory research demonstrating that such “hybrid” systems can meet and exceed
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the standards of fully distributed, dynamic control. Finally, this evidence that hierarchical con-

trol can beintegrated into intelligent dynamic systems is then supported by further evidence

that it is so integrated in mammalian intelligence. This final evidence is gathered from recent

research in both psychology and neuroscience. On its own, the biological evidence has not

been considered conclusive. The main contribution of this thesis is to strengthen the claim that

hierarchy and sequence are integral to intelligent systems by synthesising these several sources

of support.

This dissertation makes several additional contributions besides the direct support of its thesis.

It provides a framework for considering evidence from artificial intelligence and psychology

together, it examines methodological issues of performing artificial intelligence research in

psychology laboratories, and it provides a detailed examination of one model from artificial

intelligence in terms of psychological plausibility. These contributions support the main thesis

indirectly by supporting the methodological approach of the dissertation.

1.2 Introduction to the Thesis Problem

1.2.1 Hierarchical Theories of the Organisation of Intelligent Behaviour

Initially it appears obvious that there must be some structure or plan to behaviour. Such struc-

tures radically simplify the problem of choosing a next behaviour by reducing the number of

options that need to be evaluated in selecting the next act. The standard strategy forAI sys-

tems, which has been considered to recapitulate natural intelligence, is to convert perceptions

and intentions into a plan — a sequence or partial ordering of behaviours which will attain the

current goal. The term “plan” in this context does not necessarily indicate intentionality, nor

even the conventional sense of “planning”. Rather, it refers to a plan in the sense of something

established, a sort of blueprint for action. Whether this blueprint is a result of instinct, past

experience or an immediate creative process is a separate, though related question; assuming

a hierarchical model, then some plans may be of different origins than others.

A plan is considered hierarchical if its elements might in turn be plans. For example, if a dog is

hungry, it might go to the kitchen, then rattle its bowl. Going to the kitchen would itself entail

finding a path through the house, which involves moving through a series of locations. Moving

between locations itself requires a series of motor actions. The theory of hierarchical control
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CHAPTER 1. INTRODUCTION 3

supposes that the mechanisms responsible for the fine muscle control involved in the dog’s

walking are not the same as those responsible for choosing its path to the kitchen, and these

in turn are not necessarily the concern of the system that determined to move to the kitchen in

the first place. A plan is considered sequential to the extent that its elements deterministically

follow each other in a fixed order, for example the order in which a dogs’ feet are raised and

advanced while it is moving in a particular gait.

Hendriks-Jansen traces the hierarchical theory of behaviour organisation in animals and man

to the ethologist McDougall (1923), who presented a theory of the hierarchy of instincts. Etho-

logical theory during this period, however, was dominated by Lorenz, who “denied the exis-

tence of superimposed mechanisms controlling the elements of groups” instead believing that

“the occurrence of a particular activity was only dependent on the external stimulation and on

the threshold for release of that activity.” (Baerends 1976 p. 726 cited in Hendriks-Jansen

1996 pp. 233–234). This theory dominated until Lashley (1951) reintroduced the idea of hi-

erarchical organisation of behaviour. Lashley supports hierarchy on the basis that there could

be no other explanation for the speed of some action sequences, such as those involved in

human speech or the motions of the fingers on a musical instrument. Neural processes are

simply too slow to allow elements of such sequences to be independently triggered in response

to one another. Lashley therefore proposes that all the elements of such a sequence must be

simultaneously activated by a separate process — the definition of hierarchical organisation.

Lashley’s argument was taken up and extended by Dawkins (1976), who further argued for

hierarchical theories of control for reasons of parsimony. Dawkins argues that it is more likely

that a complex action sequence useful in multiple situations should be evolved or learned a

single time, and that it is also more efficient to store a single instance of such a skill. Dawkins’

arguments and proposals anticipate many of the techniques developed later for robust control

in artificial intelligence (e.g. Brooks 1991b).

From roughly the time of Lashley’s analysis, hierarchical models have been dominant in at-

tempts to model intelligence. Particularly notable are the models of Tinbergen (1951) and Hull

(1943) in ethology, Chomsky (1957) in linguistics, and Newell & Simon (1972) in artificial in-

telligence and human problem solving. Mainstream psychology has been less concerned with

creating specific models of behaviour control, but generally assumes hierarchical organisation

as either an implicit or explicit consequence of goal directed or cognitive theories of behaviour



(Bruner 1982). Staged theories of development and learning are also hierarchical when they

described complex skills being composed of simpler, previously-developed ones (Piaget 1954,

Karmiloff-Smith 1992, Greenfield 1991).

1.2.2 Dynamic Theories and the Thesis Problem

The competing theory, that responsive animal intelligence cannot possibly be governed by hi-

erarchical control, has emerged from some of the practitioners of the dynamic hypothesis of

cognition (van Gelder 1998). As will be emphasised later in this dissertation when competing

dynamic models are presented, not all researchers within this paradigm are in principle op-

posed to some hierarchical ordering, however an increasingly vocal subgroup are. The theory

of dynamic action expression suggests that complex dynamic or chaotic systems operate within

the brain producing the next behaviour not by selecting an element of a plan, but rather as an

emergent consequence of many parallel processes (e.g. Minsky 1985, McClelland & Rumel-

hart 1988, Maes 1991, Brooks 1991a, Goldfield 1995, Kelso 1995, Hendriks-Jansen 1996, van

Gelder 1998). Evidence supporting the older hypothesis of structured hierarchical behaviour

is seen to have been biased by the hierarchical and sequential nature of human explicit thought

and language. In particular, because much theoretical work in psychology is conducted using

computer models, theories may be biased towards the workings and languages of the serial

processors of the machines available to most psychologists (Brooks 1991a).

Appeals of dynamic theories of intelligence include that they better explain the fact that errors

are made in sequencing of even familiar tasks (Norman 1998, Henson 1996). More impor-

tantly, dynamic theories allow for new information to constantly influence the course of ac-

tions. Thus if the dog described earlier on the way to its kitchen happens to pass a dropped

sandwich, the action “eat what’s here” should suddenly overtake “visit the kitchen.” Systems

with this capacity to be responsive and opportunistic are described in the artificial intelligence

literature as beingreactive.

A fundamental appeal of the dynamic hypothesis is that it is necessarily correct, at least to some

level. Assuming a materialist stance, intelligence is known to be based in the parallel operation

of the body’s neural and endocrine systems. It is nearly as well accepted that human and

animal behaviour can be described as hierarchically ordered (Dawkins 1976, Greenfield 1991,

Byrne & Russon 1998). The question is, how and when are these behaviours so organised?

4
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Is the order purely apparent, or does it emerge in the brain prior to the external expression of

behaviour? The research in this dissertation supports the hypothesis that at least some of the

apparently hierarchically ordered behaviours observed in higher animals are in fact determined

by hierarchical and sequential control structures organised within the animals’ central nervous

system.

The experimental section of this dissertation utilises a model which combines these two theo-

ries to a particular extent. It provides for a limited number of parallel processes, but also uses

hierarchy to provide organised control within these processes. Such a hybrid model is not par-

ticularly novel within psychological theory, however such models are still subject to criticism

and controversy. For example, the following is a quote from a recent book and dissertation1

on the cognitive implications of research into dynamical systems. In this quote, the author is

referring to the hybrid model of Hull (1943), but the description and critique could equally

well apply to the model used in this dissertation.

[In hybrid systems] Environmental contingencies play a part at the choice points

and in the form of orienting feedback, but the part they play can be explained only

in terms of the entities manipulated by the program, which of course takes the

form of a temporal sequence of formally defined instructions.

Nearly forty years of experience inAI have shown that such a control mechanism

soon gets into trouble in the real world because of its lack of flexibility, the need to

plan for all possible contingencies, the combinatorial explosion, the frame prob-

lem, and the problems of interfacing a formally defined planner, working with an

internal representation of the world conceptualised as a task domain of objects,

properties, and events, to effectors and receptors that need to deal with a noisy

real world that clearly is not preregistered into objects, properties, and events.

(Hendriks-Jansen 1996, page 245.)

Although Hendriks-Jansen is not a psychologist but a philosopher of mind, his argument rep-

resents a real challenge to the theory of hierarchical control. This challenge has recently been

pursued most strenuously by those with alternative models to demonstrate: researchers using

modular or neural theories of artificial intelligence such as Brooks (1991b), Maes (1991), and

1 University of Sussex, School of Cognitive and Computing Sciences.



McClelland & Rumelhart (1988); and researchers within the mathematical and physical sci-

ences with models of structure driving from chaos and complexity, such as Goldfield (1995),

Kelso (1995) and Bohm (1980). Nevertheless, the problem of how hierarchically ordered be-

haviour emerges from the brain has also been an ongoing issue in psychology. The well-known

defences of Lashley and Dawkins are still being revisited (Houghton & Hartley 1995, Nelson

1990). In response to a recent target article on imitation which assumed hierarchical structure

to behaviour (Byrne & Russon 1998), nearly a fifth of the commentaries chosen to appear

with the article questioned the existence of hierarchical control (Vereijken & Whiting 1998,

Mac Aoǵain 1998, Jorion 1998, Gardner & Heyes 1998, of 21 commentaries). As Gardner &

Heyes (1998) point out, “The mere fact that [one] can describe behaviour in terms of goals and

subgoals is not evidence that the behaviour was executed under hierarchical control.” Clearly,

more evidence in this debate is needed.

1.3 Introduction to the Dissertation Approach

1.3.1 Psychology and Artificial Intelligence

Psychology is the science of intelligent behaviour, that is, of behaviour resulting from human

or animal intelligence. Within this dissertation, the termpsychologywill be applied broadly to

include any of the disciplines dedicated to explaining natural intelligence, through observation

of or experimentation on human or animal behaviour.

One of the ways to study natural intelligence is to create models of it. The advent of comput-

ers has allowed for the creation of functioning, animate models, which allow for particularly

powerful explanations. Once an intelligent process has been fully described and expressed

on a computer, it can be tested directly by observation, either in comparison to the predicted

behaviour or to the behaviour of natural systems.

Simultaneous with the development of this capacity for animate modelling has been the emer-

gence of the discipline of Artificial Intelligence. Artificial Intelligence (AI ) is dedicated to

the creation of intelligence in the artifact, and does not necessarily seek to directly replicate

or model natural intelligence. Many practitioners ofAI are more engineers than scientists.

Among the scientists in the discipline, the research of many is more nearly related to mathe-

matics or philosophy than psychology, as they explore the nature of information or the limits

6
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of computation. Some, however, are interested in natural intelligence.

Methodologically, this dissertation focuses on the practices of a particularAI research com-

munity, the agent-based community. Their approach involves a bottom-up, ethology-inspired

approach to explaining intelligence that was first popularized in a series of thought experiments

by Braitenberg (1984) (Walter 1950, though see also). Human intelligence is too complex an

issue to be studied (or built) as a whole. As a consequence,AI has traditionally focussed on

isolated human abilities that are considered exceptionally intelligent, such as playing chess,

translating between languages and mathematical theorem proving. Unfortunately, successes in

any one of these domains has failed to generalise into any of the others, or into the important

tasks originally presumed to be more mundane, such as controlling motors for walking on two

legs or recognising faces. Agent-basedAI rejects this approach, instead favouring a recapit-

ulation of evolution. Human intelligence is presumed to require primate intelligence, which

in turn requires more basic mammal, reptile and even insect-level intelligence. Agent-based

AI has taken a dynamic stance towards intelligence: its approach has been to demonstrate that

the complex behaviour of a complete agent can arise from interaction of the number of simple

units of intelligence running independently and concurrently. Work in this area is reviewed

extensively in the following two chapters.

1.3.2 Establishing a Research Dialogue

To the extent that agent-basedAI researchers are interested in replicating natural intelligence,

there is a potential for fertile exchange betweenAI and psychology. Such a relationship ex-

ists between neuroscience and artificial neural networks, with several respected journals pub-

lishing papers from either field. The attempt to increase dialogue between psychology and

agent-basedAI has been an ongoing concern, particularly within theAI community. Three

workshops on this topic of over 100 participants each were held in the UK alone in 1997, tak-

ing place in London under the auspices of the IEE, and in Oxford and Edinburgh, hosted in

these latter two by their respective universities. All three were organised byAI practitioners

with psychologists, biologists, specialists in evolution and neuroscientists invited as speakers

and guests. In addition, this decade has seen an emphasis on inviting speakers from the natural

intelligence sciences to the symposia of the Societies for the Simulation of Adaptive Behaviour

(SAB), and for the Study of Artificial Intelligence and the Simulation of Behaviour (AISB).



TheAI researchers seek both feedback on their own designs and new inspiration from current

research in animals. Unfortunately, these efforts are still largely unsuccessful. The natural

scientists, while sometimes finding theAI work intriguing, have seen little reflection of the

incredibly complex systems with which they were experimenting in the necessarily simple and

mechanistic artificial models. Yet psychologists often draw and describe in their own talks and

papers far simpler models than any functional artificial agent embodies.

This dissertation is intended to demonstrate an improved method for establishing such a dia-

logue. Rather than attempting to teach psychologists to fully understandAI , the intent is to

describeAI in psychological terms. Because the two fields share common problems, this re-

description should not only communicate information aboutAI , but also provide an interesting

new perspective on the problems of psychology. In particular, agent-basedAI is characterised

by a large number of approaches to developing agents; these approaches are referred to as

architectures. This dissertation uses the following method for cross-disciplinary analysis of

different agent architectures:

1. isolate the differences between one approach and its competitors,

2. express those differences as hypotheses in terms understandable by a practitioner of the

alternate discipline (in this case psychology), and

3. propose these hypotheses as research questions.

This allows researchers from the first discipline to seek experimental evidence in the second

to prove or disprove their hypotheses, thus validating or invalidating the original architecture

or approach.

This approach is obviously a simple extension of standard experimental method, but it is a per-

spective that has been missing in the interactions between behaviour-basedAI and psychology.

Although a deeper understanding of both disciplines by researchers from both sides would

undoubtedly increase mutual contributions; reducing communication to succinct, fundable re-

search questions is both functional and expedient.

8
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1.4 Summary and Outline of the Remaining Dissertation

This chapter has introduced the central thesis of the dissertation: that hierarchy and sequence

can be integral parts of the control of intelligent behaviour. It has described the history of

this theory of hierarchical control in psychology, and the contributions and challenges of the

new, more dynamic hypotheses of intelligence. It has also provided a brief introduction to the

methodological issues of the use of the cross disciplinary approach taken in establishing the

thesis.

Despite the methodological argument of the previous section, in a cross-disciplinary disser-

tation there should be some attempt to establish a common vocabulary and an understanding

of the differing viewpoints and frameworks of the disciplines. This dissertation is premised

on the hypothesis that the methods and results of artificial intelligence and psychology can be

mutually informing — that they can be used together to establish a thesis. The next chapter,

Chapter 2, establishes this premise by defining the terms and problems addressed in agent-

basedAI , and relating them to the terms and concerns of psychology.

Chapter 3 begins the examination of the main thesis. It presents several alternative hypothe-

ses on the organisation of intelligence, described asAI control architectures. This includes a

hypothesis-level description of the architecture used in the laboratory experiments described in

the following chapter, Chapter 4. The laboratory experiments and their analyses are followed

by an analysis of the results of the previous two chapters in terms of the psychological and neu-

rological literature in Chapter 5. These two chapters also contain more in-depth analyses of

theAI methodologies used in examining the thesis, and suggestions for future work. Chapter 6

offers a summary and conclusion.



10



Chapter 2

Premises

2.1 Introduction

As was introduced in the previous chapter, the thesis of this dissertation will be established

with evidence coming from research in both artificial and natural intelligence. Such an ap-

proach requires the premise that the methods and results of these two fields may be mutually

informing. This chapter attempts to establish this premise by describing a relationship be-

tween psychology, particularly experimental and comparative psychology, andAI , particularly

agent-based artificial intelligence.

The first step towards demonstrating this relationship is to create a mapping of the terminolo-

gies and concepts between the two fields. Perhaps unfortunately, this does not require the

introduction of new words. By-and-large,AI has borrowed its vocabulary from psychology.

However, there is a considerable shift inmeaningof the terms as a consequence of a sub-

stantially different perspective and set of problems. The first part of this chapter attempts to

describe this perspective shift and the some of the fundamental terms and concepts for agent-

basedAI .

After having introduced these differences, the question of the relevance of artificial intelligence

to psychology and vice versa becomes more stark. The second part of this chapter argues that

at least some of the concept shifts and distinctions introduced by artificial intelligence may

be useful to psychology, and that it is consequently worth examining progress in this field

from a psychological perspective. This perspective can in turn furtherAI by providing both

knowledge and criteria for comparison on the metric of psychological validity.

11



2.2 Artificial Intelligence: Terminology and Perspective

As just stated in the introduction to this chapter, many of the key terms from artificial intelli-

gence originate in psychology, but have significantly different connotations from those of their

original source. This can be easily illustrated with more familiar terms from computer science,

such as program, memory and disk. In each case, when the component of computer science

was first conceived, it was labelled with an appropriate English word. However, the meanings

of these terms have come to take on more connotations as the components and uses of the

components developed. For example, there are now many more expectations for a computer

program than that it be simply a schedule of events.

Because this dissertation straddles artificial intelligence and psychology, and some terms are

used for different purposes in two fields, these terms will be necessarily ambiguous. This

section is intended to reduce any potential confusion by introducing the primary terms from

AI as they are used in the research reported. The primary differences in terminology and usage

are consequents of the fundamentally different perspectives involved: psychology must rely

on observation of intelligent behaviour, butAI is concerned with its construction. In general,

within this dissertation the definitions of words will be consistent with common usage within

the context of the current discussion (that is, either psychology orAI ).

2.2.1 Agency

One term from artificial intelligence that has become almost as ubiquitous as “program” is

agent. To a first approximation, the study of agents is the study of “complete” systems, in

contrast to the specialised study of particular components of intelligence. An agent should

have its own private knowledge base; it should have purpose or purposes; and it should operate

in an environment that is rich, varied and complex (see Brooks 1991b, Wooldridge & Jennings

1995). This definition is deliberately broad enough to describe animals as well as some types

of artificial intelligence.

Some definitions of “agent” require that one should be able to ascribe an agent goals or inten-

tions. Because artificial intelligence constructs its agents, we have direct access to any infor-

mation being used to determine an agent’s behaviour. In other words, we can know precisely

what is on an agent’s mind at any given time. We also know what computations the artificial

12
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agent is capable of, and we may even construct the agent such that it constantly records or

relates which computation it is currently engaged in. Expressing such types of knowledge in

English is awkward, particularly when keeping to natural intelligence metaphors. Generally,

the resulting language sounds intentional, such as “action selection,” (defined below.) In most

cases discussed within this dissertation, this intentional language doesnot imply a conscious

decision on the part of the artificial agent, or any other humoncular awareness of the current

goal. It is simply a description of some aspect of the agent’s internal processing state, in con-

trast to its external expressed behaviour. There is also a separate literature discussing the need

for the explicit representation of goals and intentions within an agent — this is discussed below

in Section 2.3.1.

This dissertation identifies the subfield of artificial intelligence that studies the problems of

creating autonomous agents asagent-based artificial intelligence. This is in contrast to to the

dominant trend in artificial intelligence of studying a single aspect of intelligence, such as rep-

resentation, reasoning, vision, kinematics, and so forth. The hypothesis underlying the agent-

based approach is that each of these problems considered in isolation is under-constrained.

Consequently, the solutions developed by these disciplines have been difficult to link together

into larger, more complete systems. Attacking these problems simultaneously, within the con-

straint of a complete system, should necessarily result in elements that do interact. Satisfying

the additional constraints of a complete agent may also lead to intelligence that is more similar

to animal intelligence, since obviously animals must meet these same constraints1 (see further

McGonigle 1991).

One set of constraints on natural intelligence are the physical constraints of the “real world.”

In contrast, manyAI systems operate in constructed worlds which may consist only of the

numerical data set, a set of simple facts, or language without referents. One of the early

emphases of agent-basedAI has been the development of physical agents, orrobots. “Robot”

has been defined as any artifact that translates perceptual information received from the real

world into action (Brady & Paul 1984). By this definition, an agent that speaks or creates

1 Within the last five years, the term “agent” has been increasingly appropriated by computer scientists using the
agent metaphor as a design strategy to create programs or applications with distributed units of responsibility.
“Agent” in this sense is a much weaker usage of the term than that in this dissertation: it does not necessarily
have any psychological orAI relevance. As of this writing, no standardised descriptor has yet been established
to distinguish these two forms of agents, and in fact, several leading conferences still accept papers concerning
both. The psychologist searching this literature must simply be aware of this distinction.



music is also a robot (Bryson 1992). However, most agent-oriented robotic research is on

autonomous mobile robots: vehicles which operate and move around in the world without off-

board or external direction. Autonomous mobile robots must cope with at least some of the

same fundamental problems as animals. For example:

• they must balance multiple, possibly conflicting goals, such as food and safety,

• they must navigate their environment successfully,

• they must choose which behaviours to perform, and

• they must categorise perceptual information.

The use of robotics in research is discussed at length in Section 4.4.

Within this dissertation, the termanimal is normally used in contrast torobot, not in contrast

to human. There will be some discussion of uniquely human intelligence, but such intellectual

attributes are largely outside the scope of the present dissertation. Consequently, unless oth-

erwise stated, “animal” is meant to be inclusive of humans, though not necessarily of lower

order invertebrates. More precise equivalent terms would be “intelligent biological agent” or

“naturally intelligent agent”, but these are avoided for obvious reasons.

2.2.2 Behaviour

This dissertation deals primarily with the problem ofaction selection, that is, the continuous

problem of determining what to do next. Anact here is defined in roughly the same way as

it was by the experimental psychologists in the 1930’s, as something gross and quantifiable,

such as a lever press, rather than at the level of individual muscular or even limb movement

(Adams 1984). The primary point of view forAI , however, is one of actionproduction, not

action result. The typical artificial intelligence researcher thinks as a programmer rather than

as a psychologist. Consequently, theAI researcher tends to place more emphasis on what code

is being executed by the robot, rather than what behaviour is observable.

This increased emphasis on cause or program relative to result may be the consequence of

the researcher being more directly the author of the code than the behaviour. For example, in

robotics, it is both easier and typically more precise to make records of code execution than

14
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of behaviour. Recording execution requires only slight modification to the readily-accessible

program, and the recording is both completely reliable and arbitrarily precise. Recording

external behaviour involves the same problems of subjective labelling and stop-watch precision

faced by observational psychology.

The positive side of this, of course, is that roboticists can potentially measure both. Thus where

a psychologist studying a rat at a lever has only one possible event, a lever press, a roboticist

has access to two sources of information: how often the robot selects lever pressing as its

action, and how often the lever is actually pressed. As this implies, there is not necessarily a

direct link between these two acts.

When an agent (particularly a robot) selects a behaviour for execution, execution is not guaran-

teed. Failure in sensing or actuation in the robot may result in a “completed” gesture not being

successful. For example, a robot attempting to grasp a can from a tabletop might fail to realize

that it has in fact knocked the can off the table, and has grasped another object. Another source

of failure is interference, a chosen action may begin, but then be interrupted by the selection

of another action before the first action can complete. Additionally, arbitrary consummatory

acts such as pressing a lever or knocking a ball into a goal may be achieved accidentally or

incidentally, while the robot is moving to fulfill some other goal.

All of these potential differences between “intent” (selected action) and actual behaviour are

also applicable to animals. However, except in special (usually invasive) experiments (e.g.

Tanji 1996, Wilson & McNaughton 1994), the selection of the act cannot be registered inde-

pendent of its successful completion. This was the motivation for the methodological decision

by the behaviourists to use the act as their level of description and experimentation — it was

considered the only level of description open to the scientific method (Skinner 1935 cited in

Adams 1984 p. 4). This point will be taken up again in the discussion of the relevance ofAI to

psychology, below.

This difference in perspective and emphasis, between the expressed behaviour versus the se-

lected behaviour, has methodological implications which are discussed in the following two

sections. However, it also has an important consequence in terminology. The termbehaviour

is often used in agent-orientedAI to identify a program, or a program unit, which is expected

when executed to express a particular external behaviour.Behaviour-basedAI is an approach



to programming an artifact where the units of the program are individual behaviours, as just

described.

In contrast, the traditional approach toAI programming had been to decompose intelligence

along traditional computer science lines. A single reasoning system would process a single

monolithic database of facts stored under one uniform representation, and a general-purpose

planning system would select which action to take given the current situation. The innovation

of behaviour-basedAI has been to move away from such global systems of intelligence to

modular, specialised, and distributed ones. Such approaches have also been under investigation

recently in psychology and philosophy of mind (Fodor 1983, Dennett & Kinsbourne 1992,

Karmiloff-Smith 1992, Cosmides & Tooby 1994, Mithen 1996, Elman et al. 1996).

2.2.3 Behaviour Expression and Emergence

The fact that agent-basedAI uses the word “behaviour” both to describe a program element

and an explicit act would lead to ambiguity even if each software behaviour, when executed

successfully, lead to a particular expressed behaviour for which it had been designed. In prac-

tice, there are further complexities in the relationship between programmatic behaviours and

expressed behaviours, beyond the possible accidental failures of correspondence mentioned

above. First, the expression of a programmed behaviour is highly dependent on the context in

which it is expressed. The original specifications for behaviours in behaviour-basedAI (Brooks

1986, 1991b) state that a behaviour should be a tight coupling between specialised sensing and

specialised actions. Consequently, a single software “behaviour” may have several different

apparent external expressions.

For an example, consider an “avoid obstacle” behaviour in a mobile robot with touch sensors

embedded in bumpers around its periphery. The “avoid obstacle” behaviour may generally be

fairly inactive, spending most of its time monitoring the state of the touch sensors. However, if

one of the touch sensors is activated, the behaviour may take control of locomotion by initially

starting away from the direction of contact. For some period after such a contact, the behaviour

may have a third form of expression — it might influence other behaviours which are selecting

direction, in order to avoid returning to the area where contact was made.

In addition to the fact that one software behaviour may map to many different expressed be-
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haviours, some expressed behaviours may not be the result of any one software behaviour.

Often multiple software behaviours will be active simultaneously; or in other words,in par-

allel. To continue the example in the previous paragraph, if the “avoid obstacle” behaviour is

trying to avoid a point on the left and fore of the robot where there was a recent collision, and

another behaviour, say “approach light” is encouraging the robot to move directly forwards,

the result of both behaviours’ simultaneous action might be a right-forwards arc around the

obstacle. (See Figure 2.1.) Because there is no explicit software behaviour that tells the robot

to move in an arc, the expressed behaviour of moving in an arc is said to beemergent. Emer-

gence in the context of agent-basedAI is any expressed behaviour for which there is no single

corresponding programmatic behaviour active within the agent.

Figure 2.1: An elegant path may be the result of the combined impact of two simple be-
haviours.

2.2.4 Development

As described in the previous section, the perspective of the artificial intelligence researcher is

significantly different from that of the psychologist; theAI researcher’s view is more internal

and algorithmic. This is partly because theAI researcher exploits the most accurate and acces-

sible data available, the code executing on their agent and causing its behaviour, rather than the

external behaviour itself. Another reason for a different perspective is a different motivation.

Artificial intelligence is not only interested in description, but also indevelopment.

Development in both psychology and artificial intelligence implies a process of improvement

and expansion of abilities due to qualitative change in the agent. In nature, this development

characteristically occurs as a process of maturation experienced by the agent between its con-

ception and its coming to an adult form. In artificial intelligence, development is almost never

something the agent performs itself, but is rather the process by which the agent is created by



the researcher.

The AI development process typically takes the vast majority of a research project’s lifetime.

The typicalAI project is to create a particular intelligent behaviour, and once this has been com-

pleted, the project is essentially over. To this extent, many artificial intelligence researchers

are more engineers than scientists. Consequently, manyAI papers address what can be done

and how, rather than comparing two similar approaches or artificial agents. This issue is also

further addressed below in the section on methodology, Section 4.4.

In contrast to development,learning is typically seen as changes in established representa-

tional systems brought about as a consequence of experience. The capacity to learn is con-

sequently something that must be provided in advance, in both animal and artificial agent.

Learning in this context is discussed in this dissertation in Section 5.3.4.

2.2.5 Experimental Method

As explained in the introduction to agent-based artificial intelligence above (Section 2.2.1),

the agent-based approach was formulated as an alternative research methodology. Researchers

such as Brooks (1991a), Steels (1994), and Horswill (1997) suggest that there is no other

way likely to create “true” intelligent behaviour than through their complete agent approach.

However, this reformulation has been aimed at the level of development. Little consideration

was given to the issue ofscientificmethodology by the early researchers in this field; work in

this area is still in its infancy (Hallam & Hayes 1992, Laird 1997, Nehmzow et al. 1997, Wyatt

et al. 1998).

Another premise of this dissertation is that a reasonable way to fill this methodological void

is to adopt the scientific practices of experimental psychology. This is discussed in Chapter 4,

and has been adopted by some members of agent based community, (e.g. Webb 1996, Sharkey

1998). A basic consequence of this approach would be that progress or relative merit should be

evaluated in terms of statistical measures of observed behaviour, by use of hypothesis testing.

The traditional standard methodology in artificial intelligence has been the demonstration by

prototype that a concept or development approach succeeds.

The emphasis on demonstration is not surprising if one considers the assertion made in Sec-

tion 2.2.2, thatAI researchers attend more to the selected software behaviour than actual ex-

18



CHAPTER 2. PREMISES 19

pressed behaviour. Computers are built to be completely deterministic systems. Determinism

is a characteristic of traditional logical systems, and logic has often been perceived as the ul-

timate rationality, and consequently the and goal of intelligence. Thus in traditional software

design, the emphasis is to develop algorithms that can be proven to operate correctly in all

possible circumstances.

One reason why this approach fails in artificial intelligence is that inAI domains it is more

difficult to categorise and account for all possible circumstances than in conventional domains

of mathematics and computer science. The situation is analogous to difference in difficulty

in establishing controls for psychology vs. chemistry or physics. The problem domain is far

richer and the systems studied the far more complex. The successful categorisation of envi-

ronmental circumstances is in fact one of the tasks of an intelligent system, and our inability

to explicitly account for these is one of the motivations for creating artificial intelligence. This

problem has been demonstrated formally by Chapman (1987), who has proved that optimal

decisions about action selection cannot be made by an agent that has finite resources of either

time or memory.

The fact that the difficulty and reliability of both perception and action are major aspects of

the task of intelligence has only recently come to be understood withinAI (Ballard et al. 1997,

Horswill 1997). Historically, mostAI work has been performed in an environment where

not only is perception provided, but actions are guaranteed to be executed as intended. For

example, a chess playing program simply states its next move, which it then presumes to be

canonical. Any information entered into the typical chess program that would indicate an

incorrect move had been made accidently would be rejected as an illegal move on the part of

the opponent.

In addition, any information in a central knowledge base used for making planning decisions

is often guaranteed to be true and internally consistent. In fact, traditional artificial intelligence

reasoning systems are incapable of storing or using contradictory information, and centralised

systems for dealing with such information, such as non-monotonic reasoning systems and

truth-maintenance systems, are still major areas ofAI research. See for example any majorAI

conference proceedings, (e.g. IJCAI or AAAI of 1999).

As described in the previous section on behaviour (page 15), agent-basedAI , particularly



robotics, has a considerably different set of assumptions. Neither sensing nor action can be

expected to be accurate. Different behaviours may hold contradictory “knowledge” about the

world. To continue the example from that section, the obstacle-avoiding behaviour may be said

to “know” going forward is bad, while the light-seeking behaviour may “know” it is good. Fur-

ther, the obstacle-avoiding behaviour as described has no way of knowing whether the obstacle

encountered was stationary or mobile, so its knowledge may easily be ill-founded. If the obsta-

cle is mobile and has moved away, going forward may be neutral as far as the obstacle-avoiding

behaviour should be concerned, not bad.

