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Abstract

This paper describes a model that demonstrates that sharing knowledge can be adaptive purely for its
own sake. This is despite the fact that sharing knowledge costs the speaker in terms of foraging oppor-
tunities, and that initially the majority of the population consists of free-riders who listen but do not

speak. The population is able to take advantage of the increased carrying capacity of the environment
that results from the spread of knowledge, and the free riders are reliably out competed by the speakers.

1 Introduction

1.1 Is Language Costly Signalling?

Many contemporary theories on the emergence of
linguistic communication focus on mechanisms that
could compensate for the cost of communication
to the individual. When transmitted information is
viewed as a commodity rather then as a means of
influencing the behaviour of the receiver, the evolu-
tionary benefits of linguistic communication do be-
come unclear. The cost for a knowledge transmitter
is the cost of giving up a competitive advantage by
not keeping valuable information to themselves.

Dessalles (2000) uses agent based modelling to ar-
gue against the sharing of information as reciprocal
altruism. The starting point of his argument is that the
gathering of information is costly and that therefore
passing it to others for free is effectively costly too.
Dessalles’ claims that the results of running his agent
model where there is a cost to communicating show
that communication cannot be a form of reciprocal
altruism under realistic conditions. Only if informa-
tion were very valuable, the cost for dispensing it very
low and if it were easy to detect non-cooperative indi-
viduals, would the model favour communication. He
then proceeds to explain the benefits of language as
a means of forming coalitions and obtaining status
within a social group through coalitions.

We will not argue against this last point —

brought forward over the years, for example its utility
in thinking (e.g. Dennett, 1996).

We do challenge the hypothesis that compulsively
sharing valuable knowledge is in itself not adaptive.
We have built a model in which agents communi-
cate about food. Agents only have access to food
resources they know how to exploit and being told
is one way of obtaining this knowledge. The cost of
dispersing information is that it enables other, com-
peting agents in the vicinity to gain access to limited
resources that otherwise may well have been monop-
olised by the original knowledgeable, communicat-
ing individual. Although there is this individual cost,
the population as a whole benefits from the disper-
sal of knowledge as it effectively increases the carry-
ing capacity of the environment by opening up addi-
tional food resources. Our model shows that there are
circumstances in which communicating agents out-
compete silent, knowledge-hoarding agents, despite
the fact that these silent agents hear and exploit all the
same knowledge the communicating agents in their
vicinity hear and exploit.

In the remainder of this section we give a brief in-
troduction in Agent Based Modelling. In the next sec-
tion we provide a description of our model, then we
report the results of the experiments more finally. We
conclude with a discussion and summary of results.

1.2 Agent Based Modelling

Dessalles makes a strong case for how language can Agent Based Modelling (ABM) is used as a research

serve this purpose. Nor will we argue against any
other possible benefits of language that have been

tool in a variety of areas including: social science
and economics (Epstein and Axtell, 1996; Cederman



and Rao, 2001), animal behaviour (Hemelrijk, 2000)
and complex systems in general (Baray, 1998; Esteva
et al., 2001). In ABM, only the agents and their en-
vironment are modelled explicitly. The global be-
haviours being studied in the system emerge from
local interactions, both between agents and between
agents and their environment, when the model is run.
For example, in our models the agents only communi-
cate to their neighbours who are also theirimmediate
competitors for food. This means that for the indi-
vidual there is an immediate disadvantage in commu-
nicating. However, the global effect we show is that
over a longer period of time and for the entire popu-
lation, communication can be beneficial, and will in
some circumstances be selected.

Our models were built in NetLogo (Wilensky,
1999). NetLogo is a freely available multi-agent
modelling environment, specifically designed for the
ABM of natural and social phenomena. The Net-
Logo world consists of two kinds of programmable
agents: an environment divided into patches and mo-
bile agents called turtles. Patches can represent envi-
ronmental change, such as growing food, while tur-
tles are typically used to represent animals, including
humans.

