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Abstract. The ‘Radical Agent Concept’ in this chapter is that communication
between agents in a MAS should be the simplest part of the system. When ex-
tensive real-time coordination between modules is required, then those modules
should probably be considered elements of a single modular agent rather than
as agents themselves. The advantage of this distinction is that system developers
can then leverage standard software-engineering practices and more centralized
coordination mechanisms to reduce the over-all complexity of the system. In this
chapter | provide arguments for this point and also examples, both from nature
and from my own research in building modular agents.

1 Introduction

Animal intelligence is complex, but the semantic content of animal communication
tends to be simple. In contrast, artificial agents tend to be relatively simple, yet a great
proportion of the current agent research deals with communication and negotiation be-
tween agents in Multi-Agent Systems (MAS) [€34, /48].

In this chapter, | question the wisdom of this approach. | have been concerned for
some time that the MAS coordination community is overlooking fifteen years of re-
search in action selection for individual modular agents (IMA). | am taking the oppor-
tunity of the Workshop on Radical Agent Concepts to air work in progress on a fairly
basic question: what parts of an Al system should be decomposed into agents, what
parts should be decomposed into modules in a single agent, and what the difference be-
tween these might be. | will propose that the main difference is whether the interactions
between modules is really best modeled as communication, or more standard software
conventions such as method calls or pipes.

| begin with a discussion of agents which are clearly individuated: mammals. | then
consider the problems that action-selection in IMA address, and how these relate to co-
ordination techniques in MAS. | then give an example of a MAS agent where all the
agents are IMA, and show how increasing the coordination between agents can be done
with very minimalist signal communication, embedding the complexity in the IMA
instead. The IMA in this system are built with an Al methodology based on object-
oriented design, and can thus exploit standard software engineering for debugging. Fi-
nally, | summarize my claims.



2 Societies Without Language

We have many animal models of social agents capable of complex behavior, both in-
dividually and systematically, while communicating only by signal, not by language
[24,125]. A signal is bound to a single meaning, while a language implies arbitrary links
between symbols and semantics, as well as other powerful mechanisms such as com-
positionality and grammar. Despite extensive research, to date only humans have been
shown to have languages, yet even humans communicate a great deal through signaling.

Many such signals, when expressed by humans, are generally accepted to be without
intention. For example, facial expression is generally (though not always) unintentional,
and some signals, such as blushing are nearly impossible to control. Other signals we
often consider deliberate, such as physical threats or bowing. However, these actions
may also be often automatic — reflexive responses tuned by social conditioning, exhib-
ited in response to emotionally salient stim(8].[

Although their communication is simple, the intelligence and behaviors of animals
are incredibly complicated, particularly when compared to artificial agents. Animals
manage enormous numbers of sensors and actuators, and pursue many conflicting goals
that require intricate behavior in unpredictable environments. Why in nature is the com-
plexity of individual agent behavior consistently higher than that of inter-agent com-
munication? What are the circumstances that might lead to the evolution of such an
arrangement?

3 Motivations from Nature for Simple Communication

Although the underlying causes of evolutionary trends can seldom be proved deduc-
tively, they are still open to the scientific method. For example, if we find any hypothe-
ses of interest, we can test their predictive power in the performance of artificial agents.
The following are four hypotheses for explaining why non-human animal communica-
tion seems to occur at a very high, abstract level of signaling, rather than at a potentially
more informative level of detail and complexity such as languages provide.

1. The environment demands attentidtentional constraints are a fact of animal in-
telligence [L7] — for whatever reason, animals simply can'’t attend to very many
things simultaneously. Infrequently-occurring combinations of semantically mean-
ingful percepts take time and resources to proé2gsénd such time and resources
are often required for conventional perception and act##h [Thus signals need
to be sufficiently easy to recognize and sufficiently persistent so that other multi-
tasking agents have a good opportunity to observe them.