In summary, agent-based systems utilise algorithms which are not provably correct or even

consistent, because the problems of operating in the real world are too complex to solve de-

terministically. Consequently, evaluation of such a system invites the methods for the testing

of theories of behaviour used in psychology. These techniques were designed for studying

animals, which are similarly non-deterministic, possibly for similar reasons. The need for

creating a science of describing animal behaviour led to the development of psychological

method. In general, however, such methodologies are not yet widely used within agent-based

AI . This may be a consequence of not having sufficiently rethought the traditional approach to

AI from which agent-based research emerged.

Robotics-based research also has another pressure against proper experimentation — it is dif-

ficult to achieve significant numbers of tests in robotics because the robots themselves are

expensive, slow, and unreliable. Robots often physically degrade over the period of an exper-

iment, because most of their components are not engineered to withstand protracted shaking

or frequent collisions. In this respect as well they are like animals, requiring careful manage-

ment of research schedules and specialised technicians. They also share the risk of unexpected

delays and outright loss of individuals prior to completion of testing. Thus, the history and

expectations by both researchers and funders ofAI as an engineering subject, and the lack of a

history of the discipline for research found in the animal sciences have slowed the progress of

scientific methodology in the field of autonomous robotics. These issues and their implications

for psychologists using agent-basedAI are further discussed in Section 4.4.
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2.2.6 Scaling and Complexity

As explained in the previous section, much artificial intelligence research can be characterised

as existence proof, or more cruelly “Look ma, no hands” research (Simon 1995). Yet the

assumption that, if an algorithm can be shown to work, then it can be expected to work reliably,

has empirically often proven to be false. An algorithm that works in a particular domain

may not work in another with different features, or more complex arrangements of the same

features. A significant hurdle for any successful artificial intelligence system is whether it can

operate equally successfully when there are simplymoreof the same features or problems.

This is called thescaling problem.

The scaling problem is now recognised as a primary issue for artificial intelligence algorithms.

It is in some ways the inverse of one of the classic problems of comparative psychology: the

question of whether intelligence or at least learning is homologous across all animals, varying

only in scale, or whether it employs qualitatively different mechanisms in different species.

(See for example (Livesey 1986) for a review of psychological research in this domain.)A I

being a science of production, the question is whether any particular known algorithmcanbe

so scaled. In other words, is it feasible to significantly increase the scope of a capability by

simply increasing the capacity of the system that provides it.

For a simple example of a system that doesn’t scale indefinitely, consider the size of animals.

One limit on how large an animal can be is bone strength. The weight of an animal increases

as the cube of its height or length, but bone strength only increases as the square of the width

of the bone. Consequently, an animal’s bone mass has to increase faster than its length as an

animal increases in size. Clearly, this sets limits for overall size. This constraint is a greater

problem for flying animals since bones contribute significant weight, and less of a problem for

swimming animals since their mass is supported more evenly by their environment.

These problems are sufficiently central to not only artificial intelligence, but computation gen-

erally, but they have become a major area of research in both mathematics and computer

science. Significant progress has been made in the last few decades at describing both the

difficulty of problems, and the power of algorithms. The metric of this difficulty is called

computational complexity. These methods are now applied as matter of course to the analy-

sis of AI systems. This section serves as an introduction to complexity theory, for a complete



introduction to the theory of computation see Sipser (1997).

To give examples of different levels of complexity, we will consider the problem of recognising

human faces. Assume that a face can be characterised as a large number of features that can

be reliably read correctly2, and a large number of faces have been stored in some form of

knowledge base. One algorithm for recognising a new picture of a face would be to search

each face in the database and determine which one is the closest match. This is alinear time

algorithm, dependent on the number of known faces. That is, the amount of time it would take

is directly proportional to the number of faces in the database.

2

EXPONENTIAL LINEAR LOGARITHMIC CONSTANT

1

3

Figure 2.2: Different types of complexity. N is the dependent variable—for example, the num-
ber of faces needed to be recognised. Blocks represent resources (e.g. time, space, number of
nerve cells) and levels representadditionalresources required for an increase of N. Resources
required for N = 1 are given to be 4 for all four conditions.

A faster algorithm would be one that splits the database depending on the value of a particular

feature, for as many features as is necessary to find a unique answer. For example, if the first

feature were gender, and the target picture is of a woman, approximately half of the database

would not have to be searched. If the second feature were hair colouring, of which there were

five possible values for the feature, than a further four fifths of that half could be ignored,

and so on. This algorithm is better than linear (technically, it islogarithmic ) but it is still

dependent on the number of stored faces, since presumably the more faces there are, the more

features will be needed to completely discriminate between them. However, this algorithm

would be said to scale better than the previous, linear algorithm, at least with respect to the

2 This is a very unrealistic assumption. Face recognition is also a significant area of current research in artificial
intelligence. Most face recognition programs require uniform location and lighting constraints for the picture
to be identified, then perform principle component analysis across a collection of such images to determine
automatically the salient features (e.g. Brunelli & Poggio 1993, Dailey & Cottrell 1997).
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number of faces known.

A rearrangement of the previous algorithm can be made to work so that amount of time to iden-

tify a face isconstantwith respect to the number of faces memorised. Suppose that we have

established a list of features actually needed to discriminate all of the people in our database

by the method above. Suppose also that for any face, the value of its features could be ex-

pressed numerically. Finally, imagine that each face can be uniquely identified by performing

a mathematical function on the value of each of these features for that face. That is, the value

of the function is different for any two faces. Then, a new face could be recognised simply by

applying this function to the face’s features.

The time of the above strategy for recognition isconstant for (or independent of) the number

of faces, but it is linearally dependent on the number of features required for the computation.

This dependency is less important than the former, for two reasons. First, the first two algo-

rithms are also dependent on the number of features needed, so this dependence is constant

across all three algorithms, and therefore not a factor in discriminating between them. Sec-

ondly, as explained in the previous algorithm, the number of features needed increases only

as a logarithm of the number of faces stored. Or, to restate the same concept from a different

perspective, for every new feature, there is anexponentialincrease in the number of faces that

can be represented. This is because any one new feature can be potentially combined with

each former feature, thus it represents not only one new face, but as many new faces as there

were formerly features.

The descriptors listed above; constant, logarithmic, linear, and exponential; are examples of

complexity values used to label both algorithms and problems. A problem is said to be of the

least complexity for which an algorithm is known to solve it. For example, a problem would

be considered of linear complexity if a linear algorithm is known that can solve it, but no such

logarithmic or constant algorithm is known.

Any agent in the real world needs to worry not only about complexity in time, but also in

storage space and/or computing resources. An example of an algorithm that is time efficient

but storage expensive is the “grandmother cell” theory of face recognition. In this theory,

different brain cells represent different people or objects, and are able to uniquely identify

whether a face is or is not recognised by them. The algorithm is constant time, since however



many faces are stored, the cells all attempt recognition concurrently. However, the number of

brain cells required to do this computation is linear on the number of people known.

2.3 Can AI Clarify Psychology?

Given the substantial differences in perspective, language and task described in the previous

section, can artificial intelligence have any bearing on psychology? The hypothesis on which

this dissertation is based is that the problem of intelligence has sufficiently universal charac-

teristics that the progress made in understanding the construction of an artificially intelligent

system can shed light on the study of naturally occurring intelligent behaviour (see for dis-

cussion McGonigle 1991, Hendriks-Jansen 1996). One can go further and suggest that many

of the discrepancies betweenAI and psychology are actually the result ofAI discovering and

reducing ambiguities that had been latent in the original psychological theories. Artificial in-

telligence has been forced by the discipline of engineering to have clear, precise models of

potentially ambiguous concepts because a complete, constructed system must have functional

elements. These clarifications may be incorrect;AI may have focussed on the “wrong” aspects

of behaviour, development or complexity from the perspective of psychology. But they are at

least concrete hypotheses; as such, they should be tested.

One of the premises of this dissertation is thatAI can provide not only a platform for testing

hypotheses, but also for developing them. The rest of this section illustrates this approach on

a high level. The following chapter will provide a detailed example with respect to the disser-

tation’s central thesis, concerning the sequential and hierarchical nature of action selection.

2.3.1 Goals and Intentions

One of the first concepts introduced in the previous section was a simplified definition of

intentionality. Often a behaviour or set of behaviours will have a terminating condition. For

example, a foraging behaviour terminates when food has been found, an eating behaviour

when the agent is satiated. These terminal conditions are often referred to asgoals for the

behaviour. They relate to the notion of consummatory behaviour in ethology, but notice that

the specification above is of an extent, rather than a behaviour: e.g. consummation is achieving

at least a threshold blood-sugar level rather than simply eating. This is another example of the
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AI emphasis on internal rather than external perspective.

This set of language and perspective provided byAI allows us to ask psychologically rele-

vant questions. For example, is it accurate to portray behaviour as having goals or terminal

conditions? A simple alternative model would be to have behaviours persist until they are in-

terrupted. In the above example, another goal could come to be of higher priority than eating

as blood-sugar level increased. Examples of such an architecture in psychology is Hull (1943),

or in AI Maes (1989), described below in Section 3.5.1.

As stated earlier, currently active goals (or just active software behaviours) are sometimes

called intentions (Bratman et al. 1988). Translating such terminology into the common psy-

chological meanings of intention can be problematic. For example, the obstacle avoiding

behaviour described in the previous section is quiescent whenever the robot is neither hitting

something nor near to where it has recently hit something. Would we say the robot only in-

tends to avoid obstacles directly after it has hit one? Or, since the behaviour is constantly

active at least to the level of checking its sensors, do we say that the robot always intends to

avoid obstacles? It may seem that such a definition removes the utility of the term “intention.”

However, the word denotes a useful distinction, between actions that consummate a behaviour

module, and those which do not. Thus, if the robot did in fact strike an obstacle while pursuing

a light, the striking could be said to be a consequence of the agent’s behaviour (particularly the

move-towards-light behaviour) but not a part of its intent, whereas moving towards the light,

or backing away from the obstacle after striking it are both intentional acts.

The common psychological definition of intention has something to do with conscious deci-

sions, but consciousness is itself poorly defined, and its relation to intentional behaviour still

not fully understood (Dennett & Kinsbourne 1992). While not denying the utility of the con-

cept of declarative intent, that is, intention as stated by the subject, it has been obvious since

the beginning of psychology, since James, Freud and even Hume, that there is also a need

for a weaker understanding of goal and intention to describe meaningful behaviour that arises

without declarative selection. Norman & Shallice (1986), for example, give a psychologi-

cal account linking deliberate and automatic behaviour (including misordered behaviours) as

slightly different control operating over a single distributed behaviour system. Their model

is similar to some of theAI action control mechanisms described in this dissertation; it is

discussed further in Section 5.3.3.



2.3.2 Rationality and Behaviours

Similarly, the behaviour-based approach to intelligence is at odds with logic-based models of

rational behaviour, where a single consistent set of rules is applied across data to arrive at the

conclusions. Although this is still the folk-psychological understanding of at least declara-

tive knowledge and reasoning, it has been well established that human decision making is not

necessarily logically consistent (e.g. Tversky & Kahneman 1981, Bacharach & Hurley 1991),

nor do we apply the same computational skills and strategies in different situations (Cosmides

& Tooby 1992). Even such apparently logic-based abilities as transitive inference have been

demonstrated to be not “high level abstract thought” but “basically a robust biological mech-

anism dedicated to rational choice control” (McGonigle 1991). The ability to make transitive

choice (if A > B andB > C, thenA > C) has been demonstrated both in monkeys (McGo-

nigle & Chalmers 1977) and in children who were still incapable of the task of sorting small

numbers of blocks by size (Chalmers & McGonigle 1984). From a logical perspective, being

able to order a full list should precede or coincide with being able to order elements within it,

particularly across transitive pairs.

Such results are typical of the findings that have led to what has been called “the contextual

revolution of psychology, sociology and the philosophy of mind” (Hendriks-Jansen 1996).

The behaviour-based approach of localising reasoning and computation patterns to modular

behaviours is one abstraction for modelling such results. It is not a perfect model; for example

it is difficult to imagine how a fully modularised system might model the ability of analogy —

of applying some part of the form of a solution from one domain into another. Such difficulties

with behaviour-based models are addressed further in Section 5.3.4.

A more accurate modelling of cognitive skills (as opposed to reflexes) would probably be dis-

tributed, as suggested by most neuroscience since Lashley (1950). A skill probably results

from the bound activation of a sufficient number of nerve cells or cell assemblies, their acti-

vation triggered by context set both externally through perception and internally by cognition,

which settle to established patterns. If the same nerve cells are assumed to serve in many dif-

ferent configurations, this mechanism could more easily explain problem solving via analogy

than a fully modular system. Further, the fact that context, whether triggered by perception

of internal or external events, is set by mechanisms affected and recategorised by learning,
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allows this sort of distributed model to account for insight and other such forms of cognitive

dynamics. See Calvin (1996) for an example of a model along these lines.

Unfortunately, controlling such representations precisely enough to result in complex high-

level behaviour is beyond the current capabilities of the parallel distributed processing (or ar-

tificial neural network) approaches toAI . Consequently, the choice within active experimental

systems for representing behaviours is between the overly-modular simulations in behaviour-

basedAI , and the under-modular traditional single-database and reasoning systems. As argued

above, the latter are simultaneously overly powerful and insufficiently biased to represent nat-

ural intelligence. Behaviour-based systems may be too modular to accurately represent de-

velopment, cognizant learning or representational redescription (as in Karmiloff-Smith 1992).

However, they can be used to model snapshots of skilled behaviour, and also specialised learn-

ing, which appears to account for the vast majority of natural adaptivity (Gallistel et al. 1991).

In the case of specialised adaptation, the representational substrate for this learning can be

contained within a single behaviour, thus the modularisation would not be a problem (Bryson

& McGonigle 1998). This strategy was used in the robot experiments described in Section 4.2.

2.3.3 Context and Complexity in Behaviour

As stated above, the extent to which behaviour is determined by context or environment is

coming to the fore of many fields of research, for a recent review see Hendriks-Jansen (1996)

or Clark (1996). In artificial intelligence, this idea was first proposed by Simon (1969). The

complexity of behaviour may be to some extent merely the reflection of the complexity of the

environment in which it is situated, the computation involved in the behaviour itself might

be simple. Simon’s example was of the path described by an ant walking on a beach. De-

scribing the path mathematically, full of intricate curves in three dimensions, would require an

incredibly complex equation. The ant, however, is no doubt obeying just a few simple rules

determining its heading and its finding footing across the convoluted terrain of pebbles and

sand. Braitenberg (1984) illustrates that another source of complexity in expressed behaviour

may be the simultaneous interaction of even a very few, very simple, internal behaviours.

The hope that animal-like complexity of behaviour can be created relatively simply via these

two mechanisms is central to much of the research in agent-based artificial intelligence (Brooks

1991a, Malcolm et al. 1989, Brooks & Stein 1993). Multiple parallel simple behaviours, each



reflecting through reaction the complexity of their environment, do in fact control some of

the most convincingly animal-like of robots (Brooks 1990) and virtual reality agents (Sengers

1998). They have also been shown to perform some human cognitive tasks such as playing

video games (Agre & Chapman 1987) or accompanying folk music (Bryson 1992). These

latter examples readily illustrates Simon’s ant metaphor. Pengi, a video-game playing program,

reacts to the complexity of the many rewards and hazards of its video environment. The

Reactive Accompanist reacts to the patterns of time and pitch in a melody in order to determine

which accompanying chords should be played when. The extent to which human and animal

behaviour can be successfully modelled with such systems gives us some evidence, at least as

proof of possibility, that natural intelligence might also be composed of such elements.

Reducing the complexity of the sorts of behaviour expected to be produced by an intelli-

gent agent is only one mechanism for reducing the overall complexity of action selection. As

outlined above (Section 2.2.6), complexity is also highly dependent on the sort of algorithm

applied to a task. For action selection, the complexity problem is fairly straightforward. The

number of possible orderings of behaviours increases exponentially on the number of possi-

ble actions. Any action ordering system that depends on allowing for all possible orderings

is consequently unlikely to scale successfully. Examples of such systems include Maes’s and

Tyrrell’s, described in the next two chapters. A hierarchical organisation reduces action se-

lection to logarithmic complexity since actions are clustered; they can only occur in a small

number of well-delineated contexts. The combinatorial utility of hierarchy is consequently

universally recognised (Dawkins 1976, Hendriks-Jansen 1996, McGonigle & Chalmers 1996).

The main question addressed by this dissertation is whether the cost in terms of behaviour flex-

ibility is too high for structured control to be psychologically plausible.

2.4 Common Problems Between the Fields

The remaining chapters of this thesis are dedicated to exploring one hypothesis; that the se-

quential and hierarchical structure of the control of action selection does not necessarily pre-

vent an agent from reacting appropriately and opportunistically in a dynamic environment.

This hypothesis is one example of a problem shared by bothAI and psychology. This section

details some other problems shared between the fields. This serves both as further evidence

that the fields are mutually relevant, and as hints of other potentially rich sources of research
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to be developed between the two fields.

2.4.1 Top Down vs. Bottom Up Control — Action and Perception

To what extent is behaviour the result of cognitive decisions, and to what extent is it the result

of reflexive reactions to sensory events? The early behaviour-based roboticists, like some psy-

chological behaviourists before them, attempted to drive as much behaviour as possible simply

from the bottom up, as reflexes. They called thisreactive control, a strategy discussed fur-

ther in Section 3.3. In the terms of the behaviourists, this was “connectionism3,” a suggestion

Lashley (1951) strongly repudiates:

[I]nput is never into a quiescent or static system, but always into a system which is

already actively excited and organized. In the intact organism, behavior is the re-

sult of interaction of this background of excitation with input from any designated

stimulus. Only when we can state the general characteristics of this background

of excitation can we understand the effects of given input. (p. 506 of Beach et al.

1960)

Of course, in actuality any reflexive systemis necessarily already organised. The results of

sensory input into any behaviour-based system is not arbitrary, but carefully designed and

highly constrained (Brooks 1991b). This is a form of top down control, though provided by

evolution in animals or a designer in artificial agents. What reactiveAI researchers have often

overlooked is the importance of expectation and selective attention, the “active excitation”

mentioned above. Perception itself is an impossibly under-constrained problem without top-

down information (see for discussion Barlow 1994). This claim is evidenced in biology, where

even the LGN has more reciprocal connections comingfrom the visual cortex than “forward”

connections goingto it, or than it gets from the retina (Sherman & Koch 1990, Sillito et al.

1994). Recent work in machine vision (e.g. Rao & Ballard 1996) supports the hypothesis that

“higher” layers in the cortex can learn to provide expectations that make low-level receptors

more useful. This evidence is discussed at length in Chapter 5.

3 Modern AI uses the term “connectionism” more loosely to describe any theory of intelligence rooted in dis-
tributed / neural network control rather than symbolic control. Ironically, Lashley himself strongly supported
distributed representation of motor skills as favoured by modern connectionists (Lashley 1950).



One of the questions to explore and model in autonomous agent-based research, then, is the

tradeoff between the complexity of the high level, top-down system and the complexity and

accuracy of the sensing system required to drive the system from the bottom up. Another is

the tradeoff between alertness — the ability to react to the environment, and persistence — the

ability to complete even complicated courses of action.

2.4.2 Reasoning vs. Pattern Matching

This issue is closely related to the description of preformed behaviours as top-down control

just proposed. The question here is whether rational behaviour is best characterised as con-

structive, that is, reasoned through some logic-like system to create new plans on demand, or

simply selective, where plans are picked from a library of pre-programmed behaviours. If the

first is the case, then one of the most important facets of intelligence is how the “logic-like”

system works. If the latter, then the primary problem becomes how we recognise which plan

is appropriate for the situation. Case-based reasoning is a branch ofAI entirely devoted to

studying this latter issue (e.g. Hammond 1990). As explained in the previous section on ra-

tionality, the lack of common reasoning strategies would make the pattern-matching theory

of intelligence appear likely. Even novel situations may be solved by the application of rules

at a more general level of granularity, or with relatively simple adaptations. However, such a

system could be used to describe logic itself, bringing the problem in full circle.

The question this suggests for agent-based research is how much of “reasoning” is best mod-

elled as looking up patterns, and how much is best modelled via construction. The applicability

of such research to animals might seem questionable considering the vast differences (serial

vs. parallel) in computation, but this actually affects both strategies equally, since constructive

planning is also a form of search (Winston 1992).

2.4.3 The Nature of Categorisation

To the extent that intelligence is pattern matching, that is, recognising a situation in which

an action should take place, then to that extent categorisation is a critical problem for un-

derstanding behaviour. This is again central to the problem of selecting an appropriate plan.

Psychology is concerned with researching how one situation or object is judged as equivalent
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to another (Bruner 1990, e.g.), andAI requires the ability to judge such an equivalence.

2.4.4 Nature vs. Nurture

In an artificial agent, this question reduces to how much should be programmed by the devel-

oper, and how much should be learned by the agent. Considered as such, this is every bit as

central a debate to agent research as to psychology.

2.4.5 Learning vs. Development

Again, inAI this is rephrased to a constructive question: how much can be learned in provided

representations and processes, and to what extent do learning and representation need to be

learned or provided in stages. These issues are discussed briefly both above, in Section 2.2.4,

and below in Chapter 5.

2.4.6 The Nature of Representation

This problem can be seen as a summary of the previous five. Understanding exactly what

information an agent stores and in what form is roughly equivalent to knowing the nature of

the processes that exploit it. Is knowledge a bare shell of procedures made rich by sensing,

or is the majority of perceptual experience already latent in the adult brain? If the former is

true, then processing must be mostly bottom-up, the latter would indicate a more top-down

bias. Similarly, if knowledge is mostly simple general rules, then we probably construct plans

by reasoning, whereas if it is a large number of detailed scripts, frames or cases, then much

of intelligent behaviour is done by recall. How we classify and acquire this information is

obviously tightly related to how we represent it.

One great axis of research into representation is whether it is consistent across intelligence, or

whether representation may be specialised. Modular or behaviour-based views of intelligence

are conducive to specialised approaches, while single-process theories would indicate single

representations. Notice also that both theories may be true at different levels of abstraction.

There may be a nearly homogeneous process and storage theory at the neuron level of intel-

ligence, though there are many highly differentiated types of neurons in the human brain (see

for discussion Elman et al. 1996).



2.5 Conclusion

An essential premise for the relevance of this dissertation to psychology is that some aspects

of animal behaviour can be explored via their modelling on artificial platforms. Further, since

this approach to studying intelligence has been actively pursued for some time, at least some

of the research already done should be applicable to psychology. This chapter has introduced

the terminologies and problems of research in artificial intelligence considered most relevant

to the aspects of psychology explored in this dissertation. Those aspects are the thesis problem

of mechanisms for selecting or organising behaviour. The central term to be explained for such

an application isbehaviour. This chapter has described the difference between the constructive

and the descriptive stance in terms of the understanding of behaviour, and the problems that

result from this — the problems of design and development, of research methodology, and of

demonstrating the scaling abilities of an algorithm.

This difference in perspective betweenAI and psychology does not necessarily imply the re-

sults of AI are relevant to psychology, but the fact that they may result in a source of psy-

chological hypotheses. The second part of this chapter has demonstrated the commonality

between the concerns of agent-based artificial intelligence and psychology by showing that

the progress made in agent-basedAI in defining the roles of intentionality, rationality, context

and complexity do have relevance to current psychological research. The chapter concludes

by delineating a number of current active research problems that both fields share. The hope

is that this list will serve as inspiration for future work along the lines of this dissertation.

The next chapter moves from this background into a more specific exploration of artificial

intelligence mechanisms of action selection, and presents the main model used for the experi-

ments presented in the chapter following.
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Chapter 3

Thesis: The Nature of Action Selection

3.1 Introduction

The central aim of this dissertation is the establishment of a single hypothesis: that natural,

appropriate and alert behaviour can be exhibited by agents executing actions prestored as hier-

archies and sequences. As detailed in Chapter 1, this thesis has been a basic assumption of a

great deal of research in both natural and artificial intelligence (see page 2). However, recent

research has called into question this assumption. The main objection to this hypothesis has

been that allowing for such structures seems to necessitate some form of centralised control.

Hypothesising such control is seen as recursive or homuncular: what executes the executive?

What organises the behaviour of the organiser? Further problems include the frequency of

mistakes made in even familiar, well-rehearsed sequences of actions, and the fact that some

behaviours do not occur before or after each other, but in fact are expressed simultaneously as

one fused behaviour (See Figure 3.1).

The alternative hypothesis offered is that the apparent structure of behaviour is in fact emer-

gent. That is, the structure is not provided by any explicit means, but arises incidently as a

consequence of other, more essential factors. Common metaphors for this concept of emer-

gence are the harmonic and rhythmic complexities that emerge from a symphony, even though

every individual member of the orchestra may play a relatively simple part, or the beauty that

emerges from the brush strokes and paint of the Mona Lisa.

This argument for emergence is given by two related but to some extent antithetical per-

spectives. Some support comes from researchers presuming the modularity of intelligence.

33



Figure 3.1: The canonical example that behaviour expression is a continuum, and can result
from multiple sources (from Lorenz 1973 referenced in Tyrrell 1993, p.187).

Currently this is much of the behaviour-basedAI community; earlier this century it was the

behaviourists. Modularists dismissing structured control prefer to believe that each modu-

lar unit determines its own execution time, using its own perceptive abilities. Several agent

architectures demonstrating this viewpoint are discussed below, but see for reviews Brooks

(1991a), Maes (1990b) and (Blumberg 1996). The other source of support for emergence

over explicit structure comes from researchers who favour dynamic systems theory. This field,

arising from physics and mathematics, is highly related to chaos theory. In its most extreme

form, dynamic systems theory resists thinking of any of the universe, let alone intelligence,

as segmented or modular. The resistance to hierarchy and sequence is that such organisation

implies segmentation of process. In their view process is continuous (Goldfield 1995, Bohm

1980). Hendriks-Jansen (1996) draws on both modular and dynamic backgrounds in making

the analysis quoted in the introductory chapter as the challenge to this thesis (page 5). Sim-

ilarly, the introduction of this dissertation referred to both paradigms as dynamic theories of
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intelligence, since they share the attributes of decomposing traditional theories of intelligence,

and explaining apparent coherence as emergent phenomena.

Of course, both of these dynamic communities have been forced to address the issue of com-

plex sequences of behaviour. The behaviourists initially believed that all behaviour sequences

are learned as chains of conditioned responses. This hypothesis has been disproved. The

behaviourists themselves showed both that reward fails to propagate over long sequences and

that complex structures such as mazes are learned through latent mechanisms which require no

external reward (see Adams 1984, for a review and history). Further, neuroscience has shown

that the fine coordination between different elements of behaviours such as speech and piano

playing occur too rapidly to allow for triggering of one act by its predecessor (Lashley 1951).

Dynamic theory has been more successful at describing rapid, integrated sets of behaviour,

provided these can be described as a part of a rhythmic whole. For example, swimming and

walking can be explained and controlled through understood mathematical mechanisms pro-

viding there exists a pattern generator to keep the rhythm of the cycle (Goldfield 1995, Reeves

& Hallam 1995). Such oscillatory pattern generators are basic neural structures found in all

vertebrate life (Carlson 2000). However, the structuring of more complicated, heterogeneous

behaviours (such as nest building or starting a car) has not yet been successfully addressed,

and the significantly greater combinatorial complexity such heterogeneity opens up is often

either ignored or dismissed (e.g. Bohm 1980, p.182 or Goldfield 1995, pp. 285–288).

It can be argued that emergence is merely a phenomena of the variety of levels of abstraction.

Higher levels always “emerge” from lower ones, but this does not remove the possibility that

the higher levels have their own organisational and computational properties (see for discussion

Newell 1982). The firing of nerve cells can, for example, be described either at the molecular

or the neural level of abstraction, but the behavioral consequence of that firing is more reason-

ably addressed at the neural level than the chemical. The brain is certainly a highly distributed,

highly interactive computational device, and dynamic systems theories better describe both the

fluidity and influence on each other of expressed actions as they operate in sequence and in

parallel. Common examples of these influences include the effect of emotion on gait, situation

on memory, and the influence of both preceding and following phonemes on an interval of

speech. However, modular and hierarchical models of behaviour are not only useful as de-

scriptions, but have significant biological evidence (see Chapter 5) . The hierarchical, modular



structure of the visual and motor cortices for example has been generally accepted.

The purpose of this dissertation is to demonstrate that hierarchy and sequence are not antithet-

ical to intelligence. This chapter advances the argument by reviewing the artificial intelligence

agent architecture literature, both contrasting the relative merits of individual architectures, and

looking at the development trends of particularly successful architectures. Both of the strains

of evidence indicate that structured control is both useful and necessary. Further, this chapter

introduces the specific agent architecture, Edmund, that will be used in the experiments of the

following chapter. Edmund is introduced in terms of the specific hypotheses on the nature of

intelligent action selection it embodies compared to other architectures.

3.2 Architectures as Models of Intelligent Control

As mentioned briefly in Chapter 2, an architecture is a design scheme by which an agent’s intel-

ligence is created (see further Wooldridge & Jennings 1995). Different architectures therefore

embody different approaches to intelligence. These differences are primarily differences in

decomposition, which reflect various axes of discrimination, such as:

• Specialisation vs. Generality: for example, can we consider all perception as a unit, or

should the different sense modalities be modelled separately?

• Process vs. Datafor example, is the behaviour for moving the legs during walking

planned as one walks, or is that behaviour encoded in memory?

A traditional architecture for both psychology and artificial intelligence is shown in Figure 3.2.

This architecture indicates that the problems of intelligence are to transform perception into a

useful mental representationR, apply a process toR to createR′, and transformR′ into the nec-

essary actions. This model has led many intelligence researchers to feel free to concentrate on

only a single aspect of this theory of intelligence, the process between the two transformations,

as this has been considered the key element of intelligence.

This model in Figure 3.2 may seem sufficiently general as to be both necessarily correct and

uninformative, but in fact it makes a number of assumptions known to be incorrect. First, it

assumes that both perception and action can be separated successfully from cognitive process.

However, perception is guided by expectations and context — many perceptual experiences
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Figure 3.2: A traditional AI architecture (from Russell & Norvig 1995).

cannot be otherwise explained). Further, brain lesion studies on limb control have shown that

many actions require constant perceptual feedback for control, but do not seem to require

cognitive contribution even for their initiation. This research is detailed below in the chapter

on biological evidence (see Section 5.2.1, p. 106 and p. 107, respectively).

A second problem with this architecture as a hypothesis of natural intelligence is that the

separation of representation from cognitive process is not necessarily coherent. Many neural

theories postulate that an assembly of neurons processes information from perception, from

themselves and from each other (e.g. McClelland & Rumelhart 1988). This processing contin-

ues until the activations of the neurons settles into a recognised configuration. If that configu-

ration involves reaching the critical activation to fire motor neurons, then there might be only

one process running between the perception and the activity. If the levels of activation of the

various neurons are taken as a representation, then the process is itself a continuous chain or

re-representation1.

3.3 Behaviour-Based Architectures

As first introduced in Section 2.2.2, behaviour-based architectures assume that a more useful

and accurate way to model intelligence is to model behavioural skills independently of each

other. The extreme view in this field is that intelligent behaviour cannot emerge from thinking

and planning, but rather that planning and thinking will emerge from behaving intelligently in

a complex world.