2 Method

2.1 Prerequisites

In this section we describe our model's implementa-
tion. We begin with an overview of the general prop-
erties of the model such as the relation between the
amount of food and the population size. Then we
explain how the environment is built and finally we
describe agent behaviour.

The model we use has to be suitable for simulating
evolutionary pressure and to model the effects of the
spread of knowledge through communication. The
first requirement entails that the model yields a more
or less stable population so that it can be studied over
a long period of time. In this context ‘stable’ means
that the population does not become extinct and does
not become so small that chance factors can kill off
otherwise successful minority species, but also does
not explode in size since this would slow the simula-
tion down a good deal.

For the same reason large, rapid fluctuations in
population size are undesirable. As a result, the
model has to be initiated with values close to the equi-
librium. The consequences of events that cause the
population to drop dramatically and the ability (and
the speed) to get back to a stable population are of

course very interesting, but fall outside the scope of
the current research.

In the simulation, time is measured in cycles, one
time-step corresponds to one cycle in which all the
agents have been activated. So activation is done in a
drawing without replacement fashion. Choosing the
order in which to activate the agents is resolved by
NetLogo itself.

2.2 Basics, the Environment and Food

The number of agents is determined by their birth
and death rate, and these in turn are both affected
by the replacement rate of the food. The agents re-
produce asexually and the reproduction preconditions
are chosen such to meet the above-mentioned stabil-
ity requirement. The offspring function is discussed
later in this section, but depends on energy levels.
Agents die if they run out of energy or reach maxi-
mum age. A maximum age of 50 cycles is imposed
to keep a small number of long-lived individuals from
influencing the spread of knowledge. In addition, to
live the agents need to keep their energy level above
zero. They do this by feeding.

Model runs are begun with the values for agent
energy and the number of agents close to equilib-
rium for the given amount of food, including special
food. Runs begin with a brief period of population
/ food oscillation, but these damp quickly to initial
equilibrium levels. The population equilibrium then
rises slowly as knowledge spreads through the agents,
while the food equilibrium stays roughly constant.

The environment consists of 201x201 patch square
on a torus space, which is presented on screen as a
square. This means agents that walk off any ‘edge’
of the square will reappear on the opposite edge. On
every cycle, energy available in the environment is
supplemented in the environment by ‘growing food’
in a method similar to Wilensky (1998). For every
patch, a random number is generated; if it is smaller
than the food replacement rate, food is added to the
patch.

There are two categories of food: regular food that
is available to all agents and six different types of spe-
cial food with twice as much nutritional value that
are only accessible to agents with the corresponding
know-how, which enables that food-type’s exploita-
tion'. A patch can contain only one unit of food. To

1This idea was derived from one due to Steele (2004), which
in turn derived from the Expensive-Tissue Hypothesis (Aiello and
Wheeler, 1995). Steele’s idea was that language and a larger brain
may have co-evolved. Communication enabled agents to exploit
richer food sources which in turn allowed them to have larger
brains and smaller guts, thus conserving overall metabolic cost.



prevent the special food from clogging up the envi-
ronment if no agents know how to eat it, special foods
can be overgrown by the regular food using the fol-
lowing algorithm.

On each cycle, food growth is accomplished by
generating a random numberfor all empty patches,
and filling those with am smaller then the replace-
ment rate for the special food with some special food.
Then this procedure is repeated for all the empty
patches and all patches containing special food us-
ing the replacement rate for regular food. This time,
if the random number for a patch that is either empty
or containing special food is smaller than the replace-
ment rate for regular food, the patch is emptied and
refilled with the regular food.

3 Knowledge and Transmission

There are two breeds of agents, agents that communi-
cate and agents that don’t. All agents of both breeds
understand communication, and will use knowledge
received to eat special food if they find it. The only
differences between the breeds is that, every time cy-
cle, agents of the communicating breed choose one
food type they know about and communicate this
knowledge to all their neighbours.