2. Detailed direction requires significant two-way information exchafde purpose
of communication is to influence the action of another agent. But at what level
should this influence take place? It would be very difficult for one agent to give an-
other detailed directions (such as precise path plans of foot placement) in a complex
dynamic environment. Each agent is itself best situated for detailed observation of
its opportunities, dangers, and requirements, and has the most experience for guid-
ing its own actions and learning their probable outcomes. For example, each indi-
vidual deer in a herd will have different jumping ranges and current energy levels.



Thus if one agent wanted to micro-manage the behavior of another, it would require
communicating current modets the directing agent, as well as transmitting rapid
and detailed instructiorfeomit. As stated in the previous point, such transmission

is difficult to accommodate in nature.

3. Perception is unreliableThis means signals must be very distinct, which in turn
provides interdependent limits on how many different signals can exist, and how
long processing or generating them might take. (Human language has required a
large number of evolutionary innovations in both generation and perce{@@hn [
417).)

4. Conspecifics share a great deal of intelligenthis fact does not limit how detailed
communicatiorcanbe, rather it limits how detailed iteedgo be. Species tend to
largely share both perceptual abilities and behavior patterns. Further, a species’
innate behavior repertoire is likely to include behaviors that benefit other individu-
als, such as their offspring or kin. Consequently, in many common situations there
would be no need for one agent’s detailed management of another. It could be suf-
ficient to communicate only a high-level goal or even simply an emotion in order
to trigger appropriate behavior in a conspecific.

Either individually or taken in combination, these hypotheses could explain why
communication in animals is generally limited to the high level, such as directing atten-
tion to goals, rather than managing a goal’s completion in detail. Humans offer the only
possible counter-example to this argument, yet even between humans, the true efficacy
of communication is often overestimated. Even with our exceptionally complex speech
production apparatu] and high-speed perceptual-event processid, complex,
structured language is not used much in urgent or simply time-critical situations. For
example, during a sporting event, utterances are generally limited in length and highly
ritualized.

Humans must hold enormous systems of shared beliefs in order to communicate
new ideas verbally1g], yet even between close, collaborating colleagues or carefully
trained working crews misunderstandings frequently ocddt. [On the other hand,
very effective real-time task coordination can be generated with very simple, even non-
linguistic utterance<l]. Language is used primarily in social contex8)]j where it
can alter or update another person’s knowledge (and therefore behavioral repertoire)
during times of relative calm.

4 Communication vs. Control

The extent to which the previous four observations about animal communication ap-
ply to an artificial MAS will vary from system to system. A few agent systems are
biomimetic for the sake of being biomimetic — that is, to serve as models of animals.
The emphasis of this chapter is more general. Here | am focusing on the extent to which
limited communication is desirable from a purely engineering perspective.

There is no longer any debate that it makes good engineering sense to break a large,
complex program or system into smaller, simpler elements which communicate only in
a limited way through a well-defined interface. This is widely accepted in conventional
software engineerin@[[15, 4Q] as well as in artificial intelligencér] [32,137].



The question | am asking is about the role of communication in control. This can
also be seen as the question of agent decomposition: what entities need to be agents? |
have previously spent some time addressing the questibelavior/ module decom-
position within modular (behavior-based) age@s10, [14]. | took the answers from
standard software engineering and object-oriented design. First, modular decomposi-
tion takes place around variable state. A module’s core is one or a few related pieces
of variable state with specialized representations to support learning correct values as
efficiently and reliably as possible. A module consists of that state, any sensing required
to create that state, and whatever actions are dependent on it.

The ‘radical concept’ | am proposing in this chapter is that, to the extent possible,
the complexity of an intelligent system belongthin agents, where it can be designed,
addressed and debugged exploiting the advances of more-or-less conventional software
engineering. What this implies about agent decomposition is that a module of a system
should be an agent precisely when the hypotheses in S&tiold — when commu-
nication is costly and needs to be minimized.

In order for this claim to be true, coordination (also known as action selection or
behavior arbitration) within modular agents must be easier than coordination within
MAS. The next two sections examine the extent to which this is true.