My feeling is that thought and consciousness are epiphenomena of the process of

1 Notice that the idea of a stopping point is artificial — the provision of perceptual information and the processing
activity itself is actually continuous; the activations of the motor system are incidental, not consummatory.



being in the world. As the complexity of the world increases, and the complex-

ity of processing to deal with that world rises, we will see the same evidence of

thought and consciousness in our [behaviour-based] systems as we see in people

other than ourselves now. Thought and consciousness will not need to be pro-

grammed in. They will emerge. (Brooks 1991a)

Though traceable in philosophy at least as far back as Hume (1748), and in psychology as

far back as Freud (1900), the notion of decomposing intelligence into semi-autonomous inde-

pendent agencies was first popularised inAI by Minsky (1985). Minsky’s model incorporates

the novel idea of multipleagenciesspecialised for particular tasks and containing specialised

knowledge. Minsky proposes that the control of such units would be easier both for a species

to evolve and for a system to learn than the more complex control required for a single mono-

lithic system. He also argues that such a model better describes the diversity and inconsistency

of human behaviour.

Figure 3.3: A “society of mind” architecture for a child playing, and example of k-lines (from
Minsky 1985, pp.32 and 89).

Minsky’s “agents of mind” are hierarchical and only semi-autonomous. For example, he pos-

tulates, a child might have separate agencies for directing behaviour involving sleeping, eating

and playing (see Figure 3.3.) These compete for control, and when won, their subsidiary agen-

cies in turn compete. Once playing is chosen, blocks compete with dolls and books; building
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and knocking down compete within playing-with-blocks. Meanwhile, the agency in charge

of eating may overwhelm the agency in charge of playing, and coherent behaviour may be

interrupted in mid-stride as different agencies swap to take control.

The cost of theories that successfully explain the incoherence of human thought and activity

is that they often fail to explain its coherence. Minsky addresses this by postulating a modular

rather than a completely distributed system of thought. He explains coherent behaviour as

being the output of a single agency or suite of agents, and incoherence as a consequence

of competing agencies. He also recognises that there can be coherent transitions between

apparently modular behaviours. To address this, he postulates another structurek-lines which

connect modules associated in time, space or entity. He also posits fairly traditional elements

of knowledge representation, frames and knowledge hierarchies, for maintaining databases of

knowledge used by the various agents.

Brooks, quoted above, took modularity to a greater extreme when he defined the behaviour-

based movement inAI (Brooks 1986, 1991b,a). His theories reflect a major difference in

approach from Minsky, in that Brooks was attempting to build running systems with demon-

strable efficacy, rather than solely theories. Part of the reason for the enormous popularity

of his approach was his success in this regard. Brooks’ laboratory and students produced the

first robots capable of moving through unaltered office environments at animal-like speeds2,

(Brooks 1990). Further, these robots could manipulate their environments exhibiting apparent

goals, such as collecting empty soda cans (Connell 1990), giving tours (Horswill 1993a), or

coordinating with other robots (Parker 1998, Matarić 1997).

In Brooks’ model,subsumption architecture, each module must be computationally simple

and independent. These modules, now referred to as “behaviours,” were originally to consist

only of finite state machines. That is, there are an explicit number of states the behaviour can

be in, each with a characteristic, predefined output. A finite state machine also completely

specifies which new states can be reached from any given state, with transitions dependent on

the input to the machine.

For an example, consider a simple two-wheel robot similar to those described by Braitenberg

(1984). Each robot also has two light sensors, left and right, corresponding to the left and right

2 Behaviour-based robots navigating by vision (with cameras) can move at speeds of over a meter per second
(Horswill 1993a).



wheel of the robot. To make an intelligence that would move the robot towards light would

require two identical behaviours, one connected to the left light sensor and the right wheel, the

other to the left sensor and right wheel. Each behaviour requires two states, corresponding to

whether its motor is on or off, and two transitions, depending on whether the sensor senses

light. If a sensor sees light, it should rotate its wheel forward, if it does not it should freeze its

wheel. This would result in the robot moving forward if both sensors detect light, or turning

towards light if only one does.

Brooks’ intent in constraining all intelligence to finite state machines was not only to simplify

the engineering of the behaviours, but also to force the intelligence to bereactive. A fully

reactive agent has several advantages lacking in previous robotic or otherAI systems. Because

their behaviour is linked directly to their sensing, they are able to respond quickly to new

circumstances or changes in the environment. This in turn allows them to beopportunistic,

another advantage touted by Brooks of his systems over conventional planning systems. A

conventional planner might continue to execute a plan oblivious to the fact that the plan’s goal

(presumably the agent’s intention) had either been fulfilled or rendered impossible by other

events. An opportunistic agent notices when it has an opportunity to fulfill any of its goals,

and exploits that opportunity.

Two traits make the robots built under subsumption architecture highly reactive:

1. Each individual behaviour can exploit opportunities or avoid dangers as they arise. This

is a consequence of every behaviour having its own sensing, and running continuously

(in parallel) with every other behaviour.

2. No behaviour executes as a result of out of date information. This is because no infor-

mation is stored, all information is a result of the current environment.

Although useful for the reasons expressed, these traits also create problems for designing

agents capable of complex behaviour. First, if there are two behaviours pursuing different

goals, then it might be impossible for both to be opportunistic simultaneously. Consequently,

any agent sophisticated enough to have potentially conflicting goals (such as “eat” and “es-

cape danger”) must also have some form ofbehaviour arbitration . Subsumption architecture

provides this through several mechanisms:
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• Behaviours are organised intolayers. Each layer pursues a single goal, e.g. walking.

Behaviours within the same goal are assumed not to contradict each other. Higher layers

are added to lower layers with the capability to suppress their behaviours if necessary to

the higher goal.

• As indicated above, a behaviour may interfere with the behaviour of other elements —

it may suppress their outputs (actions) or either block or change their inputs. These ac-

tions occur on communications channels between the behaviours (wires, originally in

the literal sense), not in the behaviours themselves, and consequently must be part of

the output of the dominating behaviour. In other words, all such interference is designed

as part of the higher behaviour and does not truly affect the workings of the lower be-

haviour, just how they are expressed. No behaviour has access to the internal states of

any other behaviour.

• After some experimentation, the description of behaviours was changed from “a finite

state machine” to “a finite state machine augmented by a timer.” This timercould be

set by external behaviours, and resulted in its own behaviour being deactivated until the

timer ran out.

The addition of the timer was brought in due to necessity during the development of Herbert,

the can-retrieving robot (Connell 1990). When Herbert had found a can and began to pick it

up, its arm blocked its camera, making it impossible for the robot to see the can. This would

allow thesearchbehaviour to dominate thepick up canbehaviour, and the can could never be

successfully retrieved.

Allowing the can-grasping behaviour to suppress all other behaviours via a timer was a viola-

tion of reactiveness. The issue being addressed here is memory — Herbert should presumably

have been able to briefly remember the sight of the can, or the decision to retrieve the can, but

such a memory would violate the second trait of subsumption architecture listed above. This

is the second problem of fully reactive systems: they have no memory. Without memory, an

agent cannot learn, or even perform advanced control or perception. Control often requires

keeping track of intentions in order to exploit the result of decisions not evident in the en-

vironment. Perception often requires processing ambiguous information which can only be

understood by using other recent sensor information or other stored knowledge of context to



set expectations. This shortcoming of fully reactive systems was discussed earlier on page 29.

Brooks initially resisted having any sort of memory or learning in his architecture. The timer

augmentation was the minimum possible addition to the reactive system. It registered globally

(by setting the timers on each possibly interrupting behaviour) that a decision has been made

without making any globally accessible record of that decision. The only evidence of the

chosen activity is the single unsupressed behaviour. Brooks’ early resistance to the concept

of learning was similar to Lorenz’s — both researchers initially thought behaviour was too

complicated to allow for plasticity and still maintain order. Other users of subsumption archi-

tecture immediately saw the need for plasticity, and generally ignored the strict limitations on

variable state. Polly had global variables for maintaining its current navigational goal as well

as whether or not it was conducting a tour, and where that tour had begun (Horswill 1993a).

The Reactive Accompanist had neural networks in some of its behaviours, which though theo-

retically finite state, were effectively variable storage of recent events (Bryson 1992). Another

robot built under Brooks’ direct supervision, Toto, actually learned a map. Toto had a mod-

ule that constructed a landmark-based map as individual nodes with memory. When making

navigational choices, the map itself determined the best route, it was not read by an external

process (Matarić 1990). Brooks (1991a) acknowledges this need, and his current projects also

contain neural-network type representations (Brooks et al. 1998, Marjanovic et al. 1996).

3.4 The Edmund Architecture and Its Hypotheses

3.4.1 Introduction

The architecture used for the research described in the next chapter is called Edmund, and was

created by the author in separate research (Bryson 1996b, n.d.). Edmund was designed as an

extension of subsumption architecture which includes more explicit representation of sequen-

tial and hierarchical control. It is a behaviour-based architecture, like the two presented in the

previous section. Like the subsumption architecture, Edmund is a fully specified, explicitly

coded architecture. Edmund has been used for experiments using both robots andsimula-

tions, software environments designed to simulate some portion of the real world. Previous to

research in Chapter 4, Edmund has only been tested in his simulated blocks world — an en-

vironment too complex for a purely reactive system, but not sufficiently dynamic to fully test
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reactivity. (Section 4.4 discusses various methods of evaluating performance of architectures).

This section begins by describing the elements of Edmund’s design that differ from subsump-

tion architecture (the more fully described of the two architectures already presented) and

explaining technical motivations. These differences serve as hypotheses on the nature of intel-

ligence, which will be examined in the rest of the dissertation. The remainder of this chapter

consists of a review of several other agent architectures along with their hypotheses, and con-

sider some as further evidence of the thesis. The following chapter, Chapter 4, describes the

results of experimental research done to validate Edmund’s hypotheses from a behavioural

standpoint, while Chapter 5 considers these same hypotheses from the perspective of natural

intelligence.

3.4.2 Hypotheses

Edmund is intended to extend behaviour-based approaches to artificial intelligence to allow for

behaviour of greater complexity. It differs significantly from purely reactive systems in three

ways.

1. Perception requires memory.

Under Edmund, the individual behavioursare allowed variable state. The hypothesis under-

lying this difference is that intelligent perception requires memory. Perception combines in-

formation from sensing and previously known information, such as context and expectation.

Thus the behaviour needs both storage capability to build context from recent experience, and

processing space for combining multiple information streams into a single action.

In Edmund’s implementation, the behaviours are programmed as objects in an object-oriented

language.3 Object-oriented languages are an approach to organising program code around the

concepts or actors of the program. The core of an object is its state — the description of its

features. Around this core are methods: procedures for accessing information about the object,

using that information for computation, or changing information. In Edmund, each behaviour

is coded as an object, and the behaviour’s perceptual state is object state.

3 The exact language is unimportant: so far Edmund has been implemented in Common Lisp Object System,
PERL 5.003, and C++



2. Memory is modular but not strictly encapsulated.

Under Edmund, behaviours are able to observe the state of other behaviours, and to trigger

those other behaviours directly. The hypothesis underlying this difference is that modularity

is merely an abstraction, though one that occurs also at an operational level. Nevertheless,

different behaviours are highly influenced by overall cognitive context, and “cognition” in

this context is simply the operation of other behaviours. Although too much interconnectivity

would lead to confusion and the loss of the advantages of modularity, limited awareness of

relevant states in other behaviours is useful for coherent behaviour. This dissertation therefore

separates two concepts linked in the term “modular” by Fodor (1983).Modularity is used

only to express differential organisation, composition and / or functionality between different

sections of an agent’s intelligence, but it does not imply a lack of communication of informa-

tion between these sections. That lack of communication will be referred to asencapsulation,

a term borrowed from object oriented design methodology in computer science4.

In Edmund’s implementation, the accessibility is provided directly by the behaviours. The

theory is that a behaviour may evolve perception either for internal or external sensing: the

distinction is fairly arbitrary from the perspective of a single behaviour. In practice, the objects

that make up the behaviours have methods that will return copies of their internal state, and

also have methods which will prompt them to update their state. These prompts may be called

by another behaviour on which the first behaviour’s internal state depends, when the second

behaviour has updated. There is an important distinction here between the model and the

implementation: in the model each behaviour is constantly monitoring the things it perceives.

The fact that method calls are the mechanism for executing this model is a concession to speed

and the fact that the architecture is only simulating parallel processing.

3. Action selection is dependent on structured control.

Edmund allows for three means of ordering behaviour.

• As sequences. A sequence of actions, called anaction pattern, once triggered simply

activates each element of the sequence in turn, until either the end is reached or there is

a radical failure of an element, in which case the sequence terminates.

4 Unfortunately, Fodor also uses this term, but in a slightly different manner.
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• As a prioritised set. The prioritised set is called acompetence. When a competence

is active, it in turn activates the element within it with the highest priority that is also

released. In other words, of the elements ready to execute (where readiness may either be

perpetual or triggered by the correct perceptual input), the one with the highest activation

inhibits all the other elements resulting in only its own behaviour being expressed.

• And as parallel activities. A cluster of parallel activates is, somewhat confusingly, called

a drive. A drive is roughly equivalent to the layer system in subsumption architecture.

Each element is analogous to an individual layer, or to a single drive in conventional

drive theory (e.g. Hull 1943). A drive’s elements each operate in parallel, with a priori-

tization computed between them. A higher priority element may monopolise the agent’s

behaviour, but will only do so in particular perceptual contexts. High priority drive el-

ements may also be made to habituate after firing if they control behaviours that are

important to execute periodically.

Notice that, as in Section 2.2, the terminology above although familiar from psychology (in

Lorenz 1950, Chomsky 1980 and Hull 1943, respectively), have a substantially modified, tech-

nical meaning within the context of the architecture. The top level of an agent’s control system

will consist of a single drive in the Edmund sense; theelementsof that drive, which operate

in parallel, are more equivalent to the drives in Hull. Both drives and competences may have

as their elements either competences or sequences. This is a source of hierarchy in the Ed-

mund architecture. Sequences consist of primitive actions; they are the interface to the actual

behaviour of the agent. A sequence may have any number of elements, including just one.

A visual expression of the three structured control components is shown in Figure 3.4. The

script in this figure is designed to control a robot — the figure is explained further in that

context on page 82. In this figure, the control hierarchy is shown with its root to the left.

Action patterns appear as sequences of commands placed in elongated boxes. The root of

a competence is labelledC, and its elements appear to its right, arrayed along a bar with the

highest priority element appearing close to the top. In this script, the element that represents the

goal of the competence, which is necessarily its highest priority element, shares the same name

as the competence. If the goal executes succesfully, the competence terminates succesfully. If

none of the elements can execute, the competence fails. The hierarchy is rooted with a drive

called life. As can be seen, drives are very much like competences; they are in fact a special



Figure 3.4: An example Edmund control script (see text).

type of competence.Life has no goal, so it can never succeed. Also, its lowest priority element

has no precondition, so the element can always run, thuslife will never fail.

3.4.3 Relevance to the Thesis

There are several hypotheses underlying these differences from a fully reactive system. One

is that the combinatorial complexity of action selection is too high to be managed without ad-

ditional structure. Of course, a hypothesis of this nature is impossible to demonstrate through

experiments. There is an argument on mathematical grounds (see Section 2.2.6 for an expla-

nation and Dawkins (1976) or McGonigle & Chalmers (1998) for the relevant analysis) and in

lack of contradiction. To date, AI systems that do not use such mechanisms cannot master as

complex of tasks as those that do (see Section 4.3 and Tyrrell (1993)), which can be seen as

positive evidence. The rest of this chapter will provide further evidence along these lines.

Other hypotheses can be experimentally validated. One is that it is possible to both exploit

structured control and to be sufficiently reactive to respond to opportunities and threats in the

environment. The negation of this hypothesis is explicitly stated by both Hendriks-Jansen

(1996) and Maes (1991). To disprove them (and validate Edmund’s hypothesis) we need only

demonstrate reactive systems we know to have structured control. This is the purpose of the
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following chapter, Chapter 4. Another is that animals utilise sequential or hierarchical control

structures. Evidence for this is discussed in Chapter 5.

As mentioned in the introduction to this chapter (page 33) some researchers reject any sort of

ordered or centralised control on the basis that this simply recreates the problem. The element

that evaluates the sensory information and chooses actions is solving the entire problem of

intelligence itself: it is an intelligent being within the intelligence. One of the main hypothe-

ses of the sort of approach taken by Edmund is that problems such as following sequences of

behaviour, the selective activation of a cluster of behaviours, and the selective inhibition of be-

haviours providing orderly prioritization are a significant reduction of the task of intelligence,

and can in turn be performed by relatively simple modular behaviours. Since the definition of

behaviour in Edmund has already allowed for the sorts of specialised state that allows keep-

ing track of location within a sequence or activation level within a competence, and for the

observation of internal behaviour state sufficient to tell if they are perceptually activated, the

controlling behaviour does not need to be any more specialised than any other behaviour, at

least in theory.

In practice, the behaviour that allows for the selection of action in Edmund is far more so-

phisticated than most other behaviours, because it has to be particularly efficient. It is this

behaviour which simulates the parallelism of the drives, as well as comparing the relative ac-

tivation levels and ensuring all active behaviours continue to perceive. The exact mechanisms

of this behaviour are described elsewhere (see Bryson & McGonigle 1998) and the code is

available on the Internet for inspection (http://www.ed.ac.uk/∼joannab/edmund.html).

3.4.4 Issues Not Covered in the Edmund Hypotheses

Edmund does not model the learning of its own behaviour, for example, the learning of new

control sequences or new behaviours. It also does not allow for misorderings of sequences as

occurs occasionally in normal animals and humans, and frequently under certain pathological

conditions. Although these are both interesting areas of research, the current architecture and

therefore the experimental research in the next chapter does not address them. However, both

of these issues are discussed in Section 5.3, along with relevant artificial models.



3.5 Alternative Hypotheses

There have been a very large number ofAI architectures proposed over the years, particularly

as a result of the recent interest in complete systems (agents or robots, see Section 2.2.1).

Since Edmund itself is not a contribution of this dissertation, this section will not attempt a full

review of the related architecture literature. Rather, the emphasis will remain on examining the

psychological relevance of the field. This section begins with a review of related alternatives

from behaviour-basedAI , some of which will be relevant in the following chapter. It then

goes on to cover the most dominant, widely used agent architectures. The subsections are in

approximate increasing order of the size of their currently active research communities.

Part of the reason for the emphasis on well established architectures is that these are in turn

subject to a significant amount of selective pressure. They tend to evolve over time towards an

approach that works better. As such, their success and their evolutionary trends should both

be taken as evidence for their hypotheses, although as always in science such information is

confounded by the effects of dominating paradigms and personalities.

3.5.1 Behaviour-Based Architectures

The use of the reactive and/or behaviour-based approach is widespread, particularly in aca-

demic robotics. However, no one architecture is used by even ten percent of these researchers.

Subsumption architecture, described above on page 39, is by far the best known of the archi-

tectures. However, relatively few agents have been built that adhere to it strictly. For example,

Mataríc 1990, Bryson 1992 and Pebody 1995 all include adaptive extensions; Appleby &

Steward (1994) make the behaviours nearly completely independent — they would now be

called “agents” in themselves. Most roboticists, even within Brooks’ own laboratory, seem

to have been more inspired to develop their own architecture, or to develop code without a

completely specified architecture, than to attend to the details of subsumption (e.g. Horswill

1993a, Steels 1994, Marjanovic et al. 1996, Parker 1998).

Of the many behaviour-based architectures inspired by subsumption, the one that has in turn

attracted the most attention is Maes’ spreading activation network (Maes 1989, 1991). Maes’

architecture consists of a number of nodes, including action nodes, perception nodes, and goal

nodes. The nodes are each connected to another by a two-way system of links. One link
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specifies the extent to which the second node requires the first node to have executed, the other

specifies the extent to which the first node enables the second node to fire. These conduits

are used to allow activation to spread both bottom-up, starting from the perception nodes, and

top-down, starting from the goal nodes. When a single node gets sufficient activation (over a

threshold) that node is executed.

Maes’ greatest explicit hypothetical difference from subsumption architecture is her belief that

agents must have multiple, manipulable goals (Maes 1990a). She is mistaken in her claim

that subsumption architecture only allows the encoding of a single goal per agent, however

the strictly stacked goal structure of subsumption is sufficiently rigid that her arguments are

still valid. A somewhat more implicit hypothesis is the need for a way to specify sequential

behaviours, which her weighting of connections allows. In these two hypotheses, Maes ar-

chitecture agrees with Edmund: in Edmund, each competence is expressly designed to meet a

goal, and competences become active and inactive as the situation warrants. However, Maes

is very explicitly opposed to the notion of hierarchical behaviour control (Maes 1991). Maes

states that using hierarchical methods for behaviour arbitration creates a bottleneck that nec-

essarily makes such a system incapable of being sufficiently reactive to control agents in a

dynamic environment.

This hypothesis was disputed by Tyrrell (1993), who showed several flaws in Maes’ approach,

most notably that it is insufficiently directed, or in other words, does not focus attention suffi-

ciently. There appears to be no means to set the weights between behaviours in such a way that

nodes composing a particular “plan of action” or behaviour sequence are very likely to chain in

order. Other related behaviours often fire next, creating a situation known asdithering . There

is actually a bias against a consummatory or goal behaviour being performed rather than one

of its preceding nodes, even if it has been enabled, because the goal, being in a terminating

position, is typically connected to fewer sources of activation.

Tyrrell’s competing hypothesis is that hierarchy can be exploited in action selection, providing

that all behaviours are allowed to be fully active in parallel, and the final decision is made

by combining their computation. Edmund’s distinction from Tyrrell is that it softens or drops

these provisions. Tyrrell (1993) gives evidence for his hypothesis by comparing Maes’ archi-

tecture directly against several hierarchical ones in a task in a simulated environment. Tyrrell’s

work is further reviewed, and Edmund similarly tested, in Chapter 4.



Correia & Steiger-Garç̃ao (1995) describe another behaviour-based architecture which allows

for structures very like action patterns and competences (though interestingly they refer to

these elements as “behaviours” and “fixed action patterns”, respectively). This architecture has

not yet been as influential as Tyrrell’s but bears mentioning due to its similarity to Edmund.

Correia & Steiger-Garç̃ao (1995) have successfully implemented their architecture on robots

that could in turn manipulate their environment. The difference between their architecture and

Edmund is, similar to Tyrrell’s, a lack of an arbitrating behaviour or partial activation. Instead,

FAPs compete in pairs until only a single FAP has won. Although there have been no direct

comparisons of this approach to Edmund, the strategy seems a baroque (and more difficult to

program) means of achieving the same end, with a likelihood of producing less, rather than

more, reactivity due to the potential length of the process.

Another recent architecture mentioned with a relatively small but very active research com-

munity is that of Blumberg (1996), which takes considerable inspiration from both Maes and

Tyrrell. Again, the system is similar to Edmund, but with a more complicated voting mech-

anism for determining an active behaviour. This time the system is a a cross between Maes’

and Tyrrell’s: the highest activated node wins and locks any critical resources. Nodes that are

also active but do not require locked resources are allowed to express themselves. Thus a dog

can both walk and wag its tail at the same time for two different reasons. Finding a way to ex-

press multiple behaviours addresses one of Tyrrell’s criticisms of Maes, though it still doesn’t

allow for the hybrid behaviours as expressed in Figure 3.1. The spreading of activation is also

more like the free-flow hierarchy advocated by Tyrrell than the simpler Maes networks. Blum-

berg’s architecture is currently being used by his group for animation under the sponsorship

of Disney, so it can be expected to be subjected to significant selectivist pressures in the near

future.

Finally, Rhodes has extended both Maes (Rhodes 1995) and Blumberg’s (Rhodes 1996) sys-

tems to allow variable state to be communicated between behaviours. In a limited implemen-

tation of the first hypothesis stated for Edmund, Rhodes allows for a reference to a particular

focus of attention (aproneme, after (Minsky 1985)) to be passed from one behaviour to an-

other. This radically reduces the number of behaviours that need to be implemented. For

example, there can be a behaviour “grasp the thing I’m looking at” instead of three different

behaviours “grasp the hammer”, “grasp the camera”, “grasp the cup”, etc. This hypothesis is
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sufficiently common inAI that it has a name,deictic representation, and is used frequently,

particularly in vision systems (Ullman 1984, Agre & Chapman 1988, Whitehead 1992, Brand

1995, Levison 1996, Horswill 1995, Grand et al. 1997). It also has considerable psychological

evidence, see (see Ballard et al. 1997, for a review). Rhodes (1996) creates an autonomous

agent that plays the character of the big bad wolf from fairy tales in an animated environment.

3.5.2 Multi-Layered Architectures

The achievements of behaviour-based and reactiveAI researchers have been very influential

outside of their own communities. In fact, there is an almost universal acceptance that at least

some amount of intelligence is best modelled in these terms, though relatively fewAI profes-

sionals would agree with Brooks’ quote above (page 37) that all cognition can be described this

way. The Edinburgh robotics group was one of the first to establish a hybrid strategy, where

a behaviour-based system is designed to work with a traditionalAI planner, which deduces

the next action by searching a knowledge base for an act that will bring it closer to a goal.

Traditionally, planners have micro-managed, scripting every individual motion. By making

their elements semi-autonomous behaviours which will react or adapt to limited uncertainty,

the planners themselves can be simplified. The following is a recent account of a project from

the late 1980s:

“The behaviour-based plan execution was implemented bottom up to have as much useful

capability as possible, where a useful capability is one which looked like it would simplify the

design of the planner. Similarly, the planner was designed top down towards this interface,

clarifying the nature of useful capabilities at which the behaviour-based system should aim.

This design method greatly reduced the complexity of the planner, increasing the complexity

of the agent much less than this reduction, and thus reduced the overall system complexity. It

also produced a robust system, capable of executing novel plans reliably despite... uncertainty.”

(Malcolm 1997, Section 3.1)

Malcolm’s system can be seen as a two-layer system: a behaviour-based foundation controlled

by a planning system. More popular of late have been three layer systems. These systems

are similar, except that there is a middle layer that is essentially like the control execution of

Edmund — sequences of behaviours or small plans with conditional branches. The planner

manipulates these rather than the behaviours directly. Probably the dominant mobile robot



architecture right now is 3T (Bonasso et al. 1997), which has been used on numerous robots,

from academic mobile robots, to robotic arms used for manipulating hazardous substances,

previously controlled by teleoperation, to maintenance robots for NASA’s planned space sta-

tion. Leon et al. (1997) uses 3T in simulation to run an entire space station, including farming

and environmental maintenance. See Hexmoor et al. (1997) for a recent review of many two

and three layer architectures.

From a hypothesis standpoint, 3T is similar to Edmund, excepting that Edmund makes no at-

tempt at modelling deliberate planning. The other distinctions are relatively subtle, at least for

the context of this dissertation. 3T does not model non-modular state sharing at the behaviour

level; its middle layer, RAPS (Firby 1987, 1996), does not have the same flexibility for con-

structing infinite chains or loops in its command structure. Bryson & McGonigle See 1998,

for more information on this feature of Edmund.

3T may seem a more appealing model of human intelligence than the behaviour-based mod-

els discussed before, in that it has something approximating logical competence. However,

traditional planners are exactly the sort of system Hendriks-Jansen (1996) based his criticism

of hierarchical control on in the quotation in Chapter 1. Planning has been mathematically

proven an unrealistic model of intelligence (Chapman 1987, Horswill 1997) because it relies

on search. Search is combinatorially explosive: more behaviours or a more complex task leads

to an exponentially more difficult search. Though there is no doubt that animals do search in

certain contexts (e.g. seeking food, or for a human, deliberate choice of a gift), the search

space must be tightly confined for the strategy to be successful. A nearer model of this process

is ATLANTIS (Gat 1991), which has the top, planning layer activated only by the middle layer

on demand. If one accepts that the top layer in a three layer system is the deliberate layer, and

the middle layer is for implicit or automatic behaviour, than Gat’s hypothetical difference from

the top down architectures such as 3T is simply that deliberation is triggered when automation

fails. The alternative model, which is more typical (Bonasso et al. 1997, Albus 1997, Hexmoor

et al. 1997, Malcolm 1997) has the top level being in a continuous state of high-level control,

even if it does not attend to the details managed by the lower layers. Gat’s hypothesis agrees

better with the psychological work of Norman & Shallice (1986), and is also a more natural

extension of the behaviour-based approach.

Malcolm (1997) brings out another problem of accepting hybrid models as psychologically
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plausible. For a hybrid system, emergent behaviour is useless. This is because an emergent

behaviour definitionally has no name or “handle” within the system, consequently the plan-

ning layer cannot use it. In at least human systems, acquired skills can be recognised and

deliberately redeployed (Karmiloff-Smith 1992). This strategy is not well modelled in any

of the systems presented in this chapter; it begs a more dynamic or distributed substrate for

the behaviour modules than simple program code (see Section 5.3.4). Hexmoor (1995) at-

tempts to model both the development of a skill (an element of the middle layer) from actions

performed deliberately (planned by the top layer) and the acquisition of deliberate control of

skills. His hypothesis of requiring both these forms of learning are probably valid, but his

actual representations and mechanisms are still relatively unproven.

In summary, the success of two and three layer architectures can be taken to some extent as evi-

dence of the central hypothesis of this thesis, that hierarchical control is a reasonable intelligent

strategy. Although I have criticised the large scale utility and plausibility of planners, many

of the tasks built in 3T itself actually do not utilise the planning layer (Bonasso et al. 1997),

rendering it then also effectively a two layer architecture very much like Edmund. Provided

with a properly constrained space and an auxiliary, rather than dominating, role, planning may

effectively be another useful behaviour, like the control behaviour in Edmund.

3.5.3 Beliefs, Desires and Intentions

Although robotics has been dominated by three-layer architectures of late, the field of au-

tonomous agents is dominated, if by any architecture, by the Procedural Reasoning System,

or PRS (Singh 1998).PRS also began as a robot architecture, but has proven so reliable it has

also been used in manned space flight and air traffic control (Georgeff & Lansky 1987). It was

developed at roughly the same time as subsumption architecture, as a follow-up program to the

longest running robot experiment ever, Shakey (Nilsson 1984).PRS aims to fix problems with

the traditional planning architectures exposed by the Shakey project. Such problems include:

• Forming a complete plan before beginning action. This is a necessary part of the search

process underlying planning — a planner cannot determine whether a plan is viable be-

fore it is complete. Many plans are in fact formed backwards: first selecting the last

action needed to reach the goal, than the second last and so on. However, besides the is-



sues of opportunism already discussed, many details of a real problem cannot be known

until the plan is executed. For example, when crossing a room full of people, the loca-

tions of the people are determined at the time of crossing, and cannot be predetermined.

• Taking too long to create a plan, ignoring the demands of the moment. The standard

example is trying to cross a road — a robot will not have time to replan if it suddenly

spots a car, it will need to know reactively to move out of the way.

• Creating plans that contain elements other than primitive acts — taking advantages of

skills or learned procedures.

• Being able to manipulate plans and goals, including allowing abandonment of a plan or

the pursuit of multiple goals.

Obviously, this list is very similar to the problems the behaviour-based programmers attempted

to solve. The two main differences forPRSare first, that it maintains as a priority the ability to

construct plans of action. In fact, it allows for many specialised planners or problem solvers.

The second difference is thatPRS is couched very much in psychological terms, the opposite

of Brooks’ disparagement for conscious impact on intelligent processes.PRS is referred to as

a BDI architecture, because it is built around the concepts of beliefs, desires and intentions.

ThePRSarchitecture consists of four main components connected by an interpreter (sometimes

called the “reasoner”) which drives the processes of sensing, acting, and rationality. The four

components are:

1. The database ofbeliefs. This is knowledge of the outside world from sensors, of the

agent’s own internal states, and possibly knowledge introduced by outside operators. It

also includes memories built from previous knowledge.