New knowledge comes into the simulated popula-
tion in a slightly unrealistic way. Agents are all born
knowing how to eat the most basic, lower calorie food
type. In addition, when the agents are born they have
a 5% probability of knowing how to eat any one of
the different, special, food types. No learning except
from communication is done after the agent is born.
Although somewhat unrealistic, this is relatively easy
to code. Further it simulates the propensity of young
agents to engage in exploration. Imagine if you like
that during their first time step of life, agents are more
likely to put strange things into their mouths. Again,
both breeds are equally likely to acquire new knowl-
edge this way.

The probability of an individual having offspring
depends on their energy level. To keep the popula
tion size from fluctuating too much we have chosen
a conservative offspring function. Even agents with
relatively high energy levels do not necessarily re-
produce; rather reproduction is probabilistic, though
the probability increases with the energy level. When
agents with high energy do reproduce, their offspring
are at an advantage compared to that of agents with
less energy because at birth the parent’s energy is split
80:20 with its offspring.

The offspring is always of the same breed as the
parent. This may seem too deterministic, but it is easy

to see how a mutation probability biases the ratio be-
tween the two breeds. Assume for instance we have a
population of 100 individuals of 2 breeds, a 1:10 ratio
and a mutation probability of 10% (for explanatory
purposes, this is of course too high to be realistic). If
the rest of the parameters are such that the popula-
tion and the ratio between the breeds should stay the
same — all individuals hatch once and die immedi-
ately afterwards — this is what happens the first time
around:

minority breed at + 1 = 10 — 0.1 %« 10 +
0.1x90=10-14+9=18

majority breed at + 1 = 90 — 0.1 % 90 +
0.1%x10=90—-9+4+1=82

Because we want communication to be the only force
influencing evolutionary pressure such a bias would
be undesirable.

The agents move across their environment ran-
domly with step lengths distributed according to a
Levi-flight distribution. Walking patterns fitting this
description have been found in foraging animals as
well as in evolutionary optimised foraging agents
(van Dartel et al., 2002). The formula describing a
Levi-flight distribution is:

Pl)=1/z+1/I™

Wherez is a normalising constant and is a value
betweenl and3. In our implementation we deviate a
little from Levi-flight proper by takingl /m to be3.
This is done to keep the knowledge distribution more
localised by keeping step length relatively small. No-
tice though that the density of the population has no
impact on their mobility: any number of agents can
be standing in the same patch.

The agents lose a small amount of energy with ev-
ery time step regardless of the distance travelled. Be-
cause agents wander around aimlessly they are pre-
sented with feeding opportunities at random, but their
chances of actually feeding depend on two things:

1. the know-how they possess, and

2. how many neighbouring agents have the same
know-how and may thus be eating the same local
resources.

3.1 General Experiment Characteristics

The models are run for a long period of time, typically
12,000 time-steps, corresponding to roughly 350 gen-
erations. During this time a number of values are
recorded and plotted against the duration of the simu-
lation and recorded separately: the number of agents,



the ratio between the two breeds, the amount of food
in the environment, the amount of regular food and
the total amount of the special food. The number
of things each agent knows, summed up and divided
by the total number of agents, is taken as measure of
know-how in the population and is also recorded and
plotted. While the values above describe properties
of the entire population, some properties of individ-
ual agents are also recorded. Namely, when an agent
dies its ID, age, date of birth, breed, know-how, par-
ent and all offspring are recorded to a file.

Every experiment started out with a population of
10% communicating agents and 90% silent agents.
Also, for each experiment, we ran a control ver-
sion where all conditions were the same except the
‘communicating agents’ did not actually communi-
cate. They were however still tagged as a different
breed from the normal/silent agents.