5 Coordination in Individual Modular Agents (IMA)

Historically, there have been two dominant strategies for action selection in autonomous
agents. The first isonstructive(search-based)lanning[e.g.i38, [39]. The second is
simply hard-coding the relationship or prioritization between modulesbs2§]. This

latter strategy is sometimes referred toeesctive planningbecause it replaces planning

in a conventional agent with a system that reacts reflexively given the current context.
In the last decade, a large amount of research has focused on combining these two
strategies [e.®2, 27, [31, [33] by having constructive planning create the structures
underlying reactive planning when there is time available to do so.

One strategy that has been almost universally adopted, at least within robotics and
virtual reality, is the modular (often called behavior-based) apprdi;d8]. Behavior-
based Al originally decomposed all of the agent’s intelligence into semi-autonomous
modules which coupled motor control (or more generally, action) to whatever sensing
was required by that action. The system also provided for minimalist, decentralized ar-
bitration confined to connections between modules’ input and output str&hrssip-
sequent research has generally favored more centralized and programmatic arbitration
but nevertheless continues to emphasize the importance of modularity in simplifying
the design and coordination tasi& |26, [32]. | will refer to such agents incorporating
modularity as Individual Modular Agents (IMA) to contrast with Multi-Agent Systems
(MAS).

In contrast to the hybrid of constructive and reactive planning, relatively little work
has been done to control autonomous agents via techniques anything like those em-
ployed in the coordination of multi-agent systems. One exception is the Agent Network
Architecture (ANA) 35], which uses a system of spreading activation between mod-
ules. The activation sources are modules linked to perception and to goals. All modules



in the system are interconnected for passing activation; the connections are weighted to
reflect relevance. The first module that passes a particular threshold activation is allowed
to operate the agent. This mechanism is somewhat akin to MAS auction-style coordi-
nation. However, it still relies on significant engineering for both the weights (though
these are sometimes learned) and the modular decomposition. Further, the Maes archi-
tecture is generally considered impractical for large-scale systems due to difficulties
maintaining behavioral coheren@&q|.

A few other autonomous agent architectures also use MAS coordination strategies.
For example, Humphrys2B] uses voting, and Correia and Steiger-Gar¢l6] use
chains of pair-wise negotiation. Overall, however, | am unaware of any such architecture
other than ANA that has a wider user base than its deveeask of current use does
notnecessarilymply that these architectures or strategies are not potentially useful, but
it does increase the probability that they are being out-competed for some good reason.

6 Could MAS Coordination be Useful for IMA?

The concept presented in Sectidrclaimed that a module should only be treated as
an agent if constraints on communicating information between that and other modules
are animal-like — that is, if perception is slow and noisy so signaling takes a long time
relative to the action-selection cycle of the agent. If this is true, then it implies that there
is no reason to use MAS coordination within a single agent.

In other words, | have no difficulty understanding when MAS technology is used on
the World-Wide Web or across physically distributed problem solvers. But this paper is
more concerned with the fact that MAS coordination technology is increasingly being
applied into areas that have traditionally seen the application of other sorts of modular-
ity, such as robotics4d] or shop-floor planning and schedulirig] [ In this context, it
seems worthwhile to consider whether the arbitration schemes developed for IMA may
be more efficient than coordination schemes developed for MAS. Or in other words,
does it ever make sense to use MAS strategies to coordinate IMA?

At least two conditions have to hold in order for MAS coordination strategies to be
useful for IMA.

1. The coordination process (voting, negotiation, bartering or such) must conclude
quickly enough that its outcome (e.g. the action selected) can be expressed in the
time-window when it is needed. Time has been a considerable problem for con-
structive planning, and underlies the wide-spread acceptance of reactive planning
as at least one element (if ribie onlyelement) of on-line autonomous agent action
selection. Unless a MAS coordination strategy can guarantee a good solution in a
short, fixed length of time, it cannot be used for time-critical action selection.