2. A set ofdesires, or goals. These take the form of behaviours the system might execute,

rather than descriptions of external world state as are often found in traditional planners.

3. A set ofplans, also known as knowledge areas. These are not necessarily completely

specified, but are more likely to be lists of subgoals useful towards achieving a particular

end, like Edmund’s competences. As mentioned earlier, these may include means by

which to manipulate the database (beliefs) to construct a complete next action or new

knowledge.
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4. A stack ofintentions. Intentions are just plans currently operating. A stack indicates

that only one plan is actually driving the command system at a time, but multiple plans

may be on the stack. Typically, ordering is only changed if one plan is interrupted, or if

new information triggers a reevaluation of the plans.

Like multi-layer architectures,PRSworks from the hypothesis that a system needs both to be

able to plan in some situations, such as navigation, but must also be able to execute skilled

acts for situations where search is not reasonable, such as avoiding trucks. In some sense, each

plan is like a behaviour in behaviour-basedAI . Behaviour-basedAI is essentially a retreat to

allowing programmers to solve the hard and important problems an agent is going to face in

advance. A procedure to solve an individual problem is usually relatively easy to design. The

interpreter, goal list and intention stack then are an action selection device. In comparison to

Edmund, this system is probably sufficiently powerful to encode the structures of Edmund’s

controller. To simulate the top level drive structure one may need to use the parallel version

of PRS, which has several complete structures as described above working independently si-

multaneously, each focusing on different goals, and sending each other’s databases signals

to allow for coordination. It may also be possible to simulate Edmund’s behaviours using

the combination of the plans and beliefs, but this would be more difficult to coordinate prop-

erly. Essentially,PRSdoes not see specialised state and representations dedicated to particular

processes as worth the tradeoff from having access to general information. It has moved the

procedural element of traditional planners closer to a behaviour-based ideal, but only allows

for specialised or modularised data by tagging. Whether the benefit in terms of ability to gener-

alise and share data would outweigh the reduction in clarity of object-oriented, data-organised

modules can only be determined by direct experimentation. This experimental work has not

yet been attempted.

Many researchers appreciate the belief, desire and intention approach in concept, even with-

out agreeing with anything like the PRS architecture. (Sloman & Logan 1998) considers the

notions of belief, desire and intention and feelings are central to an architecture, but proposes

a three layer architecture, where the top layer is reflective, the middle is deliberative, and the

bottom layer reactive. In other words, this is similar to Malcolm (1997) or the first and third

layer of Bonasso et al. (1997), but with an additional layer dedicated to manipulating the goals

of the top layer, and considering its own current effectiveness. Particularly with the advent of



web-based and virtual reality characters, there has been a good deal of research into architec-

tures for using emotional state to help select both goals and affective and social behaviours.

This research is ancillary to the current thesis: the psychological issues are beyond its scope

and the technical issues are not conflicting. But for examples see Bates et al. (1992), Grand

et al. (1997) and Reilly (1996). Bates et al. (1992) in particular shares the concept of plan

libraries withPRS.

Another interesting related set of research is the evolution of the Shakey project prior to the de-

velopment ofPRS(Nilsson 1984). Although Shakey had a traditional planner (called STRIPS),

over the term of the project the concept oftriangle tableswas developed. A triangle table is a

version of a plan which decomposes it into its steps and assumptions, and allows the plan to be

restarted from any point when perception indicates that certain elements of the plan are com-

plete. This allows action selection to be reactive within the confines of the plan, rather than

relying on memory of what steps should have been executed. Triangle tables are also very

much like competences, and are the foundation of teleo-reactive plans (Nilsson 1994), another

recently developed form of storage for skilled behaviours developed by plans. Benson (1996)

describes using this as the basis of a system that learns to fly airplanes in flight simulators.

The Shakey project also moved from having multiple world models in its first implementation

to having a single storage place for predicates of observed data. Any predicate used to form

a new plan was rechecked by observation. This development under the selective pressure of

experimentation lends credence to the idea that too much modelling of the world is likely to

cause difficulties.

3.5.4 Soar and ACT-R

Soar andACT-R are theAI architectures currently used by the largest number of researchers,

not only in AI , but also in psychology and particularly cognitive science. These architectures

are fundamentally different from the previously reviewed architectures. Both are also older,

dating to the late 1970s and early 1980s for their original versions, but both are still in active

development (Laird & Rosenbloom 1996, Anderson & Matessa 1998). The Soar community

in particular has responded to the behaviour-based revolution, both by participating directly in

competitions with the approach (Kitano et al. 1997) and even in portraying their architecture

in three layers (Laird & Rosenbloom 1996).
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Soar andACT-R both characterise all knowledge as coming in two types: data or procedures.

Both characterise data in traditional computer science ways as labelled fields, and procedures

in the form of a production rules. A production rule consists of two parts: a condition and an

action. If the condition holds, the action is executed. For example, IF (the dog is on the table)

THEN (shout “bad dog”).

Soar is a system that learns to solve problems. The normal procedure is to match its production

rules against the current state of the world, find one that is applicable, and apply it. This is

automatic, roughly equivalent to the middle or bottom layer of a three layer architecture. If

more than one production might work, or no production, or nothing changed when the previous

production was tried, then Soar considers itself to be at animpasse. When Soar encounters an

impasse, it enters a new problem space of trying to solve the impasse rather than the current

goal. The new problem space may use any means available to it to solve the problem, including

planning-like searches. Soar has several built-in general purpose problem solving approaches,

and uses the most powerful approach possible given the current amount of information. This

process is thus something like the top level of ATLANTIS, except that Soar allows the process

to recurse, so the meta-reasoner can itself hit an impasse and another new reasoning process is

begun.

Soar includes built-in learning, but only of one type of information. When an impasse is

resolved, the original situation is taken as a precondition and the solution as a procedure, and

a new rule is created that takes priority over any other possible solution if the situation is met

again. This is something like creating automatic skills out of declarative procedures, except

that it happens quickly, on only one exemplar. This learning system can be cumbersome, as it

can add new rules at a very high rate, and the speed of the system is inversely related to the

number of rules. To partially address this problem, Soar has the concept of aproblem space,

a discrete set of productions involved in solving a particular goal or working in a particular

context. Problem spaces are roughly equivalent to competences in Edmund.

ACT-R is essentially simpler than Soar: it does not have the impasse mechanism nor does it

learn new skills in the same way. Nevertheless,ACT-R is still used for cognitive modelling,

and can be used to replicate many psychological studies in decision making and categorisation.

ACT-R also faces the difficulty of combinatorics, but it takes a significantly different approach:

it attempts to mimic human memory by modelling the probability that a particular rule or data



is recalled. Besides the two sets of “symbolic” knowledge it shares with Soar,ACT-R keeps

Bayesian statistical records of the contexts in which information is found, its frequency, re-

cency and utility. It uses this information to weight which productions are likely to fire. It also

has a noise factor included in this statistical, “subsymbolic” system, which can result in less-

likely alternatives being chosen occasionally, giving a better replication of the unpredictability

of human behaviour. Using alternatives is useful for exploring and learning new strategies,

though it will often result in suboptimal performance as most experiments prove to be less

useful than the dominant strategy.

Several hypotheses differentiate both these architectures from the behaviour-based approaches.

First, there is the assumption that fundamentals of intelligence can be universally recorded in

fairly homogeneous data types. As mentioned earlier, this is no doubt true at least at the neural

level, but it is more questionable whether this is a useful level of abstraction for developing

intelligent systems. Of the two architectures, Soar is the only one that has been adapted to

the problems of interfacing with the real world and representing noisy and contradictory data,

and reasoning about events over time. As such, and with limits set to its potentially enormous

learning and impasse processes, it serves reasonably well as a top level planner for a three layer

architecture. It may be that Edmund could actually be implemented in the most recent version

of Soar, possibly to some advantage since it would thereby gain a system capable of planning.

However, this statement demonstrates that Soar is not a theory on the level of Edmund or the

other behaviour-based architectures — it is much more general, which necessarily means it

provides less information intrinsically about the nature of intelligent processes.

3.6 Conclusion

This chapter has examined a number of hypotheses on the optimal strategy for the control of

intelligent behaviour as they have been encoded inAI agent architectures. This examination

has shown several of the current trends in histories of agent architectures:

• the need for pre-coded plans or plan elements in order to solve problems reliably and

quickly,

• the need for the provision of reactive and opportunistic behaviour, and
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• the need for limiting the attention of action selection mechanisms to a subset of possible

behaviours appropriate to the context.

The first and third of these trends are relevant to the thesis of this dissertation, in that they de-

scribe sequential and hierarchical structure, respectively. The second is indicative of why older

models that made no such allowances have been open to such harsh criticism from dynamic

theories.

This chapter has also described in detail a particular architecture, Edmund, which meets all

three of these criteria. The next chapter will examine the functioning of Edmund in dynamic

environments.
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Chapter 4

Experiments and Results

4.1 Introduction

This chapter presents experimental research demonstrating the viability of Edmund’s approach

to action selection. Chapter 1, page 5 describes the position this dissertation challenges, that

hierarchical and sequentially ordered behaviours cannot produce adequately responsive sys-

tems to model animal behaviour. Chapter 2 introduced the relevancy of artificial intelligence

research to creating and testing psychological hypotheses, and Chapter 3 has both described

the specific set of hypotheses to be examined here, and presented preliminary evidence in terms

of a review of similar systems. Chapter 5 will examine similar evidence, this time from the

natural intelligence literature, and suggest some future directions for research.

This chapter is broken into three sections. The first describes the validation of the hypothesis

architecture through control of a mobile robot. The second describes comparison of this archi-

tecture with several other leading architectures, furthering the hypothesis claim. This work is

conducted in simulation. The final section is a brief analysis of the two different approaches,

robotics and simulation, for conducting research with the intention of psychological modelling.

4.2 Robot Experiments

4.2.1 Motivation

As mentioned in the previous chapter, the hypothesis architecture, Edmund, had already been

constructed and demonstrated before the beginning of this research. However, it had never
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been applied to the problems of a real robot. Edmund’s original domain was a simulation

of blocks world. There Edmund’s perceptual information was assumed to result from a vi-

sual routines processor which could both execute perceptual commands (e.g. “find something

green” or “scan up”) and return data (e.g. “what colour is the region I’m attending to”). It

also assumed a robot arm capable of grasping and moving different coloured blocks. The sim-

ulation demonstrated that Edmund’s command system provided sufficient structure to solve

problems previously unsolved by behaviour-based systems, such as Steve Whitehead’s block

stacking problem (Whitehead 1992) and the copy demo (Horn & Winston 1976, Chapman

1989). These problems can be proven impossible to solve efficiently in a fully reactive system,

because the environment does not provide sufficient information to determine the current stage

of processing. These experiments had demonstrated that, although Edmund’s control system

was not a full-fledged programming language, it was sufficiently powerful to express these

kinds of tasks.

The challenge addressed in this research was to prove that in having such a powerful central

controller, Edmund had not thrown out the baby with the bath water — that the system could

still be flexible and reactive while persistently pursuing complex goals when appropriate. As

explained in Chapters 2 and 3, the most accepted platform for demonstrating reactive archi-

tectures is autonomous mobile robots. This is because robots necessarily have several special

properties common to animals, but uncommon to most computer applications:

• they exist in complex, partially unpredictable dynamic environments,

• they have inaccurate and incomplete information about their world from their sensors,

• they will generally have multiple goals to pursue simultaneously, such as pursuing a

course, avoiding obstacles, monitoring their battery levels, and attending to new com-

mands,

• they must operate in real time,

• their actions are fully committed — if they get trapped or fall down a hole, they cannot

reverse their situation simply by reversing computation,

• they have specialised tasks and environments they operate in, which they can exploit to

simplify their computation.
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The goal of the robot research then was to demonstrate that Edmund was reactive to the stan-

dard of the robots built under other behaviour-based architectures: that it could respond to its

dynamic and poorly perceived environment, and juggle multiple goals, behaving opportunis-

tically. It was also expected that, should this experiment succeed, the combination of having

both a powerful and a reactive architecture would led to the development of a significant exten-

sion of mobile robot capabilities. Although the first goal of this research was met, the expected

extension goal proved excessively ill-posed, and lead to the research covered in the other two

sections of this chapter.

4.2.2 Experimental Situation

Previous laboratory work

The robotics research was conducted in the University of Edinburgh Laboratory for Cognitive

Neuroscience and Intelligent Systems, under the direction of Dr. Brendan McGonigle. Mc-

Gonigle, an expert in ordering in primates (including humans) and other animals, has been

involved in behaviour-based robotics since the late 1980s. McGonigle (1991) proposed the

need for sequential behaviour structures and tasks grammars, and criticised the limits of sim-

ple stack hierarchies as goal structures. Considerable robotics research has been conducted in

this laboratory, both on a proprietary robot (Donnett & McGonigle 1991) and on an IS Robotics

R2 model (Nehmzow et al. 1993, Nehmzow & McGonigle 1993, 1994, McGonigle & John-

ston 1995). Unfortunately, both of these robots allowed very little processing overhead, so the

architecture was not fully specified as a stand-alone code entity, but was rather fully integrated

with the rest of the robots’ program code. Much of this work focussed on the integration of

novel perceptual strategies into the problems of situated intelligence and demonstrating the

utility of task grammars and phased activity (see McGonigle in press, for a review). Donnett

& McGonigle (1991) demonstrates using an acoustic beacon for navigation, including learn-

ing approximate locations of navigation hazards and making appropriate speed optimisations

to negotiate the expected environment. Nehmzow & McGonigle (1994) also demonstrates a

learning system, this one using a simple neural network controller rather than a task grammar,

where drives for rewards are associated with behaviours in order to control the robot. Nehm-

zow & McGonigle (1993) demonstrates the use of a light compass to navigate in a way similar

to some insects.



The best demonstration of the effectiveness of the task-grammar architecture is McGonigle &

Johnston (1995), wherein the R2 robot utilises a camera, its single gripper, infrared sensors and

dead reckoning to locate a cluster of upright poles, move them to an operating area, and arrange

them for sorting. Dead reckoning from the calibration of the robot’s wheels is used to locate

the nest of tubes, then infra-red range sensing is used to approach a single tube. The robot

then executes a fixed action pattern to bring its grippers into the vicinity of the pole, and vision

to gripper sensing to do the final manoeuvre to lift the pole. Using vision in this specialised

way removes the problems of segmentation and object identification common to full-scale

machine vision problems. Many animals, such as frogs, spiders and horseshoe crabs have

been shown to have similar specialised visual systems (Arbib & House 1987, Hendriks-Jansen

1996). The return of the poles home uses a similar approach of dead-reckoning and fixed-

action final alignments. This demonstration displays the kind of specialisation of behaviour to

task typical of animals (for example, the phased activity of the digger wasp in creating nests

(Lorenz 1973)).

Such specialisation is impossible in a fully reactive systems such as subsumption architecture,

because the identical perceptual input (e.g. the presence of a pole) would elicit the same high-

level behaviour in every uninterrupted circumstance. Subsumption architecture does allow

the pole to be treated both as an obstacle and as an object of attention, as the control shifts

between levels. It might even allow for the different treatment of the poles when they are

in the sorting area vs. in the collecting zone, although this would require an unnecessarily

complicating step of deciding which behaviour was higher priority and should suppress the

other. However, there is no clean way to express the phase transitions between the collecting

and sorting behaviours. If the given task is to collect and sort all available poles, the reactive

robot would have no means of telling in its nest whether it had collected all the poles. It would

have to be prompted to sort on every entry to the nest, and it would then always go to search

for more poles. Even if all the poles were collected, and it had some mechanism of time-out

for searching for additional poles, when it returned to its nest it would not know that its task

was complete. Even if all the poles were sorted correctly, it would only return to search for

poles again, unless it had some in built sense of sufficiency, and felt placated by the number of

poles in its nest. The relevance of these issues with respect to natural intelligence is discussed

in Section 5.2.1.
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Figure 4.1: The Nomad 200 robot, of the Edinburgh Laboratory for Cognitive Neuroscience
and Intelligent Systems. In this picture it is encountering a desk. The desk’s surface is too low
for the sonar sensors (the circles at the top of the robot’s tower) to detect when proximate, and
the legs too dark for the infra-red sensors (the lights at the base of the same tower) to detect.
Consequently, the robot must learn about the desk with its bump sensors (the two rings around
the robot’s base).

The Robot

The current robotics research platform in the laboratory is also a commercially available

robotic research platform. TheNomad 200(figure 4.1) produced by Nomad Technologies,

Inc., is roughly cylindrical, a little over 1 meter tall and a little under half a meter in diameter

at its base. It consists grossly of two sections, a tower and a base. The tower contains an essen-

tially conventional 486 personal computer, running the Linux operating system, as well as the

sensory equipment for the robot. It has 16 identical faces, each equipped with a sonar sensor

at its top and an infrared sensor near the base. The base contains motors and 3 wheels. It has

three degrees of freedom with respect to motion: it can translate the entire robot either forward

or backward at a variety of speeds and accelerations, rotate the direction of the wheels around



the central axis, and rotate the turret with respect to the base. It has no means of rotating the

base. The base is surrounded by two rings ofbump sensors, each of which is broken into 10

regions for localising impact. The breaks between regions are offset between the two rings.

Sonar sensorsare range sensors, meaning they can be used to determine distance to other ob-

jects in the environment. They function by emitting then detecting sound and timing the return

of its reflection. On the Nomad 200, the sonars return values between 255 and 7 representing

the number of inches to the nearest object in that direction. However, this information may be

seriously distorted by a number of factors. The nearest object may be considerably closer than

the readings indicate. If the sonar signal hits a plane at an oblique angle relative to the robot,

the signal will reflect away from rather than towards the robot on its first bounce, giving an

overestimate of free space when the signal eventually returns to the detector. In this case, the

sonar sensor value consists of the summed distance between several objects rather than just the

nearest one and robot. The nearest object may also be much further away than reported if the

sonar receiver happens to pick up the stray reflection of one of the other face’s emitters before

receiving its own signal. Finally, the area covered by each sonar emission is not an arc around

the source point, but is rather a complicated series of lobes that leaves some areas only slightly

off the centre of the receiver almost completely uncovered.

Infrared sensorsare also range sensors, but have a much shorter range. On the Nomad they

provide coverage for the area too close for the sonar sensors to accurately reflect. They return

values from 15 to 0, roughly equivalent to inches. The failings of the infrared are relatively

simple compared to those of the sonar: they return higher values for light, reflective surfaces

than for dark or matte ones. The ones provided by Nomad also return very different values

depending on the amount of ambient infrared: they have to be recalibrated depending on the

quality of sunlight in the laboratory at a given time. This last problem could be resolved

through circuit design, but such engineering was beyond the scope of this research.

There were several reasons for the decision to move to the Nomad platform. The old robots

had become less reliable electronically. The Nomad is of more human size and therefore

its niche environment is more similar to human scale, making the laboratory itself into an

interesting maze-like domain (see Figure 4.2). The Nomad is equipped with voice synthesis

and radio ethernet, allowing for more easy real-time debugging as the machine can report on its

status. But most importantly, it contains a full fledged personal computer with 24 Megabytes
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of RAM (in contrast to the R2’s 1M), 80 Megabytes of hard disk, and an intel 486 processor

capable of running standard operating systems and programs. As such, it is a sufficiently

powerful computer to enable a full architecture to be modelled on it in a conventional high-

level language such as C++, rather than having to resort to hardware or machine coding.

Corridor

  Testing Room 2   Testing Room 1

Corridor

General office space

Office

about 26 metres

Figure 4.2: Robot experiments described in this chapter were performed in several rooms and
a corridor of Laboratory for Cognitive Neuroscience and Intelligent Systems.

Concurrent Laboratory Work

The period during which the research described in this chapter was conducted saw signifi-

cant research done on three different architectures. Besides Edmund, there were two other

robot-related research programs. The first was a significant refinement and extension of the

McGonigle task-grammar architecture to support cognizant error recovery, flexible behaviour

prioritization as well as lifelong learning (see Figure 4.3). This work was proposed by Mc-

Gonigle & Johnston (1995) and actually performed by Warnett (forthcoming) as his Ph.D.

thesis research. Warnett’s work represents the first fully specified and operational version of

the task-grammar architecture.

The second project was work to extend and apply the architecture of Humphrys (1997) to

robotics. This work, begun by Humphrys and McGonigle, has not yet been completed, but

has had substantial impact on the laboratory. It involves allowing a robot to learn its own goal

prioritization for manipulating a pre-coded set of behaviours and goals.
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Criteria for Success: TimeLapsed < 2 minutes
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Activity Module A.2.2.1: Go To Work Area: shelf A.

object in way avoid object

motor not turning back up 1 metre

route blocked get alternate route

find landmark

error (optional) recovery f %

Figure 4.3: Elements of the task grammar architecture with cognizant error recovery developed
by McGonigle, St. Johnston and Warnett.

4.2.3 Description of Behaviours

The Nomad robot comes complete with a set of primitive actions and senses, reflecting the

output of the sensors and commands to the motors described in the previous section. Unfor-

tunately, these are at a lower level of abstraction than is actually useful for the control archi-

tecture. Ideally, the control architecture should not have to make allowances for the kinds of

problems and restrictions described above for the sensing, nor should it provide exact speeds

in feet per second. A more natural level of command is to “slow down” or “speed up” as the

situation warrants. Better yet is to simply choose a goal direction or location and move towards

it at a safe speed. This level of abstraction is provided by the behaviours in a behaviour-based

architecture.

Table 4.2.3 shows the behaviour modules implemented for the Nomad. As explained in Sec-

tion 3.4.2, Edmund’s behaviours are developed in a behaviour based language. Each different

type of behaviour is implemented as aclass, an object that defines the properties for a set of

objects. The class name appears in the left column. In some cases there is a single behaviour

corresponding directly to class, but for some classes there are multiple behaviours. For exam-

ple, the class Direction has 16 behaviours which control motion in directions corresponding to

each of the 16 faces of the robot’s tower. Some early experiments were also run using 32 be-
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Direction For moving and detecting motion-relevant information.
Sixteen behaviours corresponding to faces of the robot.

PMem Perceptual Memory, a short list of recent combined sensor readings.
Bump Provide information about local “invisible” obstacles.

Multiple behaviours for avoiding specific collision points.
Wave Detect people waving at sonar (a source of communication).
DpLand Decision point landmarks, the basis for navigating (vs. wandering.)

Multiple behaviours each recognise a choice point and remember previous decisions.
DpMap Collections of landmarks organised topologically.

Multiple behaviours each track an arbitrarily bounded region.

Figure 4.4: The behaviour classes written for the Nomad Robot.

haviours, the extra 16 corresponding to the directions directly between faces, but these proved

unnecessary for smooth movement and were consequently discarded to simplify the agent.

This multiplicity of nearly identical behaviours corresponding to redundant hardware elements

is similar to the strategy used by Brooks (1989) to control the six legs of an insect-like robot

using the subsumption architecture. One difference is that Directions do not control the robot’s

motors concurrently, although the behaviours are active perceptually in parallel. Another dif-

ference is that some of these behaviours’ attributes and decision processes are shared between

them. To this extent, there is almost a 17th behaviour, and indeed this is how the shared capa-

bilities are portrayed in Figure 4.5. Each individual Direction is able to move forward in the

direction of its face, knowing how to detect obstacles that would interfere with that motion,

but ignoring irrelevant obstacles to the side or rear. The Directions as a class sense the wheel

orientation of the robot, though they do not share their perception of the sonar and IR sen-

sors. The orientation information helps the Directions determine which individual Direction’s

actions should be expressed, while the rest of the Directions are inhibited.

The 16 Directions embody the robot’s perception related to range data and obstacle avoidance.

Consequently they each have the responsibility for evaluating their own current context with

respect to obstacles, and determining the speed and exact direction for motion which falls

into their 16th of the space surrounding the robot. The precise algorithms for steering and

determining speed are described below in Section 4.2.4.

Figure 4.5 (below) shows the state and interactions of these behaviours for the benchmark

mobile robot task of obstacle avoidance. This demonstrates the utility of Edmund’s first and

second hypotheses (Sections 3.4.2 and 3.4.2.) The Edmund Nomad behaviours exhibit a con-



tinuum of learning and memory, from transient to long-term. Some forms of perceptual learn-

ing are very short term, such as the< 1
6

th
of a second persistence of previous sonar readings

used for “sanitising” the current readings (see Section 4.2.5 below). Obstacles detected by

bump sensors are remembered long enough for the robot to maneuver around them, approxi-

mately one or two minutes. The decisions made at particular “decision points” become a part

of long term memory, for map learning. This way the robot learns paths that are likely to

miss obstacles invisible to the two forms of range sensing, but does not necessarily perma-

nently avoid their location. This can be useful if an obstacle moves and a new path needs to be

determined.

The Edmund control architecture, introduced in Section 3.4.2, interfaces with these behaviours

via a limited number of activation points. These points are both the primitives of the control

structures and member functions of the objects that compose the behaviours. The specification

of the connection between these two very different representations is a code file which pairs the

function calls to the behaviour library with the English names used in the control scripts. Fig-

ures 4.5, 4.6 and 4.7, illustrate these elements of the Edmund system for the Nomad. Control

scripts for the Nomad are also described further below in Section 4.2.5.

4.2.4 A Sample Interaction Between Behaviour and Control

This section describes in detail a set of control primitives and how they relate to a single

Direction behaviour, as an example of the functioning of the architecture. The primitives form

an action pattern,advance, and are listed in order in Figure 4.6.

The most complicated primitive of the set ismove, which works as follows. First, the Direction

behaviour that corresponds to the direction the robot is currently moving is allowed to control

the robot’s motion. This behaviour computes a new velocity for translation (moving forward),

based on the room it has to maneuver. It also computes a velocity for rotation, based on the

difference between the robot’s current steering angleθr , and the Direction’s own preferred

orientation,θd, which is directly perpendicular to the Direction’s face. The formulae for both

computations are based on power curves, making the robot’s trajectories fluid and natural1.

1 The steering rate isk2e−k1
1√
θc where thek1 (26) adjusts the slope of the exponential,k2 (450) adjusts the scale

of the result, andθc is the difference betweenθr andθd, adjusted for the nearest direction of rotation. The

translation velocity isk2e−k1
1√
dist wherek1 (5) is as above,k2 (100) is the maximum velocity in tenths of an inch

per second, anddist is the nearest obstacle in the direction of motion also in tenths of an inch.
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Figure 4.5: The behaviours involved in obstacle avoidance. The key function being highlighted
here is a member of the behaviour class Direction calledadvance, but many other behaviours
affect the state involved in determining the direction of motion. Thin black arrows indicate a
reference link, one behaviour knows the location of another. Thick lines indicate the flow of
information in related variable state, and medium-width lines indicate potential action triggers.

Advancedirects the Nomad’s motors to move at these velocities. In addition, if the active

Direction determines there is an obstacle to one side, it will pass its activation to the behaviour

corresponding to its neighbouring face opposite the obstruction.

Moveoperating repeatedly on its own will keep the robot wandering around the laboratory.

However, in order to order the experiences of the robot, so they could be remembered as a

sort of map, a check was introduced to break the robot’s motion into coherent chunks. This is

expressed in the behaviournarrow, which simply notices if the robot’s current active direction

is too far removed from the one it originally intended on this leg of the robot’s path. If it

has, the behaviour “forgets” its intention, which results in motion halting, and a new direction

being chosen. This also triggers catastrophic failure which aborts the action pattern.

Normally, the next primitive ismove-view, which simply directs perceptual attention to the

current Direction. Depending on the result ofmovethis may be a new version of “forward.”

Again, the simple directing of this attention may have the side effect of stopping the robot, if

the Direction is in fact too close to an obstacle for safe motion.



move Direction::current->advance()
narrow if (Direction::current - Direction:: pref > 4)

{lose-dir && fail }
move-view Direction::current->state()
correct-dir Direction::correct-to-pref()

Figure 4.6: The interface between the library and the control script. Left are the motion
primitives in the action sequencemove in Figure 4.7. Right is the corresponding code using
member functions from Figure 4.5.

Finally, if there are no obstacles in the near vicinity,correct-dirdirects attention back towards

the previously mentioned intended Direction for this leg.

Theadvanceaction pattern is an excellent example of how an apparently continuous motion

can be controlled by an architecture that operates in terms of discrete function calls. Operating

on the Nomad robot,advanceresults in smooth, continuous motion. In fact, in real operation,

high level attention from the action scheduler is being switched between motion, learning,

sensing the external world, and checking and reporting internal functions like battery level.

Motion itself is expressed as a competence (see Section 4.2.5 below), and that competence

routinely checks the triggers for starting and terminating motion before choosing the case of

continuing motion, executingmove. The behaviour that underlies them however, has been

modelled as one of a suite of continuous, parallel behaviours. So long as it is not told to stop

expressing itself, it continues to move the robot forward for up to one second after its most

recent command. The one second time-out is for safety — if the robot’s computer crashes or

some other bug occurs, the motors have been instructed to freeze to prevent collision. During

normal functioning, the robot receives at least 20 commands a second. In Nomad’s commercial

simulator, provided to assist with debugging robot code, the calls toadvancedo appear as

discrete events, because the commands cannot be performed by separate hardware systems as

they are on the real Nomad. The continuity of the robot’s motion is a consequence of being

embodied as a physical object with wheels and momentum.

4.2.5 Experimental Record

Introduction

Developing evidence on a constructive platform is considerably different from developing it

by observation of animals. Research in robotics typically attempts to demonstrate the power of

72



CHAPTER 4. EXPERIMENTS AND RESULTS 73

a particular model or approach. As such, it attempts to make anexistence proof. This term is

borrowed from mathematics, where, in some cases, one needs only to present a single counter-

example in order to disprove a hypothetical claim. The analogy here is that the robot may be

used to demonstrate the reactive capability of an embodied agent controlled by a hierarchical

structure, in order to disprove the claim by (Hendriks-Jansen 1996) cited in Section 1.2.2.

Psychology is not mathematics, however, and very few characterisations of intelligent be-

haviour are anywhere near absolutely defined. Experimental method in psychology, like all

science, is rooted in increasing the probability of a hypothesis towards certainty, rather than

providing absolute truth. Similarly, a single instance of behaviour taken in isolation cannot

be considered strong evidence, as it may be an isolated event resulting from unknown co-

occurrences or coincidence, rather than necessarily being generated by the agent’s intelligence.

However, some allowances are made if a behaviour is sufficiently complex, extended over time

and appropriate to its context; such that it is highly improbable to have been generated by co-

incidence. Examples of this form of evidence are found in primate (particularly ape) literature,

such as in chimpanzee language experiments (e.g. Premack & Premack 1983). This has been

typical of some of the sorts of research results roboticists report, and is the form of evidence

provided in this section. Discussions and presentations of alternative methodologies occurs in

the following two sections of this chapter.

The following report of the development of the Nomad behaviour is provided not only as

evidence for the thesis, but also as an illustration of robot development. As such, it also

provides material for the analysis of robotics research as a psychological methodology that

appears in the last section of this chapter. On a gross level, development can be viewed as

having alternated between creating new control scripts or tasks for the robot, and refining the

behaviours (including the behaviour which is the control architecture) that these tasks relied

on.

Original Goals for Nomad

One of the challenges for a complex agent is that it should be able to manage several potentially

conflicting goals. An agent should take advantage of any good opportunities to meet a goal,

but should also persist sufficiently in its pursuits that goals are consummated.



When planning the Nomad research, the initial draft set of goals were for the robot to do the

following:

1. Monitor its own battery level, it should complain and go “home” (where it started from)

if the level becomes too low.

2. Monitor its environment when moving, keeping its speed proportional to the nearness of

obstacles.