3.2 Metrics for Evaluation

Recording values as described above provides the
means to measure the influence of communication
and the opportunity to examine the mechanisms be-
hind it. Values taken from individual agents and re-
lated to breed, food distribution and know-how in-
clude the following frequencies:

1. Number of offspring.
2. Number of offspring that managed to reproduce.

3. Age at death.

Biological fithess is nothing but reproductive success.
Having many offspring is only an indication of fitness

if those offspring get to reproduce. For this reason
both 1) and 2) are taken as a metric. The age at death
is used by Baray (1998) to measure the effectiveness
of cooperative behaviour. We use it as an extra met-
ric; it is useful because it correlates with other popu-
lation properties like offspring survival rate.

There are also two systemic measures: the breed
ratios and the environmental carrying capacity. The
latter is simply the average number of agents the envi-
ronment can sustain — Epstein and Axtell (1996) use
this to measure the influence of trade. In the models
presented here the amount of food in the environment
is determined from the start of every experiment, but
the amount of food available to the agents depends
on the spread of knowledge. With a greater spread of
knowledge more food will become accessible, chang-
ing the carrying capacity of the environment.

The breed ratios provide a straightforward way of
determining how some trait influences fitness. It sim-
ply requires checking if individuals possessing that

trait take over the population. It is not a sufficient
measure because populations can sometimes become
extinct despite being well adapted, especially in a
model where the total number of individuals lower
than about 2000. Because there are fairly significant
but essentially random fluctuations of the population,
small populations will die out, even if they might ul-
timately have proved more adaptive. For this reason,
if less than 1000 agents are in the initial population,
the initial (less than 100) speakers often die out early
in the simulation.

4 Description of Runs

The growth rate of the food provides a handle for ma-
nipulating population density and consequently the
amount of communication. This holds primarily for
the growth rate of the regular food, the growth rate
of the special food does not have much effect on the
population until the appropriate know-how has per-
colated through the population. Most of the spread
of knowledge happens simultaneously with the com-
municating agents taking over the population; per-
fect knowledge on the other hand never seems to be
achieved.

In order to start the simulation with reasonable val-
ues, the amount of special food in the environment
has to be approximately the same as the amount of
food when the simulation reaches equilibrium. Re-
call that the equilibrium value depends on the replace-
ment rate and energetic value of the food and on agent
life properties. The latter include the offspring func-
tion, maximum age and the amount of energy agents
lose every cycle. In the first series of experiments
the effects of the different food ratios were measured
by keeping the growth rate of the regular food fixed
and varying the growth rate of the special food. Re-
member that the ‘special food’ differs from the regu-
lar food by having a twice as high energetic value and
a more limited availability.

4.1 Preliminary Results

We ran experiments with different amounts of food in
the environment. Under almost all of the conditions
the silent agents die out. As expected, with compara-
tively more special food in the environment the talk-
ing agents had more of an advantage. The time at
which all the non-communicating agents die out is
inversely proportional to the replacement rate of the
special food. Only when the amount of special food
in the environment is kept very low does the advan-
tage of communicating disappear. This is done by



food replace rate average population size

regular special with comm. without comm.
16 1 1367.51 1336.21
16 2 1440.35 1373.81
16 8 2303.71 1447.97
16 16 4267.45 1579.35

Table 1: The average population size after equilib-
rium is achieved in two different conditions (with
and without communication) at four different replace-
ment rates for special food.

setting a (very low) limit to the amount of food, the
food only gets replenished if the sum total falls under
this threshold.

With communication the carrying capacity of the
environment increases with the amount of special
food. In the communication-free control conditions
there is also a population increase but much smaller.
This increase is due to the individuals who are ran-
domly born knowing about special food, even though
they can't communicate about it. Table 1 shows the
total population size by the end of the simulation (set
to 12,000 time cycles, which is usually well after a
stable equilibrium is found.) Notice that in the last
two cases the silent agents were already extinct at the
time the population stabilised enough to get an aver-
age, but in the other cases the population stabilised
beforethe silent agents died out.
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Figure 1: An example run where there are 6 special
food types. Points are drawn approximately 10 gen-
erations apart.