2. The engineering process is shorter for developing the MAS coordination system
than for specifying a reactive (hard-coded) plan for doing the same thing. Unlike
the previous point, this is a pragmatic argument rather than a logical necessity —
one could choose the slower development strategy, but it would be a waste.

! Another exception might be systems like the Open Agent ArchitecB8jedr Retsina 5],
which are to some extent agent architectures, but | do not include them here since they are
fully-fledged MAS.



For an IMA with heterogeneous modules, it seems likely that the cost of program-
ming MAS coordination will be at least of the same order as that of encoding prior-
itizations for reactive planning. This is because each heterogeneous module must be
described in a set of parameters meaningful to each other module. This presumably
amounts to roughly the same amount of work that is necessary for reactive planning as
specifying priorities per context. Given that this prioritization must take place anyway,
the aforementioned timing advantages of reactive planning give it the edge.

The above points do not necessarily imply that MAS coordination can never be
useful for IMA, but they do provide criteria for characterizing an IMA for which MAS
coordination would be useful:

1. Partof the agent’s remit must include some processes which do not require response
times so quick that they violate the first point above. The prevalence of agent ar-
chitectures that still include constructive planners as one of their elements is an
indication this condition holds for some agents [see furir

2. The agent must contain a sufficient number of homogeneous modules that the sec-
ond point above does not apply.

It is the second of these conditions that almost never holds in current IMA. Most
modular decomposition strategies focus on functional or behavioral criteria. Even where
behaviors are largely homogeneous, the slight difference between them is critical to
action selection. For example the modules controlling each leg of a six-legged robot
operate identically, but at different times (e.g. during the gait) or in different contexts
(e.g. left vs. right turns).

This is also not to say that MAS coordination can’t be useful for MAS. In many
cases, individual MAS agents may be homogeneous from a software perspective, and
differ only in terms of the hardware on which they are running or the users they repre-
sent. In this case, it may be that establishing prioritization can be done through existing
standards (e.g. using money), while communication might be too slow for conventional
IMA control. In this case, the arguments in Secf@would to come into play.

7 Example: Where Complexity goes in a MAS of IMA

I will now illustrate the approach | am advocating — placing complexity within modular
agents in order to simplify communication — with a simulation which does happen
to be biomimetic. The system is a pilot study on a simulation being built to explore
a hypothesis about social organization across species of non-human primates. Again,
although this example is biomimetic, | believe the engineering approach taken may
make sense for more standard, industrial modular intelligent systems.

The research shown here derives from the work of de Vi&8jldn the evolution
of specifically social behaviors such as those used in conflict resolution. In particular,
this research is intended as part of the thesis work of Flack, who is seeking to under-
stand the interaction between the number of conflict resolution behaviors expressed by
a species and the social structure of its coloriigl}. [Flack’s research explores a hy-
pothesized trade-off between egalitarian social models and complex conflict-resolution
behaviors. This research has relevance to issues such as behavioral specialization within
communities and time spent monitoring other agents.



7.1 Approach: Behavior Oriented Design

The IMA in this simulation were developed under Behavior Oriented Design (BOD)
[14]. BOD modules are called behavioiS, [as in]. BOD uses hierarchical reactive
plans for action selection / behavior arbitration. Behaviors are encoded in any standard
object-oriented language; the reactive plan representation is more specialized, though
also relatively standard.B]. The interface between plans and behaviors is an encoding
of plan primitives in terms of methods on the objects which encode the behaviors.

As mentioned earlier, BOD takes inspiration from Object-Oriented Dedig#0)]
in that variable state serves as a starting point for determining modular decomposition.
Further, BOD provides a set of heuristics for simplifying an agent by shifting the spec-
ification of intelligent control between its basic representations, the behavior modules
and the reactive plans. Details of BOD are available elsew@:[®4]. To understand
the argument relating to the theme of this paper it is sufficient to see the increase in
complexity and/or number of behaviors (where complexity is determined both by the
amount of state contained and the amount of program code, as roughly indicated by the
number of primitives / methods supported), and the size of the reactive plans.