3. Explore and map any unknown open area.

4. Stay near home when not otherwise occupied.

5. Monitor people approaching (detected by persistent range reduction without robot mo-

tion.)

6. If a person has approached and waved, follow them for as long as contact is maintained

and the person is moving.

The intention of these goals was to have the robot be more or less instructable, so that a person

could lead the robot into an unexplored area of the laboratory, then allow the robot to build

a map of that territory. The idea was to essentially combine the work of Matarić (1990) and

Smart (1992), which demonstrate robots learning maps in small arenas by sonar features and

proprioception respectively, and Horswill (1993b), which demonstrates a robot navigating by

vision and using a provided map to conduct tours over a large laboratory floor.

Unfortunately, all but the first of these goals proved significantly more time consuming than the

literature might lead one to expect, particularly given that the robot platform was commercial

rather than a home-built, thus reducing the time spent in construction and repair. Even with a

map provided, the location re-calibration issues for a robot without vision proved more difficult

than anticipated. In the end, only the first three goals were implemented, and the third was not

entirely satisfactory.

Apparently, the map-building techniques of the first two were not sufficiently robust for a

large, complex domain and extended trials. This is evidenced not only by the experience of

this research, but also by the much more sophisticated sonar map learning techniques that

havebeen proven fully robust and are reported in (Kortenkamp et al. 1998). Even using a
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map requires periodic localisation difficult in an ambiguous environment. This is a problem

that vision, such as used by Horswill (1993b), makes simpler because it provides a richer

sensor signal. Ongoing research in the laboratory is attempting to use unique sonar stamps

for landmarks similar to the extremely low resolution visual images used as landmarks by

Horswill. However, this sonar-stamp technique has also proven more reliable in relatively

small arenas (a single room) and short time frames. This is probably due to the fact that the

robot rotates absolutely, and consequently produces results too noisy for the machine learning

algorithm. We are attempting to compensate for this by use of a compass. However the

cumulative effect of this complex sensing routine has led to a serious increase in the number

of time-consuming tasks the robot is required to do regularly simply to keep track if its place

within its environment, and thus further slowed the rate of experimentation.

Nevertheless, the Nomad experiments do illustrate the ability of the robot to switch between

goals, as unforeseen additional goals were added to the scripts.

Getting Started

The first task in the development of this research was to port Edmund to the Nomad robot.

Other research on the robot had already established an interface to the robot’s primitive sens-

ing and action routines through a library written in the PERL programming language. Con-

sequently, the first months of the project involved rewriting Edmund in PERL 5.003 (the first

version of PERL with a working object system). Edmund had previously been written in the

Common Lisp Object System (CLOS), which while a standard language for artificial intelli-

gence, is not normally used for real time applications.

Rewriting the architecture also allowed the code to be cleaned and clarified, since the design

and development process inevitably leads to progressively more arcane code as problems are

found and solved in place (Brooks 1975). Examples of this were the simplification of the

action pattern element format to being a simple sequence preceded by a trigger2, and making

recovery from habituation time dependent rather than decision dependent. This latter change

reflects the move from a simulated environment with discrete “time” steps to a the realistic,

constant model of time shared by robots and animals.

2 The previous version had been more compartmentalised to allow for rational “crossover” if new behaviour-
patterns were generated from old by genetic-algorithm like procedures.



The rewrite process took approximately two months, the time being partly spent coming to

terms with a new programming language, the object system of which still had bugs. An ad-

ditional two weeks were needed to fully connect the control architecture to the behaviour

primitives provided by Nomad with the robot.

The First Script: Wander

Once Edmund’s control architecture was operational on the Nomad, the task first chosen for

development was the typical one for a behaviour-based robot — obstacle avoidance. In this

task, the robot should move freely about its environment without colliding with any people or

things. The initial control structure for this task was calledwander, and looked like this:

talk 1::30 talk speak

walk (C)

goal (hasdirection t)(moveview
’blocked) losedirection)

start (hasdirection nil) setdirectionopen synchdirections

continue (hasdirection t) move

wait snore

In this diagram, the hierarchy of drive and competence reads from left to right, as do action

patterns, which are in boxes. The left-most components above are actually elements of a single

drive, calledlife. Life has no goal, and consequently never ends unless the program is killed. Its

highest priority, in the absence of a goal, is the action-patterntalk. Talk actually stands in for

the drive to eat, not communicate, as it reports on the robot’s battery level as that level drops.

The primitive actiontalk speakis only executed once every 30 seconds.Talk speakis a part

of a battery monitoring behaviour, which contains state to examine whether the battery level

has fallen significantly since last reported. Thus,talk speakdoes not actually speak every

30 seconds, but is only given the opportunity to speak every 30 seconds. This checking of

state could also have been checked in the control architecture, with an extra sense primitive,

battery level declinesincelast reported, but this seemed an unnecessary complication since

the sense was only required by a single action. Such issues of design are treated further in

Bryson & McGonigle (1998).

The next drive element,walk is a competence (indicated by “(C)”) for moving. It has three

members: a goal, which results in the motion terminating; a procedure for starting motion if

stopped, and a procedure for continuing motion if already started. The “goal” in this situation
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is actually just a circumstance under which motion should stop — if the robot has moved too

close to an obstacle in its way. The starting procedure is simply to chose a direction in which

to move — in this case, the direction that seems to have the longest clear trajectory is chosen.

Thecontinueelement runs the primitivemove, described in the previous section, where it was

part of a more complicated action pattern.

Becausewalk is not time sliced liketalk, it uses all the available attention the robot can provide,

unless it is not able to operate. Normally, the robot should always be able to find a direction

to move in. In exceptional circumstances, when it is either boxed in or there is a bug in

one of the behaviours, the competence will fail.Wait provides a bottom level drive which

operates in these conditions.Wait simply produces a snoring sound, which communicates the

robot’s predicament to its handlers while keeping the drivelife active, which allows for time

to experiment. If all the elements of a drive fail, the drive (like other competences) will itself

terminate with a failure.

Developing Motion

The major technical challenges of this stage of experimentation were debugging the new PERL

version of Edmund, and developing the behaviour library to supportmove. This required

early design decisions about the nature of the robot’s motion. For example, many researchers

choose to rotate the Nomad’s turret to face consistently into the direction of motion, but for this

research I chose to exploit the robot’s ability to keep the turret’s rotation absolute relative to the

wheel base in order to make the sonar and IR readings’ expected values relatively continuous

over time. This assisted in disambiguating sensor noise from actual obstacles.

The most difficult design issue was the sensor fusion for the long-range sensors. This required

not only design, but considerable experimentation. Previous work in the laboratory had aban-

doned the use of infrared sensors because their readings were too inconsistent to serve for

obstacle avoidance. This in turn led to a large number of difficulties with manoeuvring in tight

spaces, since the sonar sensors are inaccurate within 7 inches. Given the size of the robot,

these “tight spaces” included doorways, where only 1 or 2 inches could be spared on either

side of the robot. I determined through experimentation followed by contact to the vendor that

the inconsistencies with the infrared detectors were due to poor circuit design which resulted

in decreased sensitivity in daylight. This was corrected by creating several different infrared



parameter files for the following conditions: sunny, overcast and dark. Unfortunately, in the

daytime, it is impossible for the robot to move between exterior and interior spaces, that is,

between daylight and interior lighting. This is because these files have to be set at boot time,

so cannot be changed dynamically by the robot’s architecture.

Even with this correction, designing an algorithm sufficiently robust to allow the robot to pass

through doorways was difficult and time consuming. Previous efforts to achieve this by any

means other than vision or elaborate exploration had often failed, including some previous ef-

forts to fuse sonar and infrared (Zelinsky 1991). The final algorithm used in these experiments

reduces to the following:

1. Determine a sonar value.Take the current sonar reading. If it is withintolerencedis-

tance of the previous accepted sonar reading, accept it, where

tolerance =
maximum speed

minimum sonar sensing rate
.

If the current sonar reading disagrees with the last accepted reading, but agrees with the

two preceding readings, accept it anyway. If the current reading is rejected, compute the

expected sonar reading based on the previous accepted reading and its average change

over the last three accepted readings (simple difference). This strategy still required

careful selection of a sonar fire order and firing rate. The need to sense frequently had

to be compromised slightly in order to largely eliminate the interference in navigation

of sonar “ghosts,” or false reflections from neighbouring sonars.

2. Determine the fused long-range sensor readings.If the infrared reading is less than 12,

take whichever of the two sensor readings is lowest (representing the nearest obstacle).

The value 12 was determined by experiment as the highest infrared value likely to be

scaled roughly in inches, or in other words on the same scale as the sonar. The sonar

gives a more reliable distance reading and is accurate to at least 7 inches, but it may not

see obstacles detected by the infrared due simply to their differing heights on the robot’s

turret. Consequently, this step errs on the side of safety, even though it reacts more

strongly than necessary to the white glossy radiators scattered around the laboratory.

3. Scale readings by relevance to direction.Sensor readings more than 33 degrees to the

left or right of the direction of motion are multiplied by four, thus making the obstacles
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appear more distant. Those more than 56 degrees to either side are multiplied by six,

those more than 78 degrees are discarded. This bias allows a single set of parameters to

determine the danger of the robot’s current trajectory, setting the speed and determining

stopping distance, while allowing for the fact both that the robot is round, and that

looming obstacles that are not being approached directly may be passed.

This algorithm combined with that for motion allowed crossing the threshold of doors to be a

robust primitive — the robot need only be travelling in the general direction of an open door-

way, and it would naturally, in a smooth continuous fashion, reduce its speed, move towards

the centre of the door and pass through. Note that although the above algorithm is described

linearly for clarity, the actual implementation of the algorithm is behaviour based, as described

previously in Sections 4.2.3 and 4.2.4.

Overall, the wander task is very successful, and has become the fastest and easiest way to

move the robot around the laboratory. Direction is provided by herding — standing behind or

in the way of the robot, thus encouraging it to move in the opposite direction. Developing this

robustness took approximately two and a half months, with additional sporadic debugging over

the next year. The complete process of becoming familiar with the robot and its primitives,

rewriting the architecture, writing the first script and creating and debugging these first motion

primitives took approximately six months.

Scaling Up

One of the most important claims for an agent architecture is that it facilitates the creation

of intelligent behaviour. This was certainly true for the Edmund architecture over the course

of the Nomad experiments. Existing behaviours and primitives were quickly and easily re-

combined through varying the control structure. For example, simply adding thecorrect-dir

primitive, described above, to the “wander” script resulted in an elegant looping behaviour

from the robot once it found a wall, as it would search for a way through. This emergent be-

haviour was a consequence of the fact that when the robot would find a wall or door, it would

follow this obstruction to either its right or left until reaching the next obstacle. As it began

to move around that obstacle,correct-dir would notice a shorter route back to the original di-

rection through looping. The script that produced this behaviour was called “fly”, due to the



resemblance of the robot to a fly on a window (though in slow-motion). This looping was

curtailed in the script “directed-wander”, which would give up the search for an opening rather

than turning too far from the preferred direction.

“Directed-wander” was actually a hybrid between “fly” and “ask-direction”, another modifi-

cation of “wander”. “Ask-direction” added a single primitiveaskdirection for choosing the

initial direction the robot moved in. As the name implies, the robot would voice the question

“which way?”, which would have to be answered at a computer console. The answer took

the form of a number between 1 and 16, corresponding to a Direction to which attention was

directed. In “wander”, the Direction with the longest clear view in front of it had been selected

in response to the primitivesetdirection open.

Some substantial changes in expressed behaviour cannot be brought on simply by restruc-

turing control. Gross new capabilities require the addition of behaviours, in the “behaviour

based” sense of the word. Several new behaviours were added to the robot over the course of

experimentation.

• Bump When these experiments were begun, the robot did not have bump sensors. It

rapidly became obvious that bump sensors would be useful for two reasons: first to

detect the class of objects invisible to the two types of range sensors (see Figure 4.1),

and second to provide perceptual input that clearly required short term memory. The

information provided by the bump sensors, a single point contact, is significantly dif-

ferent from the continuous data provided by the range sensors. Consequently, a new

behaviour or intelligence module, was needed. A Bump behaviour remembers a colli-

sion, and affects perceptual memory (see below). A dedicated action pattern responded

to the sensation of a bump as reported by the robot, and both created a Bump behaviour,

and operated a sequence of motions (through Directions) to disengage the robot’s rubber

bumpers from the obstacle.

• WaveWave was an attempt to communicate directly to the Nomad’s Directions through

the sonars, rather than through the keyboard. Wave was separate from Direction because

of the very different nature of the signal to be recognised. It did not prove to be practical

on a moving robot, due to the difficulty of persistently signalling only a single face.

• PmemPmem, for “perceptual memory”, is the behaviour that fused current sonar and
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IR readings with very short term recall of past sonar readings to provide a coherent

impression of obstacles in the vicinity, as described earlier. Bumps violate Pmem’s

encapsulation to further enrich the information with short term memory of obstacles.

Pmem originally violated encapsulation of the Directions in order to get the raw sonar

and IR readings. However, it was eventually realized that having Direction dependent on

hardware feedback was slowing the system. At this point, direct sonar and IR reading

became the domain of Pmem. This function was then scheduled through the control

architecture as the primitive “compound-sense” (“csense” in Figure 4.7).

• DpLand Finally, a set of behaviours was created to attempt to recognise decision points

and recall the correct behaviour when they were reached.

Although the Edmund strategy of modularising these behaviours and leaving their integra-

tion largely to the easily-created control scripts greatly facilitated development, many of the

capabilities described above took a considerable amount of time to develop, even as simple

stand-alone behaviours.

4.2.6 Discussion

There are two expressions for the standards of properly reactive robots. The first is essentially

an aesthetic sense that the robot moves smoothly, in a believably animal like way. This is

the standard set out in Brooks (1990). The second is a practical argument of the necessary

capabilities for robot system, such as the following:

The robot must not only be able to create and execute plans, but must be willing to

interrupt or abandon a plan when circumstances demand it. Moreover, because the

robot’s world is continuously changing and other agents and processes can issue

demands at arbitrary times, performance of these tasks requires an architecture

that is both highly reactive and goal-directed. (p.667 Georgeff & Lansky 1987)

By both the standards, the experiments conducted using Edmund on the Nomad robot were a

success. Figure 4.7 shows the top few levels of one of the final scripts created in the course of

this research. Notice that despite the major behaviour additions mentioned above, the changes

to the control structure are very succinct.



Figure 4.7: The control script for “proto-nav”. Priorities are not shown, but the initial priority
is ordered from top to bottom. Drives are labelledD, CompetencesC. Senses are paired with
test values, unpaired primitives are Acts.

A new distinct goal structure, in the form of the drive elementsensehas been added. This fa-

cilitates both the Bump and the Pmem behaviours mentioned above. The Direction behaviours

operating under thewalk drive element now use reliable perception rather than direct sensing.

The other major change is the addition of thepick directioncompetence as an element of the

walkcompetence. This allows for the testing of several navigation strategies prior to the robot

conceding to ask a human directions with thestart competence. The navigation routines were

never adequately stabilised, but the typical competence had the elements:

• pick neighbor, which recalls a decision made near to where the robot is currently lo-

cated,

• pick continue, which continues in the same direction, and

• pick bigneighbor, which recalls a decision made in a wider region around the current

estimated location.

The above improvements took an additional seven months of research time beyond the six

months that led to the initial successful “wander” script. Two of these months were spent in a
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second translation of the control architecture and established behaviour libraries into the lan-

guage C++. This new version of the control architecture was three orders of magnitude faster

than the PERL implementation for computational tasks, and one order faster for tasks involving

direct sensing. However, the process of prototyping new behaviours was significantly slower

in C++, due to the greater rigours of the language.

The results of the robot experiments presented here are further discussed as the motivation for

the comparative research described in the following section, and also in the concluding section

of this chapter, which discusses methodology.

4.3 Direct Architecture Comparisons in a Simulated World

4.3.1 Motivation

As mentioned at the end of Section 4.2.1, research on the robot, while validating to some ex-

tent the reactiveness of the architecture, was not completely satisfactory. Edmund was intended

to support modelling of complex animal behaviour, in order to support psychological exper-

iments and facilitate research dialogue between researchers in behaviour-based robotics and

those working with natural intelligence. However, the most natural route towards simulating

animals with a mobile robot, navigation (see Trullier et al. 1997, for a review), was severely

limited by the robot’s sensor capabilities. We found ourselves in the situation of painstakingly

reimplementing already established methods for compensating for the sensor configuration.

For example, the navigation achieved was significantly less robust than that already reported

by Thrun et al. (1998), but establishing this kind of reliability with our robot requires adding a

compass and significant computational power for doing statistical work on the sonar readings.

This process would be very time consuming, and worse, lead to no immediate advantage —

once the work was replicated, it would be difficult to compare the results against the original

performance based on the sparse robotics results reported in the literature. These issues are

examined more extensively in Section 4.4.

Two events led to a radically different approach for the next phase of evaluation and compar-

ison of Edmund. First, I was asked to assist another researcher, Robert Ringrose, who needed

an architecture to control a simulated humanoid robot. The simulation represented a sitting

infant, the task was to study a neural network model of learning to coordinate visual input and



grasping. The simulation had previously been controlled with simple code, but the task of the

infant was complicated by the addition of a single extra degree of freedom: if the infant was

unable to view its target due to an occlusion, it was meant to attempt to bend sideways from

the hip to observe the target. Because the robot was meant to be learning its capabilities, the

cognitive model was meant to support retrying a strategy several times in case of failure, then

in case of repeated failure switching strategies again. Encoding this simple problem revealed

several coding bugs in the C++ version of Edmund’s control architecture3. The bugs were in

the code that allowed one competence to transition to another — a key theoretical aspect of

Edmund which had been used frequently in its blocks-world simulation, but not in over a year

of robot programming.

This event led to the realizations that:

1. the robot platform, while challenging perceptually, had allowed relatively little com-

plexity in hierarchical or sequential control: in a year, there had been no programs of

over 3 layers of depth hierarchically; and

2. simulated tasks can make interesting demands on the architecture.

. The second event alluded to above was the finding of a thesis dedicated to comparing alter-

native action-selection mechanisms (Tyrrell 1993). The comparison was done in simulation,

and the simulation itself was preserved in several Internet archives. The simulation provides

substantially more goals, many of which are conflicting, and radically more dynamicism of the

agents’ environment than has ever been documented in real robot research. The thesis evalu-

ates several well-known architectures, including Maes (1989, 1990a). This section documents

the comparison of Edmund to the other architectures previously evaluated by Tyrrell.

4.3.2 The Simulated Environment

Tyrrell, in his dissertation (Tyrrell 1993), creates a task in a simulated environment which

requires an architecture to manage a large number of conflicting goals. He defines an envi-

3 These were fixed, though in the meantime Ringrose moved to using a Markov model controller instead. Ordi-
nary Markov models provide less realistically organised cognitive control than Edmund or the other previously
mentionedBBAI architectures. However, the nature of the statistical learning involved did not require rational
behaviour on the part of the model, only visiting each possible behaviour at approximately the correct frequency.
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ronment in which a small omnivorous animal is required to survive and breed. He defines six

“subproblems” for the animal to solve.

1. Finding food and water. There are three types of food and three forms of nutrition

satisfied in varying degrees by the different food types.

2. Escaping predators. There are both feline and avian predators, which move at different

speeds and have differing powers and problems of perception.

3. Avoiding hazards. Benign dangers in the environment include ungulates, cliffs, poi-

sonous food and water, and temperatures varying above and below ideal during the pe-

riod of the day. The environment also provides various forms of shelter including trees,

grass, and a den.

4. Grooming. Grooming is necessary for homeostatic temperature control and general

health.

5. Mating. The animal is assumed to be male, thus its problem is to find, court and in-

seminate mates. While it is hazardous to try to inseminate unreceptive mates, rearing of

offspring is considered to be the problem of the mate.

6. Sleeping at home. The animal is essentially blind at night; sleeping in its den is impor-

tant for avoiding predators and for avoiding being trodden on by ungulates. It is also

necessary for maintaining temperature while conserving energy.

These problems vary along several metrics: homeostatic vs. non-homeostatic, dependency on

external vs. internal stimuli, periodicity, continual vs. occasional expression, degree of ur-

gency and finally, whether it is prescriptive or proscriptive with regard to particular actions. In

addition, the environment is dynamic and sensing and action uncertain. Perception in partic-

ular is extremely limited and severely corrupted with noise. The animal usually misperceives

anything not immediately next to it, unless it has chosen to expose itself by looking around in

an uncovered area. Finally, action is also uncertain, particularly if the animal is unwell.

Tyrrell separates the problems of learning and navigation from the problem of action selection

by providing these elements in his simulation. Thus the animal has available as primitives a

direction in which it thinks it remembers its home or recently observed food and water. The



animal’s sense of location with respect to its den decays over time and distance, thus keeping

track of its bearing is a part of the “sleeping at home” sub-problem.

Tyrrell checks the independence of his results from these parameters by running all his models

in four worlds. Besides the standard model he first designed, there are three variant worlds.

According to the thesis (p. 162) these changes are:

1. Perception is altered by affecting the animal’s visibility according to the time of day, the

amount of vegetation, and the animal’s own activity.

2. The noise variance for navigational information is tripled, and the size of the remem-

bered map is halved.

3. Motor control is compromised by making it more probable that incorrect actions are

taken, and by changing the conspicuousness and energy consumption of various actions.

4.3.3 Tyrrell’s Extended Rosenblatt & Payton Architecture

Tyrrell implemented and tested four theories of action selection, often extending and providing

necessary and obvious modifications to the theories in the attempt to make them operate on a

real system. The first was drive theory (“simple motivational competition”) as described by

Hull, the second combined Lorenz’s two “Psycho-Hydraulic” models, the third implemented

Maes’ spreading activation networks, and the fourth Rosenblatt and Payton’s “connectionist,

hierarchical, feed-forward network.” Tyrrell’s champion is a modified version of the latter

architecture, which he examines and defends as being as close to optimal action selection as

possible. Lorenz’s simple and explicitly ethological Drive theory was placed a fairly close sec-

ond, whereas the only previously fully implemented, simulation-basedAI architecture, Maes’s

spreading activation network, was by far the poorest performer. Shortcomings in Maes archi-

tecture were already discussed in Section 3.5.1.

The Rosenblatt & Payton model had, like Edmund, been developed and proven as a robot

architecture (Rosenblatt & Payton 1989). The main feature of their architecture is what Tyrrell

terms a “free-flow hierarchy”. Nodes in the hierarchy receive activation from internal and

external stimuli and higher elements of the hierarchy. They pass energy to their children. The

ultimate leaf nodes of the tree are actions, which are activated on a winner-take-all basis. What
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Figure 4.8: A fraction of the Extended Rosenblatt & Payton action selection network Tyrrell
developed for controlling an animal in his simulated environment. This shows the interaction
of the hierarchies associated with reproduction, staying clean, and sleeping in the den.T and
U are temporal and uncertainty penalties for actions that take time or pursue a goal uncertain
to succeed. “P.” stands for perceived, and “r.” for remembered. From Tyrrell (1993), page 247.

differentiates the model from the drive model or other normal hierarchies is that no decisions

are made until the leaf or action nodes. This allows forcompromise candidatebehaviours to

be selected, that is, behaviours that satisfy multiple drives. The model is distinguished from

Maes’s network by its lack of preconditions (or, in the ethology literature, “releasers”), and the

fact the energy flows in only one direction.

An example of a section of Tyrrell’sERPhierarchy for his simulation is shown in Figure 4.3.3.

The internally gauged distance from the den and the externally cued night proximity both feed

the high-level node “Sleep in Den”, which in turn sends positive energy to nodes like “Ap-

proach Remembered Den” and “Approach Perceived Den” and “Sleep.” For the remembered

den temporal and uncertainty penalties send negative activation to the node as well. Many

nodes send weights to the various possible directions the animal can move in; care must be

taken that motion doesn’t always triumph over consummatory acts with few sources of input.

Tyrrell’s main extensions to Rosenblatt & Payton’s original architecture are to add penalties

for temporal delays and uncertainty of rewards for items that are distant or based on poor



memory or perception. The architecture then tends to exploit certain local reward rather than

choosing to pursue uncertain but potentially larger goals. All perception in the simulation is

real valued, so food sources of the same type in different locations will have different effects on

the levels of activation energy to the network. He also added explicit penalties to appetitive vs.

consummatory actions. Finally, Tyrrell created a new rule for combining the inputs to a single

node that explicitly distinguished the maximum of inputs adding positive energy to a particular

node and the minimum of inputs opposing the node. This last idea has been recently carried

further by Humphrys (1996), which discusses various action-selection mechanisms based on

considering positive and negative opinions of multiple goal-embodying behaviours.

4.3.4 Comparing Edmund to the Extended Rosenblatt & Payton Architecture

Understanding the Problem

The first step was to recompile Tyrrell’s simulation and his Extended Rosenblatt & Payton

(ERP) to it, and to test that my results for running this architecture matched the thesis. I

decided to test only to a 95% certainty of being within 10% of the correct result, that is to run

only 245 simulations. I actually did this twice, with the results:

Run Mean Std. Dev. SE
1 8.94 8.33 0.54
2 8.14 7.78 0.25
Thesis 8.31 6.63 0.16

The fitness measure here represents the average number of times an animal was able to copulate

before dying. Although these values do overlap each other’s ranges within the required ten

percent interval (and Tyrrell’s reported result is also situated within that overlap) this shows

the high degree of variability still possible, despite the small standard errors.

Since theERPhad been developed by the same person who wrote the simulator, I determined

to test both competing architectures in an additional new scenario, a different set of simulation

parameters, as well as the reported sets. I intended to try to emphasise problems requiring

systematic ordering of behaviour or persistence to a goal, since these are particularly difficult

problems for reactive architectures. However, analysis showed that very little in Tyrrell’s sim-

ulated environment requires persistence. Mating is the only action which requires multiple

steps: getting in the same square with a receptive female, courting and then consummating.
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Because the potentially elaborate courtship ritual had been reduced to a single act, and the

receptive state of the female may be sensed, each of these elements may actually be treated as

a separate reactive task.

The simplest way to test persistence appeared to be to substantially reduce the food supply.

In the original test environment, food and water are both plentiful, and likely to be available

nearby to any given square. Decreasing the probability of local availability of food would

presumably increase the probability of dithering between two distant goals, which should lead

to decreased efficiency and therefore genetic fitness.

In fact, however, even severe reduction of food had relatively little impact on the performance

of Tyrrell’s animals. Eating turns out not to be a particularly important part of life, because

average life expectancy is fairly short, food is plentiful, and energy consumption is low. Con-

sequently, changing the range of possible initial amounts of the various food types as follows:

Food Original Sparse
fruit [50, 81] [5, 35]
cereal [45, 71] [2, 27]
prey [25, 36] [2, 15]

where the range is square-bracketed, resulted in only a slight loss of fitness:

Run Mean Std. Dev. SE
Sparse 6.09 6.95 0.09

Linear regression across the availability of food, water, cover and the initial number of mates

showed only a few barely perceptible dependencies. The amount of water varied from 4–36

instances, cover from 0–50, and initial mates from 1–23.

Variable gen. fit. water cereal cover fruit mates prey lifespan
gen. fit. 1.000
water 0.026 1.000
cereal 0.083∗ -0.018 1.000
cover 0.046 0.013 0.025 1.000
fruit 0.206∗∗ -0.039 -0.008 0.023 1.000
mates 0.038 -0.009 -0.012 -0.032 0.057 1.000
prey 0.034 0.003 0.034 0.019 0.061 -0.016 1.0000
lifespan 0.912∗∗ 0.022 0.081 0.070 0.231 -0.010 0.018 1.000

The values on this chart show the correlations between the amount of a resources in the home



range of an animal, the number of days it lived, and its “general fitness” (the number of times

it copulated.) One asterisk denotes a correlation of significance at the 0.05 level (p< .05), and

two asterisks indicatesp< .01. As expected, there are no correlations between the availability

of the various resources, since these are determined randomly by the program and do not affect

each other. The number of initial mates is probably less significant because mates wander in

and out of the animal’s territory continuously, so their initial numbers are not particularly

relevant to their overall prevalence.

Implementing a solution in Edmund

The development of an Edmund architecture for the Tyrrell Simulated Environment happened

in two phases. The first was a period of rapid development without testing of initial ver-

sions of the primitive senses and actions for the architecture. The initial actions were: sleep,

hold still, pick safedir (for fleeing), gofast, go, lookaround, pickhomedir, copulate, strut,

pick matedir (for pursuing a mate), exploitresource (take advantage of anything in this cell

that the animal needs) and pickdir (the general case for direction selection.) Senses were:

at home, covered, seepredator, late (in the day), daytime, fit to mate, courtedmatehere,

matehere, perceivemate, and neededresourceavailable. As may be clear from this selec-

tion, the main problems addressed individually were fleeing predators, pursuing mates, and

getting home before dusk. It was assumed other needs could be met opportunistically when

nothing else was troubling the animal.

The next phase of development involved testing which behaviours were actually useful and in

what order of priority, and tuning the behaviour of the primitives. The first step was the most

basic program that could generate a genetic fitness measure – one that only pursued mating.

Thus the drive “life” had a single competence “mate”, which consisted of:

mate (C)

inseminate (courtedmatehere t) copulate

court (matehere t) strut

pursue pick dir mate go

This simple program performed fairly well. Though on average it lived under half a day, it

had a genetic fitness of slightly more than 2, immediately outperforming Tyrrell’s best imple-

mentation of Maes (1991). Other obvious behaviours were added gradually, testing the new
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additions and ordering on approximately 800 runs. Simplicity was favoured unless the pro-

gram improved very significantly. After this phase of development the components of life in

order of priority were:

flee (C) (sniff predator
t)

run away (seepredator t) picksafedir
go fast

freeze (seepredator t) (covered t)
hold still

look observepredator

mate (C) (sniffmate t) as above

home1::5 (late t) (athome nil) pickdir home go

check1::5 look around

exploit (C) (daytime t)

useres (neededresavail t) ex-
ploit resource

leave pick dir go

sleepat home (at home t) (daytime nil) sleep

Homing in the evening and looking for predators take priority intermittently, but habituate to

allow other, lower priority behaviours to express themselves immediately after they had fired.

At this point, the genetic fitness of the Edmund animal was approximately 65% of theERP’s.

The next phase of development was to examine the animal’s performance step-by-step in the

graphic user interface. This was done over approximately 80 animal life-times. This resulted

in the following observations and changes:

• The animal seemed too concerned with staying in shelter and failed to explore much

unless chasing mates. This was altered by reducing the desire for shelter in pickdir.

• The animal was often killed by feline predators while freezing. Consequently we added

a prohibition to the freezing action pattern that prevented freezing in the presence of

felines.

• Once the animal was less concerned with staying in shelter, it sometimes explored to

such a degree that it lost track of its bearing entirely and could not recover by nightfall

even though it began looking for its den with plenty of time. This was solved by adding

the action pattern:

triangulate (lost t) pick dir home go

which had the same priority as homing above, but was active all day and did not habit-



uate. Thus, once the animal becomes slightly disoriented, it goes towards its den until it

either recognises its own location or finds the den (unless it happens across a mate or a

predator.)

• The animal often had unforced accidents with irrelevant animals and cliffs, particularly

while it was pursuing mates. This was solved by altering the behaviour pickmatedir to

increase the avoidance of these problems.

Some observations were ambiguous. For example, because the animal had very erratic percep-

tion, it frequently hallucinated a predator nearby. Attending to any trace of a predator disrupted

behaviour coherence sufficiently to interfere with mating, while paying too little attention to

predators reduced mating opportunities by reducing the expected lifespan. This problem was

addressed by running a large number of simulations (4400) with randomly selected values for

six critical thresholds: four for detecting predators (observing or fleeing each type), one for

seeking shelter and one for avoiding dangerous places.