Analysis shows there is no exclusive or common
know-how. That is, for every one of the different
things the agents can know, at any point in time, the
percentage of agents that have this knowledge will
fall in the same interval, yet there is never a point
reach where all agents know all things (see for ex-

ample Figure 1). Note that this means only that in-
dividual knowledge is distributed evenly at different
points in time. Across patrticular regions of space
some know-how may be shared by many agents while
some could be held exclusively by a small nhumber
of individuals. In fact this is exactly what happens.
We have equipped our model with a visual diagnos-
tic tool to enable us to see which agents have the
same know-how. Of course, having some type of
know-how will lead to a higher energy level only if
the agent stumbles upon the corresponding food. The
speed of dissemination and the overall availability of
knowledge depends on the density of communicating
agents. Knowledge spreads faster in an environment
that can support more agents. Also the numbers of
communicating agents increases faster in an environ-
ment that has more special food (food that requires
knowledge) in it.

5 Discussion and Future Work

5.1 The Effects of Communication

We have chosen a natural way of modelling the cost
and benefit of communication. In our model the costs
of communication are individual and temporally lo-
cal. Also, the costs and benefits (for the receiving
agents) are probabilistic. The hearing agent only ben-
efits from the newl knowledge if it stumbles on a
patch with the corresponding food. The cost for the
communicating agent mirrors this. By compulsively
giving out information the communicating agent en-
ables its neighbours to take that same food. There
may never actually be any competition if the food is
not there. But when there is food in the vicinity, the
neighbouring agents will be in the position to take it
all. Nevertheless, compulsively giving free informa-
tion is the evolutionarily successful strategy.

5.2 Selection

It may be argued that what we are showing here is kin
selection. The agents live for a short time and they
mostly take small steps. Under these circumstances
an agent can be expected to have more contact with
its offspring or parent than with any other particular
random agents. These are simple agents which speak
to every neighbouring agent the same, whether they
are related or not, or even whether or not they are the
same breed. Nevertheless, some biologists argue for
kin rather than group selection even where the iden-
tity of kin may be ‘mistaken’, or in this case, not dis-
criminated.



We can see no other explanation for why the silent
agents die out except that, since they tend to be near
their own relatives, they don’t tend to get to know
as much, and so they are out-competed for energy.
Similarly, although a speaker gives up the advantage
of its own knowledge in the short term, because it is
likely to be in a community of similar agents, it is
more likely to learn knowledge that helps it exploit
more different kinds of food. What our simulations
show is that, at least in some circumstances, this is
the better strategy than free-riding.

There is obviously a great deal of work remaining
to be done. It would be interesting to characterise
more formally when and why the silents die out and
the communicators dominate. We could also count
how many of the communications going on are be-
tween relatives as a proportion of the whole. It would
also be interesting to modify the model to explore
things such as what happens if ageatasestrict their
communication to close relatives, practice deception,
or just accidently, through their own ignorance, com-
municate useless or even harmful knowledge.

Nevertheless, the work as it stands brings inter-
esting challenges to some existing Evolution of Lan-
guage theory. For example, every theory on the emer-
gence of language that presupposes that the cost to
communication automatically means communication
is not in itself adaptive needs to be reevaluated.

6 Conclusion

We have demonstrated that the propensity for com-
munication can have a selective advantage despite be-
ing costly, provided that it has sufficient benefit to the
community of speakers. Thect of communicating
may be costly to an agent, but thepensityto com-
municate will benefit the agent if it is consequently
likely to learn from its children, parent, siblings and
cousins. Further, we have shown that free riders who
understand what they hear but do not share their own
knowledge not only fail to inhibit the selection of
free communicators, but will in the long term be out-
competed if they tend to pass on their propensity for
not sharing their knowledge and to live near their kin.

As we stated in our introduction, our results in
no way challenge whether there are other selective
forces that have affected the evolution of language,
particularly language as we know it. But we have
conclusively shown that arguments in favour of such
mechanisms as selection for prestige cannot rely for
evidence on free communication being non-adaptive.
Communication may still have been the first selective
advantage of language.
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