7.2 Simulation Results — Impact of Increased Communication

The simulation concerns simple agents with two conflicting drives. One is social: the
desire to groom. The other is individual: the desire to wander in relative isolation —
a stand-in for slightly more complex behavior such as foraging. Each drive is placated
when the agent engages for a while in activities consummatory to that drive (grooming
or wandering). If the agent has no active desires, it rests in place. The agents also have
a desire to avoid bumping into each other which is constant — it invokes avoidance
behavior whenever another agent blocks its path.

The results shown in Figu2are for 16 rectangular agents co-inhabiting a walled,
rectangular enclosure 140 times larger than each agent. For each condition shown in
the figure the simulation was run until 11,000 behavior transitions had been recorded,
or approximately 690 per agent. By ‘behavior transition’ | mean changing from one
expressed behavior (e.g. sitting) to another (e.g. approaching a grooming partner.)

The results show the amount of time spent engaged in three activities: grooming,
attempting to groom, and avoiding jostling. Grooming is a consummatory (fulfilling)
action for the grooming drive — the agents would prefer (are driven) to engage in it
14 percent of their time. Attempting to groom covers a range of behavior including
approaching another agent and aligning with their body in a way to facilitate grooming.
These behaviors are not in themselves rewarding, but are motivated by the grooming
drive. Similarly, avoiding jostling is not exactly consummatory, it simply facilitates
other, more useful behavior. Thus the optimal time use for any individual agent would
show the grooming bar at 14 percent and the other two at zero. Of course, this ideal
cannot be realized, but the simulations examine how it can be approached.

The difference between the three experimental conditions is essentially one of com-
munication. In the first condition, the agents are completely unaware of each other’s
actions other than their locations. In the second and third, the grooming agent transmits
to the groomee its role as a target for grooming, and the groomee holds still. In the
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Fig. 2. Results showing the impact of adding simple communication to facilitate social
grooming. In the first condition there is no communication, in the second recipients are
informed of (and tolerate) active grooming, in the third they these behaviors apply also
during the approach to groom.



second condition, this happens only when the groomer is actively grooming the agent.
In this case, the communication is analogougeting the actiorof grooming. In the
third condition, this transmission takes place during the groomee’s approach. Here the
communication is analogous seeing or hearing the intetd groom from a distance.

It is interesting that the communication behavior in condition 3 does not signifi-
cantly reduce the time the groomer spends approaching the agent over condition 2, but
it does have significant impact on how much time the agents have to dedicate to their
more primal drives, as witness the decrease in grooming time. Thus if the simulated
agents were a valid model of some animal species, these results would indicate a selec-
tive pressure for the behavior patterns in condition 2, but not for those in condition 3.

7.3 Complexity in the IMA supporting Simple Communication

At what engineering cost was the cooperation shown in Figiaehieved? First, con-
sider the design of the original agents in condition 1 (Fi@r&'he behaviors are sim-
plified, but the reactive-plan is precisely represented. The plan determines the agent’s
priorities, but both their assessment and their achievement are carried out by the be-
haviors. Items on the left of the plan are more abstract; solid vertical lines indicate
sub-plans. Higher items on a sub-plan have higher priority. Parenthetical expressions
are perceptual preconditions. Boxes surround primitive actions.