Linear regression performed on this data was uninformative, because the variables’ relation-

ships to the animals’ success were neither linear nor independent. Taking inspiration from

the genetic algorithm approach to problem solving, I selected the variable sets for the top few

performing individuals out of 4400 trials, and tested each over 800 additional runs. The best

set improved the animals’ mean performance by 25 percent.

Edmund and theERP were then tested, both under the conditions of Tyrrell (1993), with his

four sets of environmental parameters for the simulation, and under the second set of pa-

rameters with considerably sparser food supplies mentioned earlier. Under the above control

system, Edmund out-performed theERP in this sparse world, except for variant world 3. Ex-

amination of the simulation code disclosed that the largest variation in this world was a very

significant reduction in energy consumption for certain activities (such as mating and run-

ning) and significant changes in the conspicuousness of some behaviours, both positive and

negative. Conspicuousness leads to increased danger from predators. TheERP’s superior

performance under these conditions, implied Edmund’s strategy was wasting too much time

or conspicuousness on grazing. Consequently theexploit competence was divided into con-

stituent parts, incidently eliminating the one case of “compromise candidate” determination in

Edmund’s solution. Picksafedir (the predator fleeing behaviour) was also altered similarly
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to pick matedir above to attend to environmental dangers. These changes resulted in a sys-

tem that surpassed Tyrrell’sERP in both the sparse food and the original versions of theSE,

excepting variant world 3 to which theERPsolution seems particularly well adapted.

4.3.5 Results

Edmund performed better (that is, mated more), but not significantly so (Critical Ratio = 1.36)

in the set of world parameters chosen by Tyrrell. However, it was very significantly better than

Tyrrell in every world except for variant world 3, and also better than any other architecture

reported in Tyrrell (1993). The final results (over 6600 trials) were:

World Edmund ERP CR
Standard 9.12 (0.19) 8.09 (0.17) 3.95∗∗

Var. 1 4.02 (0.09) 3.61 (0.09) 3.1∗∗

Var. 2 9.67 (0.2) 8.16 (0.16) 5.73∗∗

Var. 3 11.23 (0.23) 13.38 (0.23) −6.58∗∗

where the parenthetical numbers indicate standard error, or the standard deviation of the mean

scores.

In the set of worlds where food was significantly scarcer (see 89) the Edmund agent did per-

form significantly better overall than theERPone, though again being beaten in the third variant

world.

World Edmund ERP CR
Standard 8.17 (0.19) 4.77 (0.12) 15.01∗∗

Var. 1 3.56 (0.09) 2.46 (0.06) 9.59∗∗

Var. 2 10.79 (0.18) 4.56 (0.12) 27.6∗∗

Var. 3 10.74 (0.24) 12.53 (0.23) −5.47∗∗

Notice that Edmund succeeds even when perception was reduced, in variant world 1. This is

surprising, since perceptual ambiguity should be more damaging to Edmund’s more ordered

action selection. TheERP is essentially always seeking the optimal action, thus perceptual am-

biguity affects all behaviour equally, whereas Edmund has different active goals and concerns.

One of Edmund’s advantage as an architecture lies in reducing the complexity of design for

the programmer and focusing attention for the animal: actions that require an ordering can be

set to one explicitly. The deficit in the third world shows that Edmund’s animal probably still

wastes too much time and/or exposure to predators in stalking food, which indicates the cur-

rent control system is not sufficiently flexible to adapt to those changed circumstances. Again,



however, theERP animal, despite considerably more information, has more trouble adapting

to the inverse situation of less plentiful food. In fact, under linear regression, Edmund’s an-

imal failed to exhibit even the slight dependency on food availability that theERP’s animal

had shown, with absolutely no significant correlations other than between genetic fitness and

lifespan.

Variable gen. fit. water cereal cover fruit mates prey lifespan
gen. fit. 1.000
water 0.033 1.000
cereal 0.027 0.017 1.000
cover 0.009 -0.027 -0.040 1.000
fruit 0.032 0.016 -0.001 -0.053 1.000
mates 0.049 0.032 -0.037 0.005 -0.052 1.000
prey 0.014 0.057 -0.009 -0.004 -0.017 0.028 1.000
lifespan 0.924∗∗ 0.019 0.052 0.013 0.027 0.015 0.030 1.000

Another interesting result is the complexity of the engineered control systems. Edmund’s

solution required 20 primitives that were action-oriented, and 22 dedicated sensing primitives.

It also had 7 competences and 23 action sequences defined in its final program script. These

can be seen as intermediary behaviours when considering organisational complexity. TheERP

solution had 61 sensing nodes and 278 other nodes, of which 216 were intermediate. As

another metric of complexity, Edmund had 26 thresholds embedded in its primitives, of which

6 were not one of four standard values (0.2, 0.4, 0.6 or 0.8). TheERP had 264 weights, of

which 189 were either 1.0 or -1.0. However, the other 75 weights took 37 separate values.

4.3.6 Discussion

The research in this section demonstrates that a system using selective, hierarchical control

which patently ignores most of its sensory input at any particular time can out-perform a

carefully designed fully-parallel architecture. There might be reason to be cautious in over-

interpreting this result. For example, the system built under Edmund was very sensitive to some

parameter tweaking, particularly the threshold at which predators were attended to. Given the

sorts of thresholds in its implementation, this seems to be also true of the system built under

ERP, but it is never a desirable trait in anAI system. Nevertheless, both the relative lack of

complexity of the Edmund animal’s control and its relative success serves as strong evidence

that managing complexity through selective attention is more important than having a fully
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reactive architecture.

Reducing information is the primary task of any perceptual system; it is inseparable from

the problem of gathering information in the first place. Further, there can be no doubt as

to how crucial perception is to the intelligence of a behaviour-based artifact, and little more

of the role it plays in natural intelligence. Nevertheless, it seems unlikely that simply the

loss of information is itself sufficient or necessary to the improved behaviour. Rather, it is

more likely that ignoring some information reduces the complexity of the design problem, and

thus improves the probability of developing a better system. The design problem does not

exist simply because hand-coded architectures were used for attacking theSE. Any form of

learning, including evolution, has a similar search space to traverse as an intelligent designer

— for all systems, the simpler design is easier to find.

4.4 Analysis of Approach

The preceding sections have presented experiments which demonstrate the claims of the Ed-

mund hypothesis. They also provide evidence that the detractors of such structured control

are incorrect: hierarchy and sequence can be used to control agents at least as capable of cop-

ing with dynamic situations as more purely reactive architectures. On the other hand, they

have not produced conclusive proof of the hypothesis stated in Section 3.4.2. Science, unlike

engineering or mathematics, rarely yields conclusive proof; however, further evidence from

psychological research and suggestions for further experiments are both offered in the next

chapter.

This section evaluates the evaluation of Edmund. Perhaps more importantly, it addresses the

contentious issue of using robots as research platforms, taking the results of the two previous

sections as evidence. It begins by examining the arguments for the use of robots, concluding

that robots are neither necessary nor sufficient for valid research in behaviour-basedAI . It then

discusses the aspects of action selection that have and have not been adequately tested in this

chapter, and describe further potential platforms. It concludes with a brief summary of the

circumstances under which robots may still be a desirable part of a research inquiry, using the

above sections as illustration.



4.4.1 Historic Motivation for Robots as Research Platforms

Alan Turing, one of the founders of both artificial intelligence and computer science, invented

the best-known test for the attainment of “true”AI . Now known as the Turing Test, the criterion

consists essentially of having several judges unable to determine whether they are communi-

cating with a computer or a human (Turing 1950). The reason for this criterion is straight-

forward; it is functional, and therefore open to simple evaluation. Turing did not expect thatAI

would be able to exactly imitate the computations of the human brain on a radically different

architecture, but believed that functional equivalence should be possible.

Turing also believed the most probable way of achieving such functional equivalence was

by making the artifact as like a human as possible, so that it could share as much of human

experience as possible (Turing 1970). He observes that even with a mechanical body and

anthropomorphic sensing, the computer would be unable to share the experiences of eating

fine food, becoming drunk or falling in love, but should none-the-less be significantly more

likely to acquire human-like intelligence than otherwise. This argument is repeated in inverse

by Dreyfus (1992), who is critical of the notion of trueAI . He observes that without being

immersed in human biology and culture, there is no reason to believe an artifact, even if it

were intelligent, would be recognisably so by us. As an example, he points out that analogy is

very important to human reasoning, but asserts that the axes of analogy are relatively arbitrary.

For instance, humans tend to take mirror symmetric objects as being nearly identical. What

would happen if the computer, instead, chose the colour red as an important axis of similarity4?

Arguments of this nature have led to a recent trend to rootAI not only in robotics, but in

humanoid robotics (Brooks & Stein 1993, Kuniyoshi & Nagakubo 1997, Dennett 1997, Brooks

et al. 1998).

The behaviour-basedAI community, though often disinclined to attempt to create full hu-

manoid intelligence, has historically been fully invested in demonstrating their theories on

robots. Below are several reasons for this approach, derived mainly from Brooks (1991b,a),

Steels (1994).

A AI has made substantial progress on specialised problems such as chess and theorem

4 Shortly after I first read this argument, a friend told me (without prompting) that his four-year old daughter had
just surprised him by announcing that she and a family friend, an enormous man of a different race, were “just
the same.” When my friend asked her what she meant, she said “We’re both wearing red shirts!”
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proving which have not proven generally useful to creating intelligence. One hypoth-

esis about this failure is that the solution space for any one task is under-constrained:

there may be many ways to do the task, but not all of them involve computational strate-

gies that could be a part of a human-like intelligence. One way to force appropriate

constraints is to build acompleteagent, one that solves all the problems of animal-like

intelligence. Robots necessarily have to address most of the issues of daily animal ex-

istence: perception, motion, action selection and navigation. They may also be asked

to find their own food (at a recharging station or power point) and in theory, even to

replicate themselves.

B By a similar line of argument, animal-like intelligence would best be achieved in solving

the subtasks of intelligence in the order they are found in nature. For example, it may

be necessary to have a primate-like vision system before addressing language. Again,

robots are more appropriate than simple computer platforms for developing these critical

systems, because they more nearly share our environment, and therefore our selective

pressures.

Even if researchers are persuaded by these arguments that we should build complete agents

which achieve animal-like skills in natural environments, it would be far easier to address

these problems in the better controlled environment of an artificial simulation, run entirely

on a computer. In this case, one program would create the world and its problems, while

other, experimental programs would solve these problems. The following criticisms have been

levelled against this approach.

C No simulation replicates the full complexity of the real world. In choosing how to build

a simulation, the researcher first determines the ‘real’ nature of the problem to be solved.

Of course, the precise nature of a problem largely determines its solution. Consequently,

simulations are only a special case of the first point above, (A). They enable a researcher

to reduce the full problem of intelligence to particular subproblems.

D Alternatively, if a simulation truly were to be as complicated as the real world, then

building it would cost more time and effort than that saved by not building the robot.

This argument assumes one of the axioms of the behaviour-based approach toAI , that

intelligence is by its nature simple and its apparent complexity only reflects the com-



plexity of the world it reacts to. Consequently, spending resources constructing the

more complicated side of the system is irrational as well as unlikely to be successful.

E With a simulation researchers may deceive either themselves or others as to the com-

plexity of theAI solution they have provided. Since both the problem and the solution

are under control of the researcher, it is difficult to be certain that neither unconscious

nor deliberate bias has entered into the experiments. A robot is a clear demonstration of

an autonomous artifact, its achievements cannot be doubted.

4.4.2 Criticism of Robots as Research Platforms

The arguments presented in the previous section are the main formal reasoning behind the

adoption of the autonomous robot as a research platform. This adoption has occurred in a

large and growing community of researchers, despite several well-recognised difficulties with

the platform. This section begins with a review of these difficulties, and then moves to address

whether the benefits espoused above have proven to compensate for these difficulties.

The main problem with robots as a research platform is that they are extremely costly. Al-

though their popularity has funded enough research and mass production to reduce the initial

cost of purchase or construction, they are still relatively expensive in terms of researcher or

technician time for programming, maintenance, and experimental procedures. Consequently,

they are of significantly more net value in a context where research or education is intended

to include work in hardware and software design than in laboratories dedicated to work in

psychology and cognitive modelling.

Further, the difficulties of maintaining an operational plant reduce the utility of the robot for

psychological experiments by making it difficult to run enough experiments to have statisti-

cally significant results when comparing two hypotheses. This situation has been improved

by the advent of smaller, more robust, and cheaper mass-produced robot platforms. However,

these platforms more often fall prey to a second criticism: mobile robots do not necessarily ad-

dress the criticisms levelled against simulations above (C–E) better than simulations do. This

is caused by two factors: the simplicity necessary in the robots to make them usable, and the

growing sophistication of simulations.

The constraints of finance, technological expertise and researchers’ time combine to make it
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highly unlikely that a robot will operate either with perception anything near as rich as that

of a real animal, or with potential actuation with anything like the flexibility or precision

of even the simplest autonomously animate animals. Meanwhile, the problem of designing

simulations with predictive value for robot performance has been recognised and addressed

as a research issue (e.g. Jakobi 1997). All major research robot manufacturers now distribute

simulators with their hardware. In the case of Khepera, the robot most used by researchers

running experiments requiring large numbers of trials, the pressure to provide an acceptable

simulator seems to have not only resulted in an improved simulator, but also a simplified robot,

thus making results on the two platforms nearly identical. While some researchers claim this

similarity of results validates use of the Khepera simulator, in absence of other evidence it can

be equally argued to invalidate the robot.

When a simulator is produced independent of any particular theory ofAI as a general test

platform, it defeats much of the objection raised in chargesC andE above, that a simulator is

biased towards a particular problem, or providing a particular set of results. In fact, complaint

E is completely invalid as a reason to prefer robotics, as experimental results provided on sim-

ulations can be replicated exactly, thus proving more easily tested and confirmed than those

collected on robots. To the extent that a simulation is created for and possibly by a community

— as a single effort resulting in a platform for unlimited numbers of experiments by laborato-

ries world-wide, that simulation also has some hope of overcoming argumentD. This has been

particularly true on two platforms. First, the simulator developed for the simulation league

in the Robocup football competition has proven enormously successful, and to date provides

much more “realistic” football games in terms of allowing the demonstration of teamwork be-

tween the players and flexible offensive and defensive strategies (Kitano et al. 1997, Kitano

1998).

The second platform is independently motivated to provide the full complexity of the real

world. The relatively new commercial arena of virtual reality (VR) has provided a simulated

environment with very practical and demanding constraints which cannot easily be overlooked.

Users of virtual reality bring expectations from ordinary life to the system, and any artificial

intelligence in the system is harshly criticised when it fails to provide adequately realistic be-

haviour. Th́orisson (1996) demonstrates that users evaluate a humanoid avatar with which they

have held a conversation as much more intelligent if it provides back channel feedback, such



as eyebrow flashes and hand gestures, than when it simply generates and interprets language.

Similarly Sengers (1998) reviews evidence that users cannot become engaged byVR crea-

tures operating with typical behaviour-based architectures, because the agents do not spend

sufficient time telegraphing their intents or deliberations. These aspects of intelligence are

often overlooked not only by conventionalAI researchers, but by roboticists as well.

4.4.3 The Evaluation of Edmund

The two sets of experiments described in this chapter both provide evidence for the disserta-

tion’s main thesis, that sequential and hierarchical control structures do not necessarily lead

to rigid, brittle behaviour, unable to react to dangers and opportunities in the environment.

However, they exploit very different aspects of the Edmund architecture to meet their respec-

tive challenges. The Nomad robot experiments demonstrate the power of behaviours given the

capacity of variable memory, and of compromises to the modularity of those behaviours by

allowing them to be influenced by each other as well as the external world. The arbitration

between goals, however, was severely constrained by the simplicity of the tasks for which ad-

equate sensing and actuation on the robot were available, and by the amount of programming

time that could be provided. Essentially, they perform no more complex arbitration than the

standard subsumption-architecture robots (Brooks 1990). The Nomad experiments demon-

strate only that a robot controlled using the Edmund architecture is not so severely hampered

by hierarchical control that it behaves significantly below the behaviour-based standard.

The experiments in Tyrrell’s simulated environment, on the other hand, demonstrate an ability

to manipulate far more goals and avoid far more dangers simultaneously than any real robot

has exhibited, despite operating under very poor perceptual conditions. It also allowed for the

direct comparison of Edmund’s results with that of several other architectures, providing for

the use of statistical verification of Edmund’s utility. Further, the simulated research, including

familiarisation with the platform, construction of the specific control hierarchy, and tens of

thousands of experimental trials, took less than one sixth the time that the robot research took,

which had far less satisfactory experimental analysis. However, because a model of perception

and navigation were provided as part of the simulated environment, Tyrrell’s task required no

memory that persisted longer than a single decision cycle of the simulation. Consequently,

only one behaviour (for selecting direction) was developed beyond the behaviours provided as
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part of the simulation. Consequently, the Tyrrell simulation did not provide a test of the first

two of Edmund’s hypotheses (Section 3.4.2).

Even taken together, neither of these domains fully tested all of Edmund’s capabilities. For

example, Edmund’s hierarchical mechanism is capable of supporting recursion: a competence

may have an element which refers to that same competence. This ability was not really needed

in either of these domains, but almost certainly would be if Edmund were being used to pro-

duce natural language for a conversational agent. Also, neither situation required complex

action patterns for either perception or motion. Performing vision tasks using a visual routine

processor (Ullman 1984, Horswill 1995) or controlling a jointed manipulator such as a hand or

a leg (either on a robot or a simulation) probably would. None of these tasks address the issue

of whether Edmund-like behaviours and action-selection are sufficiently powerful to simulate

conventionally human / cognitive tasks such as following a conversation or displaying person-

ality. These problems would probably best be approached in creating characters for virtual

reality.

4.4.4 Summary and Recommendations

In summary, autonomous mobile robots have not proven the ultimate research platform many

researchers would like them to be (Brooks et al. 1998, Kortenkamp et al. 1998). However, nei-

ther has any other single research platform or strategy (Hanks et al. 1993). While not denying

that intelligence is often highly situated and specialised (Gallistel et al. 1991, Horswill 1993b),

to make a general claim such as the thesis of this dissertation requires a wide diversity of tasks.

Preference in platforms should be given to those on which multiple competing hypotheses can

be tested and evaluated, whether by qualitative judgements such as the preference of a large

number of users, or by discrete quantifiable goals to be met, such as Tyrrell’s fitness function,

or the score of a Robocup football game.

Robots are still a highly desirable research platform, for many of the reasons stated above.

They do provide complete systems, requiring the integration of many forms of intelligence.

The problems they need to solve are indeed more like animal’s problems, such as perception

and navigation. These attributes are witnessed by the need for building perceptual and memory

systems for the Nomad research above, but not for the simulation. In virtual reality, perfect

perception is normally provided, but motion often has added complication over that in the real



world. Depending on the quality of the individual virtual reality platform, an agent may have

to deliberately not pass through other objects or to intentionally behave as if it were affected

by gravity or air resistance.

Robots being embodied in the real world are still probably the best way to enforce certain

forms of honesty on a researcher — a mistake cannot be recovered from if it damages the

robot, an action once executed cannot be revoked. Though this is also true of Tyrrell’s simu-

lation, particularly in the case of younger students, these constraints are better brought home

on a robot, as it becomes more apparent why one can’t ‘cheat.’ Finally, building intelligent

robots is a valid end in itself. Commercial intelligent robots are beginning to prove very use-

ful in care-taking and entertainment, and may soon prove useful in areas such as construction

and agriculture. In the meantime are highly useful in the laboratory for stirring interest and

enthusiasm in students, the press and funding agencies.

4.5 Conclusions

The first step towards assessing the success of an architecture intended to support the devel-

opment of complex behaviour should be a definition of complex behaviour. Unfortunately,

no universally accepted definition of the term exists, although this chapter has discussed sev-

eral criteria along these lines. Similarly, no single benchmark task could be sufficient for a

thorough evaluation of a system, nor is any one task likely to embody all that is “hard” about

intelligence. Even the Turing test omits the tasks humans find difficult, such as chess or math-

ematics.A I has come under considerable criticism for making general claims about systems

designed explicitly for a particular task or simulation (Brooks 1991a, Hanks et al. 1993).

This chapter has demonstrated Edmund both on a mobile robot and in a simulated environment.

No serious revision was made to Edmund for the latter task. The only fixes made were to a slow

memory leak that had not manifested itself over the shorter “lifetime” of the robot experiments,

and errors in the script parser. These two sets of experiments are the evidence promised in

this dissertation that sequential and hierarchical control structures do not necessarily lead to

rigid, brittle or unreactive agents. Further, the relative success of the Edmund animal vs.

animals controlled by other dominant architectures in Tyrrell’s simulated environment we take

as evidence that such organisations are critical to organising behaviour efficiently.
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Nevertheless, substantially more work remains to be done for creating and demonstrating an-

imal level behavioral complexity. This chapter has reviewed several alternative domains for

testing. ForAI to make a substantial contribution to psychology, however, it must not only pro-

duce interesting behaviour, but use psychological research as the ultimate test of its varying

hypotheses. The next chapter turns to psychological evidence supporting the Edmund hypothe-

ses. It then concludes with proposals for refined hypotheses, for further work on improved or

different architectures for examining the next set of questions.
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Chapter 5

Analysis: Action Selection in Nature

5.1 Introduction

The previous chapter, Chapter 4, has described experimental evidence that natural, appropriate,

alert behaviour can be exhibited by agents executing actions pre-stored as hierarchies and

sequences. This point is necessary to the thesis of this dissertation: that hierarchical and

sequential behaviour organisation is an integral part of intelligence. This thesis was presented

and examined at length in the first three chapters of this dissertation. Chapter 3 also presented

Edmund, the architecture used for the experimental work, and a body of research from artificial

intelligence giving evidence for the thesis in the form of research trends and successes. This

chapter begins by presenting psychological evidence for both the hypotheses embodied in

Edmund, and the overall thesis. This examination leads to a discussion of the limits of both

Edmund as a model, and of the evidence in this dissertation. These limits in turn lead to

suggestions for future work, both in terms of psychological experiments and ofAI research

platforms. The dissertation results and suggestions are summarised in the conclusion at the

end of this chapter.

5.2 Psychological Evidence for Edmund’s Hypotheses

Section 3.4 introduced the Edmund architecture, and contrasted it with the number of other

agent architectures. These contrasts were described and discussed as hypotheses on the na-

ture of intelligent action selection. Chapter 4 demonstrated the utility of these features for

constructed intelligent systems in two separate test beds. This section reviews the hypotheses
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associated with Edmund, this time examining them from a psychological perspective.

5.2.1 Perception requires memory.

There can be no question that a variety of types of memory are essential to the perceptual

processes of at least reasonably advanced organisms. The simplest demonstrations of this

position are the many examples of critical learning periods required for an animal’s perception

to function correctly or at all. Examples include:

• the experiments of Hubel and Wiesel (Hubel 1988) demonstrating the deficits in kittens’

vision after being either blindfolded or exposed to a deficient visual environment (e.g.

only vertical lines) through a critical period of their infancy,

• the experiments of (Gallistel et al. 1991, pp. 13–16) demonstrating that barn owl chicks

forced to view the world through refracting prisms while in the nest systematically mis-

judge the location of sound sources for the rest of their lives, and

• the fact human infants lose the capacity to discriminate phonemes that do not occur in

their native languages (Jusczyk 1985).

These are examples of the impact of long-term memory on perception. There are also ample

examples of short-term memory affecting perception, such as semantic priming (Neely 1991)

and the McGurk effect (McGurk & MacDonald 1976). Much sensory information is ambigu-

ous, or least too difficult to process in a reasonable amount of time, without expectations set

by previous context. This finding has been used to explain the massive efferent, “top-down”

connections, significantly outnumbering “bottom-up” afferents, even between the cortex and

the sensory organs (Sillito et al. 1994, Nicolelis et al. 1995, Rao & Ballard 1996).

This is not to say that all intelligent action triggered by the environment necessarily requires ad-

vanced memory or processing. In terms ofAI , purely reactive, learning-free sorts of behaviour

are appropriate for certain sorts of tasks, generally characterised by stereotypical responses to

a continuous signal. For example, a lawn-mowing robot may brainlessly search for long grass

and mow it; so long as it moves quickly enough to randomly cover its territory faster than the

grass can grow. Long grass can reliably trigger such a robot to engage its blades.
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In general, it is indeed better to rely on information in the environment rather than information

in memory, providing that the environmental information can be gathered sufficiently reliably

and efficiently. Animals, including humans, will preferentially use the environment to indicate

the next phase of activity, even when they have the resources and opportunity to use memory

instead. Humans given the task of copying a colourful abstract design using small plastic

pieces will rely on the memory of no more than one of the colour or the location of the piece

at a time if they have the model continuously available to them. This has been shown by

using eye tracking devices, and by changing the pattern to be matched, which subjects fail to

notice (Ballard et al. 1997). This is despite the fact that humans have the cognitive capacity to

copy the entire pattern from memory if the original is not made available to them during the

construction.

Even insect-level intelligence, originally considered the necessary first target for proving theo-

ries of dynamic intelligence (Brooks 1991b), has examples of both memoryless and memory-

based behaviour control strategies. Mound-building termites are often used as an example of

dynamic or emergent intelligence. If termites are placed in an open, dirt filled tray, they will

only gather dirt into piles rather than constructing a mound. However, once there are enough

termites and hence a sufficient density of piles, the termites switch behaviour into constructing

arches, the fundamental component of a mound. On the other hand, digger wasps have been

shown to be able to remember the state of progress of multiple nest sites in different stages of

completeness, without apparent visual cues, and honey bees perform dances to communicate

their recollection of recently visited food to the other members of their hive.

Lesion experiments indicate that many behaviours that may be categorised as simple acts actu-

ally exhibit combinations of memoryless and memory-based strategies for control. Frogs are

able to accurately scratch the location of skin irritations with their back leg even after surgical

removal of their brain (Bizzi et al. 1995, Mussa-Ivaldi et al. 1994). However, the scratching of

these spinal frogs and intact frogs is significantly different. Intact frogs are able to also scratch

one leg with the other, no matter where the itching leg is situated, whereas spinal frogs can

only scratch a leg that is in a stereotypical pose. This behaviour is similar to that of the intact

locust, which, if stimulated on the wing case will scratch the location on its back where the

stimulus would be if the wing case were closed, regardless of whether the case is there or has

been extended (as in flight) (Matheson 1997). Reflexive behaviours are useful because they



are reliable, but extra processing ability allows for the addition of more complex computations

and therefore of more flexible and elegant behaviour.

In conclusion, although there is evidence that nature prefers reflexive behaviour for some situ-

ations due to its reliability, it abounds with examples of memory and learning. Even minimal

processing requires some transient state, and probably some amount of training or calibration.

For example, could a spinal juvenile frog scratch itself accurately after it had matured? Two

of the main tasks for an adaptive intelligent agent are learning to categorise and learning to

discriminate. Whether these skills are attributed to perceptual learning or to cognitive learn-

ing is irrelevant from the perspective of action selection. Within Edmund, the distinction is

unimportant: all learning takes place within the behaviours, though those behaviours may be

perceiving either external or internal state changes.

5.2.2 Memory is modular but not strictly encapsulated.

Similarly, there is no shortage of examples of the interconnectivity between essentially mod-

ular sections of the brain — where modularity is defined by differential organisation or com-

position relative to neighbouring parts of the brain, or by an obvious dominant functionality,

as in for example the visual or auditory cortices. Many of the best understood “modules” of

the brain are parts of the system for processing visual information. For example, the first pro-

cessing layer of the retina is understood to be recognising colour and intensity of light, the

next to be recognising edges between hues and intensities (Carlson 2000). The earliest layers

of the visual cortex are then considered responsible for detecting edges and their orientations

in the image, and so on. Regions of the brain have even been identified for identifying both

individual’s faces, and the orientation of generic faces (Perrett et al. 1987, 1992).

A supporter of the reactive approach to intelligence might argue that the visual systemcould

be described as reactive if considered at the proper level of abstraction: the individual cell

level. Each cell taken individually only responds to its input, they might argue — the labelling

of visual system components as modules is incorrect. This argument is wrong for several

reasons. First, the “modules” are not so called simply because the individual cells perform

similar functions. The cells do not behave coherently as individuals — each cell’s output

is only meaningful when compared with that of its neighbours. The cells inhibit and excite

neighbouring cells within their own layer, as well as transmitting information to further layers.
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The second reason the visual system should be thought of as state-sharing modules is that

each individual module (with the possible exception of the retinae, though see (Smirnakis

et al. 1997))learns. This learning is not only the transient passing and processing of state

during visual sensing, but also the long-term organisation and classification of such stimuli

(e.g. Hubel 1988, Gallistel et al. 1991, as above). This learning is again only meaningful on

a modular level, not an individual cell level. For example, very early ontogenetic learning

is concerned with simply organising cortical cells to be topological maps of the retinal input

(Sirosh & Miikkulainen 1996).

The third reason that a simple reactive model cannot be applied to the visual system is the

multidirectional interaction between the internal, learned state of the visual systems’ various

components. This is evidenced not only by their interconnectivity (MacKay 1956), already

mentioned above, but also by experimental evidence from machine learning and cognitive

science (e.g. Barlow 1994, Rao & Ballard 1996, Hinton & Ghahramani 1997) as well as psy-

chology. Psychological experiments have shown also thorough functional interconnectedness

between different sense modalities for even perceptual experiences that have dedicated single

sensory systems. For example, vision has been shown to contribute to both the human vestibu-

lar perception (Lee & Aronson 1974, Lee & Lishman 1975), and the perception of phonemes

(Jusczyk 1985, MacDonald & McGurk 1978, McGurk & MacDonald 1976).

Although the above arguments concentrate on the area of perception, this should not be taken

to support the model of Fodor (1983). Fodor’s influential but now largely discredited theory

on modularity not only argues for full encapsulation between modules, but also that they serve

merely to translate perceptual information into a uniform representation to be processed by a

“central system” (see Hendriks-Jansen 1996, Elman et al. 1996, for a discussion). In Edmund,

there is no such centralisation. Cognition is assumed to be distributed, perception and action

are considered to beparts of cognition, perhaps the only parts. This is in keeping with the

evidence of Ballard et al. (1997) and the philosophy of Clark (1996) and Dennett (1995, 1991),

as well as the spirit of behaviour basedAI . It also relates fairly well to the popular recent

theories of emergent modularity in psychology (Karmiloff-Smith 1992, Elman et al. 1996,

Bates in press). Unfortunately, Edmund can only serve as a snapshot of a system such as would

be developed under emergent modularity, because its modules are designed by its programmer.

This issue is addressed below in Section 5.3.4.



5.2.3 Action selection is dependent on structured control.

As was made clear in the first chapter, the final hypothesis of Edmund is controversial in psy-

chology as well as artificial intelligence. That natural intelligence might use structured control

is a theory — the theory this dissertation is intended to help defend. The previous chapters

have demonstrated the viability of such architectures in controlling reactive, opportunistic be-

haviour in dynamic environments, in contradiction to the claims of some critics of hierarchical

control. This section continues such support by reviewing evidence that natural action selec-

tion does in fact use these structures, at least on some occasions.

Neurological Evidence for Explicit Sequencing

There is fairly clear neurological evidence of explicit rather than dynamic sequencing of be-

haviour. For example, a region of the mammalian brain, the preaquaductal grey matter, has

been identified through lesion and activation studies as storing species typical behaviours such

as mating rituals (see for review Carlson 2000). Such behaviours have traditionally been de-

scribed in terms of fixed action patterns, but even if their representation is in fact more dynamic

or flexible than that label implies, the very fact they are separately stored and activated through

a specific region is an example of hierarchical control. These species-typical behaviours are

subroutines which can be repeatedly accessed in appropriate contexts.