The farthest left sub-plan is the root of the plan hierarchy, referred to adritres
collection(D). Other sub-plans are calledmpetence€C). The program cycle of the
action-selection module has two phases. During the first phase, the highest priority drive
which is currently triggered by its preconditions passes action attention to whichever of
its children was most recently active. In the second phase, the child performs the next
pending step in its own execution. The first phase provides for alertness or reactivity, the
second for persistence within a particular plan. When a sub-plan terminates, attention
is returned to the root of that particular drive. For full details of the plan representation
(including quantitative experimental evaluation) see Bry&pn [

The exact mechanisms of BOD are not significant to the point of this chapter; they
are drawn here partly to show the sorts of coordination developed in the IMA commu-
nity — this system is similar to many other hybrid architectures (see Sdgtitove)

— but more to illustrate an implementation of very simple communication in an IMA
MAS. Contrast Figuré with Figure[d The additions are in italics. Communication

is handled by the new actiamotify, which signals the target of the groomer to set its
groomed-whervariable to the current time. This allows a new perceptual primitive,
being-groomed?o tolerate the grooming (that is, to hold still.) Notice timatify has

been added into an action sequence with ‘groom’. The only change in condition 3 (not
shown) is that notify is added into the ‘align’ and ‘approach’ boxes as well.

8 Summary

This chapter has argued that the agent-decomposition problem should be considered
continuous with the behavior-decomposition problem. Sometimes a module within an
intelligent system should be an agent, and sometimes it should just be part of an agent.
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| have suggested that the heuristic for determining which condition holds has to do
with communication: it is better to embed complexity within a single agent than within
the communication process for two reasons: because communication is unreliable and
because existing Al and software engineering techniques can reduce the complexity of
within-agent coordination.

In Sectiorid| motivated my claim by using natural intelligence as an example; | then
illustrated it by modeling a natural system. | now close by returning to the hypothetical
reasons why mammals communicate so simply in order to answer to the question: When
is a module an agent?

— The environment demands attentidhcommunication cannot take place in time,
then MAS and communication are not an option. This constraint clearly doesn’t ap-
ply to agents which are situated in entirely stable, predictable environments with no
real time constraints. However, do such agents exist and, if so, do they need to com-
municate? Communication indicates mutual interdependence, and therefore some
form of time constraint. A program that can compute a solution quickly enough
that time doesn’t matter and return its result reliably doesn’t need to be anything as
complicated as an agent — it could be a subroutine.

— Detailed direction requires significant two-way information exchafides might
not hold for an artificial entity — it might know exactly what another entity needs
to know, and be able to feed that information directly. In this case, again, there is
no reason for these entities to be agents. They could use pipes instead of KQML.

— Perception (communication) is unreliabl€his is obviously more true of satel-
lite arrays than modules on the same CPU, but in general it is solved in MAS
by protocols. That is, communication reliability issues have been replaced by in-
creasing costs in time of transmission and in the complexity of designing two-way
exchangé However, although modules in IMA may run in parallel, their action
selection is often sequential. Consequently, if timing or reliability in communica-
tion areissues, MAS coordination strategies may be better than IMA ones.

— Conspecifics share a great deal of intelligen8ectiorld argued that only within
homogeneous agents does it make sense to coordinate through negotiation, because
between heterogeneous agents the amount of work creating a common negotiation
framework might as well be put into creating a reactive-plan framework instead.
When agents do share a great deal of common code, very sparse, simple communi-
cation should be possible.

These are obviously broad generalizations and claims. These issues should probably
be studied more formally, and the procedures for agent / behavior module decomposi-
tion tested and refined. Further, their may be hybrid cases whgsof a MAS may
want to betemporarilyunified in an IMA-like structures. Gajo21] describes a system
that does this within an intelligent environment — IMA-like coordination is used to co-
ordinate care for both individual users and individual rooms. Bryson €t2]Ipfopose

2 A significant but frequently-overlooked contribution of the Subsumption Architedjneds
the specification that messages are sent with no hand-shaking and no guarantee of reception.
Consequently, no single packet could be crucial, but rather the entire communication stream
could be viewed as homologous with continuous sensor information. SEhi&es this model.



a similar solution, where an individual user agent’s action-selection may temporarily
absorb as a module agent-like services discovered on the Web.

Nevertheless, my conclusion is that the agent abstraction makes the most sense
when transmitting information between components of a system takes some time. In
that case, communication should be kept as simple as possible. Where modularity can
help simplify the system further, it is generally best coordinated as an IMA, not a MAS.
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