Evidence of brain cells directly involved in processing sequential recall and behaviour has

been found by Tanji (Tanji 1996, Tanji & Shima 1994). In this set of experiments, Tanji &

Shima trained monkeys (macaca fuscata) to perform several sequences of tasks, both on touch

pads and on cranks which might be rotated, pushed and pulled. He trained his subjects both to

do the appropriate task as cued by coloured lights that corresponded to specific task elements,

and by memorising a sequence of elements. Tanji & Shima found cells firing in the medial

frontal cortices, (the supplementary motor area) in three different functional contexts. A few

cells (12%) functioned like those in the primary motor cortex, corresponding directly to the

particular motion or task, such as turning a crank, as it is occurring. These were used for

either the recalled or the cued sequences. However, 36% of the cells fired only for a particular

transition between tasks, such as moving from turning a crank to pushing it (see Figure 5.1).

These cells were used in multiple sequences if the identical ordered pairing occurred, but not
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if the two components were separated or in the reverse order. That is, if the monkey knew

more than one sequence with the same transition (from turn to push), the same cell seemed to

represent the same transition. Finally, 26% of the cells were active only preceding a particular

complete sequence, during the reaction time between the signal to start the sequence and the

monkey’s initiation (see Figure 5.1). Both of these two classes of cells were active only when

the monkey was recalling the sequence from memory.

Figure 5.1: Two different neurons from the medial temporal cortex ofmacaca fuscataimpli-
cated in controlling learned sequential behaviour. The first fires in preparation for particular
transition, regardless of the identity of the overall sequence; the second only before a particular
sequence.From (Tanji & Shima 1994, p. 414)



Behavioural Evidence of Hierarchical Control

Most versions of hierarchical control, including Edmund, reduce the combinatorics of the

problem of action selection by selectively focusing attention on only a few appropriate be-

haviours. While this may seem rational from a computational viewpoint, it could also lead to a

failure of opportunism which could be inefficient and even dangerous. This is the criticism of

Maes (1991) and Hendriks-Jansen (1996), and explains why the linear hierarchy of subsump-

tion architecture (Brooks 1986, section 3.3 of this dissertation) and the free-flow hierarchies

of the Extended Rosenblatt & Payton architecture (Tyrrell 1993, section 4.3.3 of this disserta-

tion) are fully parallelised. Edmund, seeking the advantages of both systems, is only partially

parallel. If this is a valid psychological model, then there should be evidence both of neglect in

some instances of complex control, while also evidence for parallel monitoring for important

conditions.

There is, of course, ample evidence that animals may be interrupted from their activities by

external events. Evidence of the monopolising of behaviour or intelligence by a particular

cognitive context is more difficult to come by, as behaviour continuity could be described as a

reasonable, rational strategy. In other words, it is difficult to determine whether an animal is

persisting at a particular behaviour because it currently has no option, or because that persis-

tence is an optimal choice. However, there are some examples where behaviour is exposed as

irrationally persistent in unusual circumstances. For example, when a digger wasp is creating

a den in which to lay an egg, one of the most time consuming elements of the process is to

hunt, kill and retrieve a caterpillar to serve as food for the hatched larvae. However, the wasp

will only recognise a dead caterpillar provided locally by an experimenter if she is in the phase

of her activity when a caterpillar is required. While she is digging a nest or plugging a nest,

the caterpillar in the region is treated as if it were dirt. A caterpillar may be used to plug the

entrance of one nest even when the very next activity of the wasp is to hunt a caterpillar for

a second nest being constructed in parallel (Lorenz 1973). Another ethological example of

behaviour persistent beyond the rational is that terns have been shown to make the gesture of

rolling a misplaced egg all the way back to their nests even when the egg is surreptitiously

removed (via a trap door arrangement) midway on their path.

Rats have been shown not to engage in any appetitive behaviour (such as foraging or eating)
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without the appropriate triggering of their limbic system (Carlson 2000). This means that an

equally hungry rat (on some absolute caloric level) may or may not eat food present in front

of it if it is engaged in some other activity. Starving Siamese fighting fish will still patrol their

territory at regular intervals even when finally confronted with food (McFarland 1987, Hallam

et al. 1995). Their patrol timing is perturbed by the high priority of eating, but not eliminated.

Further examples of hierarchical and modular behavior are reviewed by Gallistel (1980, 1990).

Pöppel (1994) argues that the phenomena of ambiguous visual illusion, (e.g. Figure 5.2) show

evidence of a human incapacity to entertain two contexts simultaneously. This has been ex-

plained as a constraint of the visual system, that only one high level interpretation can be

entertained by the system at a time. Such a constraint would be an example of modularity

constrained not by locality within the brain, but by the the functioning of the cognitive system.

The activation levels forming the neural representation of a particular pattern are incompatable,

despite sharing the exact perceptual information and presumably the bottom-up activation of

many lower level visual processes.

Figure 5.2: An ambiguous image. This figure can be seen either as a vase or as two faces, but
not both same time. From (Gleitman 1995, p. 213)

Neurological Evidence of Hierarchical Control

The most promising area of research in examining mental context is the very recent advance in

neuroscience of multi-cell recordings of various brain regions, most typically the hippocampus

(Wilson & McNaughton 1994, Wiener 1996). The hippocampus is a particularly interesting

brain region because it has extremely sparse representations — that is, relatively few cells are

firing in any particular context. This is believed to be an attribute of its function, where it

seems to be involved in the fast memorisation of episodic events (Teyler & Discenna 1986,



McClelland et al. 1995, Levy 1996). In order to record a great deal of information (many

events) without the various memories interfering with each other, the encoding of the memories

must have a relatively small number of cells involved in their recording, which in turn means

that each cell must be highly significant. In rats at least, this significance has been sufficiently

simply encoded that the awareness of many items of importance to a rat can be identified from

tracing the firing of a hundred or so cells. These salient features include the rat’s location in

a cage, its orientation, what its current task is, and what phase of activity within a task it is in

(e.g. during a pause after a light has come on signalling that a test is about to begin.)

The evidence from this work that bears most strongly on hierarchical plan representation is that

there is evidence that the ordering of the encoding for these various salient features is context

specific: the coding is persistent for weeks given a particular context, but shifts instantly when

the rat switches between contexts. For example, if a rat runs to a different room, it may have

a completely new mapping of even the persistent features external to the two rooms, such as

how its head is oriented. Observers can thus tell from the recordings of the cells what context

the ratthinksits in, for example, whether it can be fooled into mistaking one room for another.

Interestingly, some rats may construct nearly identical representations for two rooms that other

rats distinguish clearly between (Kobayashi et al. 1997).

This research is only in its infancy: multi-cell recording is a difficult technique so far exist-

ing in only a few laboratories, and tends to be run on only a very small number of rats. The

research is being applied primarily to trying to decipher the purpose and mechanisms of the

hippocampus and similar brain organs. However, since the hippocampal representations have

already been shown to reflect events of internal significance, such as the current behaviour, as

much as external features, such as location in the room, there is no reason to suppose they do

not represent a significant amount of whatever might be called a rat’s “plan.” If this is the case,

it may be possible to see the representations shift as the rat learns a task, or achieves a gener-

alisation or insight in its learning. Presumably, insight of this sort is identical to recognition of

context, which has already been witnessed. If recognisable features of plans were ever spotted

in analogous rather than identical situations, then hierarchy could be proven. And this has

indeed happened already, if one accepts that the same task on different daysis only analogous,

it is not identical. In this case, we already have strong evidence of hierarchical representations

of some significant part of a rat’s mental life.
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Behavioural Evidence of Learned Hierarchies in Primates

Finally, there is also evidence that at least some non-linguistic animals can learn and use hi-

erarchical organisations for their explicitly controlled behaviour. In the University of Edin-

burgh Laboratory for Cognitive Neuroscience and Intelligent Systems there has been an on-

going research program into the ability of non-human primates to learn to manipulate objects

in their environment in ways that require structured organisation (see for a history McGo-

nigle & Chalmers 1998). McGonigle & Chalmers (1977) show that squirrel monkeys are

capable of performing transitivity tasks. That is, on learning a set of ordered pairs such as

A > B,B > C,C > D,D > E,E > F , the monkeys were able to generalise this knowledge to

know thatB > E. This works even when the metric for ordination was chosen arbitrarily

and was controlled between animals, so for example the metric might be colour, and different

animals might have to learn different orderings.

These findings led to the current research program in the laboratory which has given evidence

that Capuchin monkeys are capable of learning to exploit hierarchical organisation to extend

their ability to learn sequences of twelve items (McGonigle & Chalmers 1998, Dickinson

1998). The stimuli for these monkeys are variously shaped, sized and coloured items on touch

screens, which must each be visited in order. The required sequences involve visiting all items

of a particular shape or colour contiguously, so for example, first visiting all squares, then all

circles. The subjects show clear boundary effects when switching between element types —

that is, they take significantly longer choosing the first square or first circle than choosing the

second or third of a category. This reaction time result indicates even more conclusively than

the increased sequence length (which might be some form of practice effect) that the monkeys

are viewing their problem space hierarchically. Moving between classes is fundamentally

different than moving between members of the same class.

Of course, the fact monkeys can use structured control in deliberate activity does not neces-

sarily indicate that all of their action selection is controlled in a similar way. However, it does

demonstrate that such control strategies can exist in not only humans, but also other primates

without interfering with their native intelligence. In fact, such capabilities are well associated

with advanced intelligence, having also been demonstrated extensively in chimpanzees and

humans (Greenfield 1991, see for discussion).



Conclusion

It is difficult to demonstrate conclusively the strong claim that action selection isdependent

on sequential and hierarchical control structures. This requires not only showing such strate-

gies may be used and are used for action selection, but that no other strategy is possible.

That no other strategy is possible has in fact been argued persuasively on several occasions

(c.f. Dawkins 1976, McFarland 1985, McGonigle & Chalmers 1996, 1998). The argument

is straight-forward — that no other strategy can handle the combinatorial complexity of the

problem of action selection, nor explain the regularity of animal behaviour (see further Sec-

tion 2.2.6 above). However, this argument is still in dispute by some who claim our under-

standing of dynamic, chaotic processes and parallel algorithms is still too immature to rule

out other forms of organisation and emergent regularities (e.g. Goldfield 1995, see review in

Section 1.2.2). Although such arguments based on ignorance are necessarily inconclusive and

therefore deeply unsatisfying, they are also very difficult to disprove. However, even if the

rationality and regularity of action selection is emergent from complex dynamic processes,

there would still be a question as to whether this really precludes a hierarchical model of these

processes. From a functional perspective, the order that emerges from the (possibly dynamic)

underlying processes seems to be well described hierarchically, and therefore hierarchical ar-

tificial intelligence may be a completely appropriate model of the natural process.

5.3 Further Psychological Evidence, and Limitations of Edmund

Edmund is not the central thesis of this dissertation; rather it is the model through which a part

of the thesis has been demonstrated. This evidence that sequential and hierarchical control

structures do not necessarily lead to overly brittle or insufficiently reactive behaviour can be

used in support of the thesis that such structures underlie some naturally occurring intelligent

behaviour. The previous section discussed evidence supporting this thesis from within the

Edmund context; this section discusses other research related to the thesis. As such, some of

it also touches on shortcomings of Edmund, which are summarised and addressed.
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5.3.1 Neurological Mechanisms for Action Selection

One basic assumption of Edmund is that there is a neural mechanism by which ordered action

selection can be achieved. This assumption is sufficiently common in theAI literature that

it wasn’t listed as an Edmund hypothesis, but it is none-the-less controversial and one of the

central arguments of Brooks (1991a) and Hendriks-Jansen (1996). As mentioned in Chapter 3,

the primary argument against such structures is homuncular — what can be doing the select-

ing? This argument has been seriously undermined recently by Gurney et al. (1998), who have

demonstrated a neurologically plausible algorithm for action selection which could be learned

in an unsuprevised manner. They have proposed their mechanism as a hypothesis for a func-

tion of the basal ganglia (Redgrave et al. 1999), and have outlined the implications for this

research for artificial intelligence Prescott et al. (1999). Their argument, whether accurate in

detail, is solid in general: the problem of action selection between competing systems can be

learned by a relatively simple system that has no model of the actual complexity of the actions

to be undertaken, but knows only the relative importance of various systems and the strength

of the present signals. Such a mechanism could very well be used for selecting between the

competing parallel elements of drives within Edmund. Activation propagation within a com-

petence or action pattern is more likely explained by some form of spreading activation and

thresholding, as modelled by Glasspool (1995) or Wennekers & Palm (to appear).

5.3.2 The Combined Expression of Multiple Behaviours

Another criticism levelled against hierarchical control such as Edmund’s is that it precludes the

combination of various behaviours’ desires into one fused behaviour. Tyrrell (1993) discusses

this at some length, but actually confounds two different forms of combination. The first,com-

promise candidates, as defined by Tyrrell are when the desires of several different behaviours

with similar consequences are combined in the selection of the final action. Tyrrell’s example

is the selection of a direction to run that is both away from a predatorand towards shelter,

things that are recognised by two different elements in his system. A further contribution to

this approach was made by Humphrys (1997), who found he could improve the performance

of a society of problem-solving agents by allowing them to perform simple negotiation for

optimal solutions. In fact, it is only through this mechanism that he was able to achieve better

performance with a learned multi-agent system than a monolithic one. However, these sorts



of approaches can only be relevant when there is a clear mapping between the possible be-

havioural outcomes of the various agencies. This will probably occur only in relatively few

situations that truly bridge different behaviours. In Edmund, such occurrences may be encoded

either by re-decomposing the problem so that the outcomes that share state are part of a single

behaviour, or by allowing for an encapsulation violation between two behaviours.

The second form of behaviour combinations isfused behaviour expression. This is when two

behaviours with distinct action attributes have impact simultaneously in the agent’s expressed

behaviour. This is a much better description than “compromise candidate” of what happens

in the continuum of facial expressions which Tyrrell discusses (see Figure 3.1). There are

two ways to address this problem that have been demonstrated in the literature, neither of

which require either compromise or encapsulation violations. Thórisson (1999) demonstrates

in Ymir a mechanism for emergent combination of behaviours. Ymir is an architecture for

multi-media conversational agents. The agents created under Ymir have, among other things,

facial expressions and hand gestures. Thórisson solves the fusion problem by having a sep-

arate, cerebellum-like element of the architecture select the actual expression of particular

behaviour based on the current position of the agent’s features. Thus, if behaviour 1 sets a

particular expression on an agent’s face, say a smile, then when behaviour 2 determines to

acknowledge a comment by another speaker, it might choose to nod, or to widen the grin. A

simpler mechanism is provided by Blumberg (1996), where behaviours are organised by the

resources they are going to control on an animated agent, where resources are enumerated

by degrees of freedom1. Behaviours that “win” in action selection but don’t necessarily need

to control all the degrees of freedom of the agent thus allow for the expression of other be-

haviours. Consequently, an animated dog might have one behaviour causing it to walk, and

another affecting its facial expression or tail wagging.

In order to exploit Blumberg’s strategy under Edmund, one would need to have the fused

behaviours on different drives, running in parallel. This is actually fairly plausible, not only

from an engineering but also a biological standpoint, since most of the examples of behaviours

that need fusing in the literature discuss the fusion of functional behaviours with emotional or

expressive behaviours. From an engineering perspective, there have been many architectures

1 A degree of freedomin this context is any thing that could move, in a robot it would be represented by a single
motor. The tail of a dog, for example, might have two degrees of freedom – it might wag from side to side, but
also raise or lower to wag high or low.
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proposing independent hormonal or emotional systems for affecting behaviour or learning

(see for a recent review Gadanho 1999, pp. 50–54), and from a biological perspective the

limbic system has long been considered a parallel brain mechanism for determining mood

and emotion. Exploiting Th́orisson’s system is even simpler, because it involves only having

Edmund’s action selection passed into an Ymir-like action processor rather than being directly

expressed in the agent. This is an extremely viable extension of the work in this thesis, and in

fact is already underway (Bryson 1999).

5.3.3 Explanations for the Misordering of Actions

One simple objection to the theory that actions are ordered, in fact, one that has inspired many

of the theory’s detractors, is the simple observation that behaviour sequencing sometimes fails.

Even well-known and frequently practised sequences may abort or become disordered. Fortu-

nately, the psychological literature already has mature mechanistic models for how sequences

are performed which account for these problems (see for reviews Houghton & Hartley 1995,

Henson 1996).

There is no generally accepted theory of the exact mechanism for sequential control. Indeed,

there may be multiple mechanisms for controlling sequencing at various rates and with vari-

ous levels of deliberate control. Henson & Burgess (1997) is a typical example of the sorts of

models that best fit the psychological data for sequencing errors. It involves a single-neuron

representation of each stage of the sequence, with all stages interconnected by inhibitory con-

nections. By some mechanism, the cells are ordered so that the first cell is fired, then self

inhibits, resulting in the second cell becoming the self-expressing, other-inhibiting cell, and

so on. In the Henson & Burgess model, firing priority is determined by comparing associated

values indicating relative positioning within the sequence. A slightly older model,competitive

queueingGlasspool (1995), has a simpler mechanism of higher initial activation being given to

the earlier members of the sequence. However, this simpler model fails to adequately explain a

particular class of errors where an element from one sequence replaces an element in the same

ordinal location in another sequence — an error that indicates some form of homogeneity

between sequences.

Norman & Shallice (1986) present a higher-level model of action selection which has several

interesting parallels with Edmund. Norman & Shallice separate control into two different



systems: one for routine behaviour control, calledcontention scheduling, and a second for

the non-routine, called theSupervisory Attentional System. The latter system is an attempt

to formalise the role of conscious attention, but its model is not well fleshed out. Contention

scheduling, on the other hand, has been formally and computationally modelled. As described

by Cooper et al. (1995),

The central component of the CS theory is the schema network. In formal terms,

this is a directed acyclic graph in which nodes correspond either to action schemas

(partially order sequences of actions) or goals. Edges from the schema nodes point

to goal nodes, and vice versa, so the network may be thought of as consisting

of alternate “layers” of schema and goal nodes. The schema nodes pointed to

by a goal node correspond to distinct methods of achieving that goal, and the

goal nodes pointed to by a schema node represent the subgoals which must be

achieved in order to execute the schema. Thus, the goal of preparing a mug of

coffee might be achieved in a variety of ways (e.g., either by preparing instant

coffee or by preparing percolated coffee), and the schema for preparing instant

coffee will include a number of subgoals (e.g., boil water, add coffee grinds, add

cream, etc.).

At any point in time, each node of the network has some activation level between 0 and 1. A

node requires not only a high activation but also that triggering conditions are met before it

can operate. Nodes are also affected by lateral inhibition between schemas that share the same

goal, to prevent more than one schema from firing at a time, and between schemas that share

the same element, to prevent an element’s activation from exciting inappropriate schemas. In

order to ensure the system is constantly active, excited nodes also self-activate to maintain

their aroused state.

The Norman & Shallice model shares with Edmund some of the characteristics of a distributed

hierarchical system that allows interrupts from parallel systems. However, it is radically dif-

ferent in that it is designed explicitly as a psychological model, rather than anAI architecture,

and thus gives less consideration to the design of a complete system, but more to modelling

psychological realities. Cooper et al. (1995) uses a model of contention scheduling to model

the sequencing errors made by psychiatric patients. For example, the researchers found that
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by changing the relationship between the strength of self activation and lateral inhibition, they

were able to simulate the behaviour of Parkison’s disease patients. This sort of research is im-

possible on Edmund, because sequences are encoded in a much simpler representation which

is guaranteed to fire in order.

Extending Edmund to have more psychologically plausible sequencing behaviour like compet-

itive queueing or contention scheduling is in principle possible, but as a design decision would

have to be carefully weighed. There might be an advantage in having potentially more flexible

behaviour, particularly if Edmund were to become a learning architecture where serendipitous

“mistakes” that lead to more effective behaviour might be recognised and remembered. On the

other hand, such flexibility might equally well be provided by the mechanisms of Thórisson

at a lower cost. Spreading activation networks are very expensive in terms of both design and

computational overhead, and are also notoriously difficult to control in large-scale projects (see

the previous discussion of Maes’ network in section 3.5.1, page 48). Edmund gives a fairly

optimal level of abstraction for the research detailed in the previous chapter, and Contention

Scheduling for the research detailed by Cooper et al. (1995). What might be more useful fur-

ther work is a careful analysis of the two architectures that leads to a mapping between their

behaviours, so that they can be fully understood in terms of each other. This might lead to

further insights useful for extending one or both architectures, or establish definite differences

between them which could serve as hypotheses for further research.

It is worth mentioning that the simplest form of generating sequential behaviour,chaining,

though still studied by some members of the machine learning community, is generally dis-

credited among psychologists and neuroscientists. Chaining, favoured by the behaviourists,

assumes that behaviours are stimulus-response pairs, and a sequence is a chain of such pairs,

each element of which is triggered by its predecessor. Lashley (1951) points out that such

an arrangement is physically impossible because of timing issues — many sequences are per-

formed more rapidly than the response time for such a circuit would require. Further, the

errors such a system would predict, such as confusion between different elements following

a repeated element of a sequence, are not found in human experimental data (Houghton &

Hartley 1995, Henson 1996).



5.3.4 Learning

The fact that perception requires memory indicates that perception requires learning — at the

most basic level of abstraction, learning is the process by which memory is changed. Edmund,

then, provides for learning so long as it occurs within a particular behaviour. Assuming an

Edmund behaviour is reasonably specialised in advance, this means that the only learning af-

forded in Edmund is specialised learning, that is, learning that can be anticipated, and for which

accommodation can be made. This is not as limited as it might sound: by some accounts, spe-

cialised learning accounts for the majority of learning in animals (Roper 1983, Gallistel et al.

1991, Bryson 1996a). As has been shown in Chapter 4, such specialised “learning” includes a

model of intelligent perception. Ambiguities can be resolved by comparison to past readings,

and simple filters can throw out impossible interpretations of the sensor information. In other

words, Edmund allows for short-term perceptual memory. Edmund could also potentially be

used for other sorts of memories, provided their representation can be determined in advance.

Thus it might be used to model episodic memory, imprinting and other forms of perceptual or

muscle skill tuning that happen over the lifetime of an agent.

Nevertheless, there are definite limits to Edmund’s ability to model animal learning — it cannot

develop new behaviours or representations, nor can it develop new control patterns. Both of

these problems will now be considered in turn.

Learning New Behaviours

In order for any system, including Edmund, to allow for the learning of new behaviours, the

behaviours themselves would have to be represented in a variable space. The extent to which

this is true for animals is under debate, but there is reasonably strong evidence that this is a

good description of cortical learning in animals. Even well established modularity in mam-

malian brains is able to be violated in extreme cases, such as losing part of the brain or part

of the body. Lashley (1950), showed that a monkey could recover from the removal of an

entire motor cortex. Lashley took this experiment to disprove any notion of modularity in the

cortex. This conclusion neglects the fact that the animal was paralysed on the corresponding

side of its body for over eight weeks — a more likely conclusion is that modularity is real, but

plastic. Further evidence comes from the description by Ramachandran & Blakeslee (1998)
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of the phenomenon of phantom limbs. After amputation, many patients continue to perceive

feelings and pain in their now absent limb. This is a consequence of neural invasion of the

areas of the sensory cortex previously used by the missing limb, by other nearby active regions

of the sensory cortex. Again, this is an indication of both plasticity and persistent modularity.

The sensations felt in limbs that are no longer present are the result of the old machinery of

the cortex interpreting current neural activity in the context of the former physical state. These

sorts of recalcitrance are a demonstration that modularity is founded in something substantial.

This “something” may either be a consequence of physical location — the presence or absence

of connections to relevant information sources, or of well entrenched learned behaviour, which

may make the reuse of theoretically plastic connections difficult because of the stability of the

current activation patterns. Bates (in press) puts forth the latter hypothesis as an explanation

for the critical period in language learning.

Despite this evidence that biological systems develop some of their modularity over a uniform

substrate, such an approach for anAI system intended to express complex behaviour is proba-

bly impractical. In this respect, the problem of learned behaviours is similar to the problem of

variability in sequencing above: it is a biological reality that an ultimate model of intelligence

should reflect, but it is beyond the scope of a system such as Edmund. In this case, there are no

existing systems that control behaviour to nearly the complexity of Edmund that express this

sort of modularity. The nearest model to date is probably that of Plaut (1999). This models

modality-specific aphasias by learning lexical maps on an essentially uniform substrate (square

matrix) representation. The modularity is a consequence of the fact that different edges of the

lexical matrix are adjacent to separate networks for controlling modality-specific actions and

receiving various modality inputs. Like the work of Cooper et al. (1995), this work is interest-

ing as a model of a particular psychological phenomenon. However, the modularity produced

by this model is nowhere near the level of encapsulation even of Edmund, and no specialised

representations are developed.

Some slightly more practical means of learning behaviours has been demonstrated in the

behaviour-basedAI literature, including Warnett (forthcoming) mentioned above, see Dorigo

& Colombetti (1998) and Perkins (1998, pp. 109–118) for recent reviews. These approaches

consist primarily of researchers using either neural networks or genetic algorithms to learn

either new behaviours composed of established primitives or new action-selection devices for



established behaviours. In all cases, the learning is effectively supervised to greater or lessor

extent by the provision of fairly specificreward functionsby which the learning algorithms can

evaluate their own success. Thus far, no system has demonstrated learned behaviours surpass-

ing the quality of hand-coded behaviours2 (Perkins 1998, Matarić & Cliff 1996). The problem

facing this work is again one of combinatorics: providing enough bias to make the learning

problem tractable is so far more difficult than programming the behaviour by hand.

Learning by Imitation

Of course, nature has conquered this problem, and in time the techniques ofAI may also build

a sufficiently useful and powerful representation of the learning space that this sort of learning

may be tractable. One particularly promising area of learned robot behaviour is learning by

imitation (see for a recent overview Dautenhahn & Nehaniv 1999). The advantage of imitation

is that an agent can benefit by the experience of conspecifics, thus attacking the combinatoric

problem by using combinatorial numbers of learning agents. The power of this sort of strategy

can be observed in the rapid advances of human culture.

An example of anAI model of imitation learning is proposed by Demiris & Hayes (1999).

Demiris & Hayes demonstrates agents in which one module attempts to recognise the be-

haviour of another agent by comparing the observed behaviour to behaviours in the observing

agent’s own repertoire. Simultaneously, another behaviour stores episodic memories of the ob-

served behaviour’s components. If the recognition phase fails, the episodic memory is formed

into a new behaviour which is added to the behaviour library, otherwise it is forgotten. The

hypotheses behind Demiris & Hayes’s work are also grounded in neurological research.

Learning New Strategies

Creating and modifying catalogues of behaviour as a strategy for creatingAI is actually a major

subdiscipline of the field, known ascase based reasoning(Hammond 1990, Kolodner 1993).

Case based reasoning assumes that intelligence consists of learning or being provided with a set

of scripts orcaseswhich can successfully control an agent’s behaviour in a particular situation.

2 Humphrys (1997) does claim to have learned a superior controller (given provided behaviours) to any one that
can be designed. However, his simulation is not yet publicly available, so this claim has not yet been evaluated
against the design methodology of Edmund.
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To quote Hammond’s web page, “At its core, all of my work is derived from a single idea:

Reasoning is Remembering.” Bringing together the accumulated experience and ideas of the

fields of behaviour basedAI and case based reasoning would almost certainly be a very fertile

area of research. One example of such a combined program has been demonstrated by Ram

& Santamaria (1997), who have developed a case representation for the sorts of continuous

events present in robot navigation. This work is strikingly similar to that of the behaviour

based imitation researchers Michaud & Matarić (1999).

Traditionally, however, case based reasoning has been applied at a higher level of abstraction

than the behaviour-based behaviour. Typically, cases operate at the symbolic level. Conse-

quently, case-based reasoning might be more relevant to providing adaptation to Edmund’s

control hierarchies than to providing a source of new behaviours. The two primary problems

of case based reasoning are:

1. case selectiondetermining when to apply a particular case, or which particular case to

apply to a situation, and

2. case adaptationadapting a stored case to the current situation.

These two problems interact: the extent to which a case can be adapted, or to which a system

knows how to adapt a case, determines the number and nature of situations to which it can be

applied. In Edmund, two things determine when a competence is applied: the current control

context, and perceptually based trigger conditions. A competence will only be applied if it is

the highest priority relevant component with trigger conditions that are met, and is under one of

the drives or competences that has the current attention of the action selection system. Edmund

also has a means to modify the current context. These are entirely at the behaviour level, since

that is the only variable state. For example, a behaviour might set its internal attention on a

particular target, such as a landmark on a map or a block in a pile. The competence would then

attempt to navigate to that landmark, or grasp that particular block.

Thus, to some extent, Edmund already implements a version of case-based reasoning. In order

for further adaptivity to be present, there would need to be a module capable of manipulating

the control scripts, but this would open up a large number of problems. For example, how

would the scripts be described in such a way that a most appropriate one might be recognised?

And how would they be adapted?



Another potential mechanism for adapting behaviour scripts is genetic algorithms: a script

might be modified by cross-over with another script, or by mutation to some elements of the

script, then tested for fitness. The best resulting scripts would then serve as material for the

next batch of modifications. Such a strategy, applied in real time with some sort of internal

criteria of soundness for the evaluation, is similar in some ways to the theory of Calvin (1996),

pertaining to thought as evolution. It could perhaps more easily be envisioned running in the

Tyrrell simulated environment described in section 4.3.2, which also illustrates the problems

with this approach. Unless a modification is very significantly more or less fit than the current

best match, it will will require approximately 6000 trial runs to determine its relative fitness.

This again is the problem of combinatorial complexity: it is difficult to imagine an automatic

system for generating new scripts that would be sufficiently selective as to find a productive

increase in fitness in a sufficiently small number of guesses. Nature solves this problem with

a very rich system of representation and enormous quantities of trials conducted in parallel.

So far, artificial intelligence has been best served by relying on human intelligence for the

generation of action selection schemes that are highly likely to be fit.

5.4 Conclusions and Suggestions for Further Work

This chapter has provided a survey of evidence from the life sciences, particularly neuroscience

and psychology, for the existence of the sequential and hierarchical structuring of behaviour in

animals. This evidence serves, along with the experimental evidence presented in the previous

chapter, as further proof by demonstration that having sequential and hierarchical structuring

underlying behaviour does not necessarily make that behaviour brittle or unresponsive. Rather,

these chapters have shown evidence that such strategies support the mastery and combination

of complex behaviours which can in turn provide greater robustness and flexibility in an animal

or artifact.

In addition, this chapter has provided a review of the agent architecture Edmund as a psy-

chological hypothesis. It first supported the main claims differentiating Edmund from other

AI architectures, then pointed out limitations in the architecture as a psychological research

platform. Most of these limits reflect not so much short-comings in the architecture as a spe-

cialisation to the particular work for which the model was built. In each case, alternative mod-

els or architectures were suggested for exploring particular psychological phenomena outside
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Edmund’s parametric space. This was by no means a complete review of alternatives. In par-

ticular, there was no discussion of the extensive number of packages available for neuron-level

simulation. Neither was there any discussion of several of the dominant cognitive modelling

architectures, such asSOAR (Newell 1990, Laird & Rosenbloom 1996) orACT-R (Anderson

& Matessa 1998). These architectures were discussed in Chapter 3 as part of the review of

AI architectures. They were not reviewed in the context of cognitive models because of their

homogeneous structure and representations, and the dominance of learning underlying their

theory, results in an approach so substantially different as to be not very relevant to the ev-

idence discussed here. Another useful tool for cognitive modelling,COGENT (Cooper et al.

1998), was not mentioned because it is a tool for designing specific cognitive architectures,

rather than an architecture for building a variety of agents.

Several limitations of Edmund were found which suggest directions for future work on the ar-

chitecture. For one, it splits all of the responsibility for coherent behaviour between two very

different systems, the central action selection and the control of the individual behaviours.

Mammals have significant further assistance in smoothing and assimilating their various ac-

tions in the form of their cerebellum. Adding such a mechanism would probably be necessary

for stringing together fine motions if Edmund were to be used to control something as intricate

as a many-jointed robotic limb or a complex animated face.

Another interesting area for developing Edmund would be to automate the learning or adap-

tation of some of Edmund’s basic components, particularly the action selection routines. As

was suggested earlier in the text, this could be interesting if conducted on line, so that an

agent might learn new competencies over its lifetime, either by experience or imitation. Al-

ternatively, for psychological research, it might be more interesting to model the behaviour of

living animals. Dawkins (1976) suggests several mechanisms for determining the hierarchies

of animal behaviour control; these could probably be made even more powerful by using mod-

ern statistical and mathematical techniques for clustering and machine learning. Indeed, there

is some considerable work being done in this area using Markov models, since they are more

compliant to statistical approach (e.g. Baumberg & Hogg 1996, Brand et al. 1997). Dawkins

(1976) argues against Markov representations, an argument that ethologists are still support-

ing, on the basis that the hierarchical representation with its emphasis on chains of decisions as

well as trajectories within search spaces, seems a more natural expression of animal behaviour.



If a library of the primitive behaviours of these hierarchies could be adequately built into a

simulation of the animal, then comparing the behaviour derived from these learned hierarchies

with that of the real animal could be not only a strong test of this thesis, but also lead to a

valuable experimental platform for researching animal behaviour.

There is, of course, much further work that could be done with Edmund as it exists, particularly

in terms of modelling various types of theories of modular learning, such as episodic memory,

but these are more ancillary to the main thesis of this dissertation. Discovering and modelling

convincingly the hierarchical structure underlying the behaviour of real animals would be by

far the richest direction for pursuing the results of this dissertation.
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Chapter 6

Conclusion

This dissertation has presented a body of research supporting the claim that hierarchy and

sequence are integral to intelligence, both natural and artificial. This has been argued from

three perspectives:

• a literature review of agent architectures indicating a need for both distributed and hier-

archical control in the same system,

• a body of laboratory research demonstrating that such a system can meet and exceed the

standards of fully distributed, dynamic control, and

• a further literature review indicating that not onlycanhierarchical and sequential con-

trol be integrated into intelligent dynamic systems, but theyare so integrated in animal

intelligence.

Although none of this evidence might in itself be considered conclusive, the main contribu-

tion of this dissertation is to strengthen the claim that hierarchy and sequence are integral to

intelligent systems by integrating these several sources of support.

This dissertation has made several additional contributions besides the direct support of its the-

sis. It provides a framework for considering evidence from artificial intelligence and psychol-

ogy together, it examines methodological issues of performing artificial intelligence research

in psychology laboratories, and it provides a detailed examination of one model from artificial

intelligence in terms of psychological plausibility. These contributions support the main thesis

indirectly by supporting the methodological approach of the dissertation.
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The first chapter introduced the above thesis, and described its history and current contro-

versy. It also provided a brief introduction to the methodological issues of the use of the cross

disciplinary approach taken in establishing the thesis.

The second chapter examined an essential premise for the relevance of the dissertation: that

some aspects of animal behaviour can be explored via their modelling on artificial platforms,

and that further, since this approach to studying intelligence has been actively pursued for some

time, at least some of the research already done should be applicable to psychology. It intro-

duced the terminologies and problems of research in artificial intelligence considered most

relevant to the aspects of psychology explored in this dissertation. In doing so it described the

difference between the constructive and the descriptive stances taken byAI and psychology,

respectively. The second part of the chapter demonstrated the commonality between the con-

cerns of artificial intelligence and psychology by showing that the progress made in artificial

intelligence in defining the utility of concepts such as intentionality, rationality, context and

complexity does have relevance to current psychological research. This chapter suggested that

although the progress in artificial intelligence is notnecessarilyrelevant to psychology, itmay

be. Consequently psychologists should reviewAI results for potentially useful hypotheses.

The third chapter examined a number of such hypotheses on the optimal strategy for the control

of intelligent behaviour as they have been encoded inAI agent architectures. This examination

showed several trends in the histories of agent architectures:

• the need for pre-coded plans or plan elements in order to solve problems reliably and

quickly,

• the need for the provision of reactive and opportunistic behaviour, and

• the need for limiting the attention of action selection mechanisms to a subset of possible

behaviours appropriate to the context.

The first and third of these trends are relevant to the thesis of this dissertation, in that they de-

scribe sequential and hierarchical structure, respectively. The second is indicative of why older

models that made no such allowances have been open to such harsh criticism from dynamic

theories.
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The third chapter also described in detail a particular architecture, Edmund, which meets all

three of these criteria. This served as the basis for the experimental work described in the

fourth chapter. This chapter demonstrated Edmund both on a mobile robot, where it was

shown to be practical for this benchmark task of reactive intelligence, and in a simulated

environment, where it was shown to be superior to several leading dynamic approaches. The

fourth chapter also discussed the methodological issues of these two experimental test beds at

length. Similarly, the fifth chapter contained further analysis of appropriate domains for using

Edmund, suggested other platforms more appropriate for other domains, and suggested future

work on both the architecture and the thesis problem.

More importantly to the thesis, the fifth chapter provided a survey of evidence from the life

sciences, particularly neuroscience and psychology, for the existence of the sequential and

hierarchical structuring of behaviour in animals. This evidence served along with the exper-

imental evidence presented in the previous chapter, as further proof by demonstration that

having sequential and hierarchical structuring underlying behaviour does not necessarily make

that behaviour brittle or unresponsive. In fact, these chapters have shown evidence that such

strategies support the mastery and combination of complex behaviours which can in turn pro-

vide greater robustness and flexibility in an animal or artifact. In conclusion, this dissertation

has given considerable evidence that hierarchical and sequential structures are integral parts of

both natural and artificial intelligence.
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Appendix A

The Edmund Mouse

The code for Tyrrell’s Simulated Environment is available from his web page:
http://www.soc.soton.ac.uk/SOES/STAFF/tt/index.html

The additional code needed for running the simulations documented in Chapter 4 is available
here: ftp://ftp.ai.mit.edu/pub/users/joanna/edmund-mouse.tar.gz

For quick perusal, some of the critical files associated with those documents are available
below.

A.1 Edmund Mouse Control Script

This file is read by edmund. It has comments, and some of the competences and action patterns
are not used, because they are not children of the drive ”life”. I leave them in here as they
provide some record of the development process.

# animal grooms towards sunset, if near home but not in it
# (or nothing else is up!)
(life () (nil) DRIVE ((flee 80) (mate 70) (home 60 40 10) (triangulate

60) (check 55 50 10) (forage 50) (hurry_home 45) (sleep_at_home 50)
(sneak 45) (clean 20) (sit 10)))

(flee ((sniff_predator t)) () ((freeze 50) (run_away 60)
(look_for_predator 40)))

(sleep_at_home ((at_home t) (day_time nil)) (sleep))

# not covered if predator in square!
(freeze ((see_predator t) (predator1 nil) (covered t)) (hold_still))
(run_away ((see_predator t)) (pick_new_sheltered_dir go_fast))
(look_for_predator () (observe_predator))
(check ((at_home nil)) (look_around))

# cleaning also happens in exploit
(clean ((at_home nil)) (groom))
(sit () (rest))

# go home until get there if late!
(home ((late t))) ((at_home t)) (go_home))
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(triangulate ((lost t)) (go_home))
(hurry_home ((day_time nil) (at_home nil)) (go_home))
(cruise ((day_time t)) (nil) ((mate 90) (exploit 60)))
(cruising () (nil) ((mate 90) (exploit 60)))
(mate ((sniff_mate t)) (nil) ((inseminate 90) (court 80) (pursue 70)))

# can’t see anything in the dark, this is useless
(night_mate ((see_mate t)) (nil) ((inseminate 90) (court 80) (pursue 70)))
(inseminate ((at_home nil) (courted_mate_here t)) (copulate))
(court ((at_home nil) (mate_here t)) (strut))
(pursue ((sniff_mate t)) (pick_mate_dir go))

# use this fit_to... only if full cruise calls for it
# (exploit ((fit_to_exploit t)) ((use_resource 80) (leave 60)))
(exploit ((day_time t)) (nil) ((use_resource 80) (leave 60)))
(use_resource ((at_home nil) (needed_resource_available t)) (exploit_resource))
(leave () (pick_dir go))

# these replace exploit -- mostly stay inconspicuous (and groom),
# forage only when needed
(forage ((day_time t) (hungry t)) (nil) ((use_resource 80) (seek_resource 60)))
(fix_cold ((day_time t) (cold t)) (pick_sheltered_dir go_fast))
(fix_hot ((day_time t) (hot t)) (nil) ((chill 80) (seek_cold 60))
(chill ((cool_spot t)) (rest))
(seek_cold () (pick_new_sheltered_dir go))
(seek_resource () (pick_forage_dir go))
(sneak ((day_time t)) (nil) ((get_safe 80) (preen 70) (warm_up 60)

(relax 50) (wander 40)))
(get_safe ((covered nil)) (pick_new_sheltered_dir go))
(preen ((dirty t) (at_home nil)) (groom))
(relax ((tired t)) (rest))
(warm_up ((cold t)) (pick_new_sheltered_dir go_fast))
(wander () (pick_new_sheltered_dir go))

A.2 The Primitive Interface

This file is the interface between the behaviours (in this case provided mostly by the simula-
tion) and the control hierarchy coded above.

/* em-prims.cc -- the primitives (senses and actions) you find
called in the lap script files. These mostly just call other libraries
of functions in other files...

$Log: em-prims.cc,v $
Revision 1.5 1997/11/15 15:36:05 jo
the "final" version for the paper

Revision 1.1 1997/11/03 23:34:20 jo
Initial revision

*/

#include <stdio.h>
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#include <stream.h>
#include "em.hh" // c++ stuff, see asm_decs.h below
#include "brain-objs.hh"

#include "asm_mydecs.h" // tyrrell’s code, can’t include twice!
#include "animal_defs.h" // #defs for actions, directions

#include "em-dirs.hh" // must be after tyrrell’s defs

extern int action;

static char rcsid[] = "$Id: em-prims.cc,v 1.5 1997/11/15 15:36:05 jo Exp jo $";

/*

When you add a primitive --
1) add it to this list so it can be identified by people
2) add the code (don’t seem to need declarations, just definitions)
3) add it to initprims at the bottom, so it gets set up

Remember that if a primitive action does not return SUCCESS, the rest
of a fap will not execute! FAILURE indicates something _very_ drastic
happened, which should abort the next element. Actually, it may not
make sense to abort except on sensing!

Notice that things that don’t change "action" won’t result in a time
step being taken, so we can use perceptual actions as an abstraction
without incurring cost (see also em.cc)

*/

bool res; // commonly used...

// This was just my first test...

/* ************ Basic Actions ************ */
// # Since "life" has no goal, need an action that always fails
lapres nil () {

return (FAILURE);}

lapres sleep () {
action = SLEEPING;
return (SUCCESS);

}

int getting_lost () {
res = (variance > LIKELY)

? true : false;
return((int) res);

}

int lost () {
res = (variance > VERY_LIKELY)

? true : false;
return((int) res);

}

// slight info on predator
int sniff_predator () {



res = (max_p1_perc_stimulus > P1SNIFF * HALF
|| max_p2_perc_stimulus > P2SNIFF * HALF ||
(max_irr_perc_stimulus > TRIVIAL))

? true : false;
return((int) res);

}

// slight info on predator
int predator1 () {

res = (max_p1_perc_stimulus > max_p2_perc_stimulus)
? true : false;

return((int) res);
}

// more certain of predator
int see_predator() {

res = (max_p1_perc_stimulus > P1SEE * HALF ||
max_p2_perc_stimulus > P2SEE * HALF ||
(max_irr_perc_stimulus > LIKELY))

? true : false;
return((int) res);

}

// action = look_around if biggest trace of predator is in our square
// -- assume that doesn’t take careful discrimination to sort out and
// we’re just confused
lapres observe_predator () {

action = Directions::observe_predator();
return (SUCCESS);

}

int at_home() {
res = (den_dir == SAME_SQUARE && max_den_perc_stimulus > CERTAIN)

? true : false;
return((int) res);

}

// you can’t get sheltered from cats or hoofs...
int covered() {

res = (shelter_perc_stim[SAME_SQUARE] > VERY_LIKELY &&
max_p1_perc_stimulus < TRIVIAL && max_irr_perc_stimulus < TRIVIAL)

? true : false;
return((int) res);

}

lapres hold_still () {
action = FREEZING;
return (SUCCESS);

}

lapres pick_safe_dir () {
Directions::pick_safe();
return(SUCCESS);

}

lapres go_fast () {
action = Directions::go_fast();
return(SUCCESS);
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}

lapres go () {
action = Directions::go();
if (action == RESTING && cleanliness < LIKELY)

action = CLEANING;
return(SUCCESS);

}

lapres look_around () {
action = LOOKING_AROUND;
return(SUCCESS);

}

lapres groom () {
action = CLEANING;
return(SUCCESS);

}

// should prob. not be the same as TRIVIAL, TWEAK! (but value is cubed!)
int late () {

res = (night_prox > 0.75) ? true : false;
return((int) res);

}

lapres go_home () {
action = Directions::go_home();
return(SUCCESS);

}

int day_time () {
res = (night_prox < 0.90) ? true : false;
return((int) res);

}

// mating will fail if health is < .1, am I being conservative? TWEAK
// NB this was never really calibrated, it just got ignored
int fit_to_mate () {

res = (animal_health > 0.2 && carbo_minus < 0.8 && water_minus < 0.8 &&
fat_minus < 0.8 && protein_minus < 0.8 && an_temp_plus < 0.8 &&
cleanliness > 0.3) ? true : false;

return((int) res);
}

// TWEAK -- I don’t understand the code for this -- don’t think need to
// check if mate’s in square, but not sure about courtedness value
int courted_mate_here() {

res = (mate_courtedness > TRIVIAL) ? true : false;
return((int) res);

}

lapres copulate () {
action = MATING;
return(SUCCESS);

}

int mate_here() {
res = (mate_dir == SAME_SQUARE && max_mate_perc_stimulus > TRIVIAL2 * HALF)

? true : false;



return((int) res);
}

lapres strut () {
action = COURT_DISPLAYING;
return(SUCCESS);

}

// should probably play with this parameter TWEAK!
int sniff_mate() {

res = (max_mate_perc_stimulus > TRIVIAL * HALF)
? true : false;

return((int) res);
}

int see_mate() {
res = (max_mate_perc_stimulus > LIKELY * HALF)

? true : false;
return((int) res);

}

lapres pick_mate_dir () {
Directions::pick_mate();
return(SUCCESS);

}

lapres sit_or_clean () {
if (cleanliness < VERY_LIKELY)

action = CLEANING;
else

action = RESTING;
return(SUCCESS);

}

int safish() {
res = (shelter_perc_stim[SAME_SQUARE] > LIKELY) ? true : false;
return((int) res);

}

// A bunch of cases... more specific stuff below!
int needed_resource_available() {

static double food_need;
// don’t hang out if going to get trodden
if (max_irr_perc_stimulus > TRIVIAL)

return ((int) false);
food_need = carbo_minus + protein_minus + fat_minus / 3;
res = (( food_perc_stim[SAME_SQUARE] > TRIVIAL && food_need > LIKELY) ||

(water_perc_stim[SAME_SQUARE] > TRIVIAL && water_minus > LIKELY) ||
(an_temp_minus > TRIVIAL && sqr_temp_plus > TRIVIAL) ||
(an_temp_plus > TRIVIAL && sqr_temp_minus > TRIVIAL) ||
(((cleanliness < VERY_LIKELY || animal_health < LIKELY) &&

shelter_perc_stim[SAME_SQUARE] > LIKELY))) ? true : false;
return((int) res);

}

// Similar needed_resource_available! assumes they’ve been found true
// (pick_dir also is a bit like this)
lapres exploit_resource() {

static double food_need;
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food_need = carbo_minus + protein_minus + fat_minus / 3;

//most transient && biggest reward...
if (prey_in_animal_square && animal_health > 0.1)

action = POUNCING;
else {

if (food_perc_stim[SAME_SQUARE] > TRIVIAL && food_need > LIKELY) {
if (cf_in_animal_square)

action = EATING_CF;
else

action = EATING_FF;
}
else if (water_minus > LIKELY && water_perc_stim[SAME_SQUARE] > TRIVIAL)

action = DRINKING;
else if ((an_temp_minus && sqr_temp_minus) ||

shelter_perc_stim[SAME_SQUARE] < TRIVIAL) {
// move to get warm! (or if exposed)
Directions::pick(); action = Directions::go_fast();

}
else if (cleanliness < CERTAIN)

action = CLEANING;
else

action = RESTING;
} // else not pouncing

return(SUCCESS);
} // exploit_resource

// hungry or thirsty, actually. May want to latch this like in
// real animals -- variable that sets higher than it releases.
int hungry() {

static double food_need;
food_need = carbo_minus + protein_minus + fat_minus / 3;
res = ((food_need > LIKELY) || (water_minus > LIKELY));
return((int) res);

}

int cold() {
res = (an_temp_minus > LIKELY);
return((int) res);

}

int hot() {
res = ((an_temp_plus > LIKELY));
return((int) res);

}

int cool_spot() {
res = ((sqr_temp_minus > TRIVIAL));
return((int) res);

}

int dirty() {
res = (cleanliness < VERY_LIKELY);
return((int) res);

}

// there isn’t really an independent tired factor...



int tired() {
res = (animal_health < TRIVIAL);
return((int) res);

}

lapres pick_sheltered_dir () {
Directions::pick_sheltered();
return(SUCCESS);

}

lapres pick_new_sheltered_dir () {
Directions::pick_new_sheltered();
return(SUCCESS);

}

lapres pick_forage_dir () {
Directions::pick_forage();
return(SUCCESS);

}

lapres pick_dir () {
Directions::pick();
return(SUCCESS);

}

lapres rest () {
action = RESTING;
return(SUCCESS);

}

/*---------*/

void
initprims() {

// basic life
Act::add_act("nil", nil);
Act::add_act("sleep",sleep);
Act::add_act("observe_predator",observe_predator);
Act::add_act("hold_still",hold_still);
Act::add_act("pick_safe_dir", pick_safe_dir);
Act::add_act("go_fast",go_fast);
Act::add_act("go",go);
Act::add_act("groom",groom);
Act::add_act("look_around",look_around);
Act::add_act("go_home",go_home);
Act::add_act("copulate",copulate);
Act::add_act("strut",strut);
Act::add_act("pick_mate_dir", pick_mate_dir);
Act::add_act("sit_or_clean", sit_or_clean);
Act::add_act("exploit_resource", exploit_resource);
Act::add_act("pick_sheltered_dir",pick_sheltered_dir);
Act::add_act("pick_new_sheltered_dir",pick_new_sheltered_dir);
Act::add_act("pick_forage_dir",pick_forage_dir);
Act::add_act("pick_dir",pick_dir);
Act::add_act("rest", rest);
Sense::add_sense("getting_lost",getting_lost);
Sense::add_sense("lost",lost);
Sense::add_sense("predator1",predator1);
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Sense::add_sense("see_predator",see_predator);
Sense::add_sense("sniff_predator",sniff_predator);
Sense::add_sense("at_home",at_home);
Sense::add_sense("covered",covered);
Sense::add_sense("late",late);
Sense::add_sense("day_time", day_time);
Sense::add_sense("fit_to_mate", fit_to_mate);
Sense::add_sense("courted_mate_here", courted_mate_here);
Sense::add_sense("mate_here", mate_here);
Sense::add_sense("sniff_mate", sniff_mate);
Sense::add_sense("see_mate", see_mate);
Sense::add_sense("needed_resource_available", needed_resource_available);
Sense::add_sense("hungry", hungry);
Sense::add_sense("cold", cold);
Sense::add_sense("hot", hot);
Sense::add_sense("cool_spot", cool_spot);
Sense::add_sense("dirty", dirty);
Sense::add_sense("tired", tired);
Sense::add_sense("safish", safish);

} // initprims

A.3 The Behaviour

This is the only behaviour I required for the Tyrrell Simulated Environment task beyond those
provided by his thesis. It is for choosing the direction to go when the animal is moving.

class Directions {
public:

Directions(){};
˜Directions(){};

// class
static int choice() {return(picked);}
inline static void pick_safe();
inline static void pick_sheltered();
inline static void pick_new_sheltered();
inline static void pick_forage();
inline static int go_home();
inline static void pick_mate();
inline static void pick();
inline static int go_fast();
inline static int go();
inline static int observe_predator();

private:
static int picked; // the next direction

static int opposite[9];
static int opleft[9], opright[9];
static int left[9], right[9];
inline static double dangerof(int direction);

}; // class Directions



// go the safest aprox. of opposite the most scary predator
// (we assume this was called to flee) sets the variable "picked"
inline void Directions::pick_safe() {

static int bad;
static double op, or, ol;

// small chance but...
if (den_dir == SAME_SQUARE && max_den_perc_stimulus > CERTAIN) {

picked = SAME_SQUARE; return;}

if (max_p2_perc_stimulus > max_p1_perc_stimulus)
bad = p2_dir;

else
bad = p1_dir;

op = dangerof(opposite[bad]);
or = dangerof(opright[bad]);
ol = dangerof(opleft[bad]);
if (op > or) {

if (or > ol)
picked = opleft[bad];

else
picked = opright[bad];

} else {
if (op > ol)

picked = opleft[bad];
else

picked = opposite[bad];
}

} // Directions::pick_safe

// go the safest aprox. of home -- assume nothing to run away
// from (we assume then we’d be fleeing) sets the variable "picked"
inline int Directions::go_home() {

static double dval, lval, rval;
int den;

if (max_den_perc_stimulus > TRIVIAL ||
(max_den_perc_stimulus > max_den_memory_stimulus))

den = den_dir;
else

den = remembered_den_dir;

dval = dangerof(den) - shelter_perc_stim[den];
rval = dangerof(right[den]) - shelter_perc_stim[den];
lval = dangerof(left[den]) - shelter_perc_stim[den];
if (dval > rval) {

if (rval > lval)
picked = left[den];

else
picked = right[den];

} else {
if (dval > lval)

picked = left[den];
else

picked = den;
}

// we wouldn’t have called this if we were home, so if we aren’t
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// moving our perception is off.
if (picked == SAME_SQUARE)

return (LOOKING_AROUND);
else

return (go());

} // Directions::go_home

// go the safest aprox. of nearest mate -- assume nothing to run away
// from (we assume then we’d be fleeing) sets the variable "picked"
// don’t take a "big" risk here -- TWEAK
inline void Directions::pick_mate() {

static double mval, lval, rval;

mval = dangerof(mate_dir);
if (mval < TRIVIAL)

picked = mate_dir;
else {

rval = dangerof(right[mate_dir]);
lval = dangerof(left[mate_dir]);
if (lval > rval && rval < TRIVIAL)

picked = right[mate_dir];
else if (lval < TRIVIAL)

picked = left[mate_dir];
else

pick(); // try to stay out of the way of moving animals...
}

} // Directions::pick_mate

// just combine stuff -- world doesn’t look that hard that we have
// to be very clever, so take tyrrell’s word for the combined solution stuff
// (sort of!) note no mate -- we handle them seperately
inline void Directions::pick() {

static int iii, max_dir;
static double food_need, max, res;
food_need = carbo_minus + protein_minus + fat_minus / 3;

max = 0; max_dir = 0;
// start from current square to avoid oscillating
for (iii = 0; iii < 9; iii++)

if (dangerof(iii) < TRIVIAL * AVOID) { // TWEAK
res = food_perc_stim[iii] * food_need * 1.1

+ water_perc_stim[iii] * water_minus
+ mate_perc_stim[iii]
- an_temp_minus * shade_perc_stim[iii]
+ an_temp_plus * shade_perc_stim[iii]
+shelter_perc_stim[iii] * shelter_perc_stim[iii] * SHELTER // TWEAK
// can’t do anything interesting at home!
- den_perc_stim[iii] * den_perc_stim[iii];

if (res > max) {
max = res;
max_dir = iii;

}
} // if danger (for iii)

picked = max_dir; // will rest if surrounded by danger
} // Directions::pick()



// like pick but bias towards shelter and mate
inline void Directions::pick_sheltered() {

static int iii, max_dir;
static double food_need, max, res;
food_need = carbo_minus + protein_minus + fat_minus / 3;

max = 0; max_dir = 0;
// start from current square to avoid oscillating
for (iii = 0; iii < 9; iii++)

if (dangerof(iii) < TRIVIAL * AVOID) { // TWEAK
res = mate_perc_stim[iii] +

+shelter_perc_stim[iii]
- den_perc_stim[iii];

if (res > max) {
max = res;
max_dir = iii;

}
} // if danger (for iii)

picked = max_dir; // will rest if surrounded by danger
} // Directions::pick_sheltered()

// like pick-sheltered, but ignore present square (want to move)
inline void Directions::pick_new_sheltered() {

static int iii, max_dir;
static double food_need, max, res;
food_need = carbo_minus + protein_minus + fat_minus / 3;

max = 0; max_dir = 0;
// start from current square to avoid oscillating
for (iii = 1; iii < 9; iii++)

if (dangerof(iii) < TRIVIAL * AVOID) { // TWEAK
res = mate_perc_stim[iii] +

+shelter_perc_stim[iii]
- den_perc_stim[iii];

if (res > max) {
max = res;
max_dir = iii;

}
} // if danger (for iii)

picked = max_dir; // will rest if surrounded by danger
} // Directions::pick_new_sheltered()

// like pick but food or water sought
inline void Directions::pick_forage() {

static int iii, max_dir;
static double food_need, max, res;
food_need = carbo_minus + protein_minus + fat_minus / 3;

max = 0; max_dir = 0;
// start from current square to avoid oscillating
for (iii = 0; iii < 9; iii++)

if (dangerof(iii) < TRIVIAL * AVOID) { // TWEAK
res = food_perc_stim[iii] * food_need * 1.1

+ water_perc_stim[iii] * water_minus
+shelter_perc_stim[iii] * shelter_perc_stim[iii] * SHELTER // TWEAK
// can’t do anything interesting at home!
- den_perc_stim[iii] * den_perc_stim[iii];

if (res > max) {
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max = res;
max_dir = iii;

}
} // if danger (for iii)

picked = max_dir; // will rest if surrounded by danger
} // Directions::pick_forage()

// sum all the scary things (maybe scale these things later as TWEAK)
inline double Directions::dangerof(int dir) {

return (p2_perc_stim[dir] + p1_perc_stim[dir] +
irr_perc_stim[dir] + edge_perc_stim[dir] +
dp_perc_stim[dir] - den_perc_stim[dir]);

} // Directions::dangerof

inline int Directions::go_fast() {
switch(picked) {
case (N): return(MOVE2_N);
case (NE): return(MOVE2_NE);
case (E): return(MOVE2_E);
case (SE): return(MOVE2_SE);
case (S): return(MOVE2_S);
case (SW): return(MOVE2_SW);
case (W): return(MOVE2_W);
case (NW): return(MOVE2_NW);
default:

return (FREEZING); // could throw error...
} // switch

} // Directions::go_fast()

inline int Directions::go() {
switch(picked) {
case (N): return(MOVE_N);
case (NE): return(MOVE_NE);
case (E): return(MOVE_E);
case (SE): return(MOVE_SE);
case (S): return(MOVE_S);
case (SW): return(MOVE_SW);
case (W): return(MOVE_W);
case (NW): return(MOVE_NW);
default:

return (RESTING); // could throw error...
} // switch

} // Directions::go()

inline int Directions::observe_predator() {
static int dir;

dir = (max_p2_perc_stimulus < max_p1_perc_stimulus) ? p1_dir : p2_dir;
switch(dir) {
case (N): return(LOOKING_N);
case (NE): return(LOOKING_NE);
case (E): return(LOOKING_E);
case (SE): return(LOOKING_SE);
case (S): return(LOOKING_S);
case (SW): return(LOOKING_SW);
case (W): return(LOOKING_W);
case (NW): return(LOOKING_NW);
default:



return (LOOKING_AROUND); // if there’s a predator here we’d know it!
} // switch

} // Directions::go()

A.4 The Main Routines

The version of Edmund used in this thesis is in C++, but Tyrrell’s simulated environment was in
C. These languages can link, but the main() function must be in the C++ code. Consequently I
also had to make a minor modification of Tyrrell’s code – I changed his ”main” to be ”asmain”,
which is called from here.

160



APPENDIX A. THE EDMUND MOUSE 161

/* em.cc --- the routines tyrrell’s simulated enviroment call

Joanna Bryson, Nov 1 1997

$Log: em.cc,v $
Revision 1.1 1997/11/03 23:34:20 jo
Initial revision

*/

#include <stdio.h>
#include <stream.h>
#include <GetOpt.h>
#include <signal.h>
#include "em.hh" // c++ stuff, see asm_decs.h below
#include "brain-objs.hh"
#include "brain.def" // define the static/class variables

#include "asm_defs.h"
#include "asm_mydecs.h" // tyrrell’s code, includes defs for this file
#include "animal_defs.h" // #defs for actions, directions

#include "em-dirs.hh"
#include "em.def"

static char rcsid[] = "$Id: em.cc,v 1.1 1997/11/03 23:34:20 jo Exp jo $";

char *LOG_PATH = "../emfiles";
char *IOF_PATH = "../emfiles"; // lap and landmark files

int GlobalTickClock; // how we tell time... set here!

Drive * life; // has to be a global since we aren’t the main loop

double P1SEE, P2SEE, P1SNIFF, P2SNIFF, AVOID, SHELTER;
extern "C" void asmain (int argc, char * argv[]);
extern "C" double rnd (double range);

main (int argc, char *argv[])
{

char *lapfilename = "intercourse.lap"; // argh, have to hard code!

if (!(lapfilename)) {
cerr << "Error: in main, no lapfile provided (argument -l) \n";

}

// now we need to read in the LAPs...

cerr << "\n LAP reading brains... ";
initprims(); // add the primitives (senses and acts)
read_brains(lapfilename, IOF_PATH); // does its own error checking

cerr << "\n Control to slave. ";
asmain(argc,argv);

}



void em_initialize() {

// generate our parameters we’re testing
/*

P1SEE = .55 + rnd(0.2);
P2SEE = .55 + rnd(0.2);
P1SNIFF = .5 + rnd(0.2);
P2SNIFF = .4 + rnd(0.2);
AVOID = .45 + rnd(0.2);
SHELTER = .6 + rnd(0.2);
*/

P1SEE = .44;
P2SEE = .72;
P1SNIFF = .51;
P2SNIFF = .45;
AVOID = .30;
SHELTER = .78;

cerr << "\n getting life... ";
life = Drive::get_drive("life");
life = (Drive *) life->instantiate();

GlobalTickClock = 0; // start time as well as life :-)

cerr << "Starting up... life =>\n";

} // em_initialize()

int em_select_action() {
static int res;
action = -1;

GlobalTickClock++;
while ( (action < 0) && ((res = life->execute()) == CONTINUE) );

if (action >= 0)
return (action);

cerr << "Life ended!!!\n"; // should never happen...

switch (res) {
case SUCCESS:

cout << "Yaaay, we won!\n"; break;
case FAILURE:

cout << "Boooo, we lost!\n"; break;
default:

cout << "Huh?";
} // switch res
exit (-4);

} // em_select_action()
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